

Last results from Double Chooz

Guillaume Pronost

on behalf of the Double Chooz collaboration

NuFact 2015

The Double Chooz experiment

The Double Chooz experiment

NuFact 2015

A disappearance experiment

Neutrino detection

► Inverse Beta Decay (IBD):

 $\triangleright \overline{\nu}_e + p \rightarrow n + e^+$

Prompt signal: E_{e^+} + annihilation γ 's $(1 \sim 9 \text{ MeV}, \text{ related to } E_{\overline{\nu}_e})$

Delayed signal: γ 's from neutron capture on Gd or H

Delayed coincidence

The Double Chooz detectors

8/23

Double Chooz analysis

Last Gadolinium analysis: DC-III (Gd-n) (2014)

New analysis using relaxed selection cuts and innovative BG rejection methods

- ► Rate+shape analysis allows to extract θ_{13} from [0.5,4] MeV distortion: $\sin^2(2\theta_{13}) = 0.090^{+0.032}_{-0.029}$
- First publication on the unexpected [4,6] MeV data/MC spectrum distortion [1] [1]: JHEP 10 (2014) 086 [Erratum ibid. 02 (2015) 074]

New Hydrogen analysis: DC-III (H-n)

μ veto	$E_{vis}(ID) > 20$ MeV or $Q(IV) > 30k$ a.u.	
μ dead time	1250 µs	
light noise cut	yes	
<i>E_{vis}</i> (prompt)	[1, 20] MeV	
	Multivariate analysis (New)	
Delayed	Relaxed cuts: E_{vis} (delayed) \in [1.3, 3] MeV	
coincidence	$\Delta t \; (e^+$ - n $) \in [0.5, 800] \; \mu$ s and	
	$\Delta d~(e^+$ - n $) < 1200$ mm	
Multiplicity cuts	[-0.8, 0.9] ms (relative to prompt)	
OV veto	yes	
IV veto (prompt)	yes	
IV veto (delayed)	yes (New)	
FV veto	yes	
Li+He veto	yes	
MPS veto	yes (New)	

- Huge improvements since first Hydrogen analysis (thanks to DC-III (Gd-n) analysis)
- Innovative methods developped since Gd analysis to deal with the huge background rate

DC-III (H-n): Multivariate analysis

- ► Relations between Δd , Δt , and E_{vis} (delayed)
 - \triangleright Different between IBD and accidental BG
- ANN-based multivariate analysis
- Major improvement: Signal to BG ratio by factor > 10× w.r.t. H-II

DC-III (H-n): IV veto

- IV originally equipped as active veto for muons & shield for fast neutrons
- Tags fast neutron (as for Gd) & **Compton** γ **s** (new)
- Application on Delayed (new): mandatory due to $^{208}TI \gamma$ comptons from rocks (peak at 2.6 MeV)
- \blacktriangleright IV veto rejects $\sim 27\%$ of remaining accidental BG

DC-III (H-n): MPS veto (Multiple Pulse Shapes)

- Multiple fast neutrons produced by µ spallations in rocks.
- Pulse Shape: Main pulse (proton recoil mimicking prompt signal) + Additional pulses (low energy proton recoils) within 256 ns recorded in same event
- \blacktriangleright Rejects $\sim 25\%$ of fast neutron BG

DC-III (H-n): IBD candidates

17/23

Visible Energy (MeV)

θ_{13} measurement

Reactor Rate Modulation (RRM) analysis

- Compares observed and expected IBD rates at different reactor powers.
 - Independent of model for reactor spectrum shape
 - ▷ Gains leverage from unique reactor-off data

 $\sin^2 2\theta_{13} = 0.098^{+0.038}_{-0.039}$

RRM: Gd+H combination

Combining the H (2015) and Gd-based (2014) results:

Correlations between Gd and H have minimal impact. This result assumes no correlation.

20/23

Reactor spectrum distortion at [4,6] MeV

Consistent features observed in Gd and H channels

- Excess in 4-6 MeV region is correlated with reactor power
- \triangleright Gd excess: $\sim 3\sigma$, H excess: computation ongoing
- Origin: Ongoing research/discussion in the community (Plot on right, from Gd 2014 analysis, uses a simplified n-H selection.)

- ► New Hydrogen analysis using Far Detector only:
 - Validation and cross-check of Gd-n measurement
 - RRM: $\sin^2 2\theta_{13} = 0.098^{+0.038}_{-0.039}$
 - ▶ [4, 6] MeV spectrum distortion measurement
 - ▷ Combination of Gd-n and H-n to increase statistical significance
 - RRM: $\sin^2 2 heta_{13} = 0.090 \pm 0.033$
- Instrumentation:
- Demonstration of powerful new techniques allowing low BG H-n IBD selection
- \triangleright Accidental BG reduction by $> 10 \times \&$ negligible impact to systematic and statistical resolutions (relative Gd-n)
- Demonstration of the possibility to build DC-like H-n only experiments for precise reactor neutrinos measurement

Conclusions and outlook

Near detector operating

- ▷ Already taken 6 months of data
- \triangleright Working now on a two-detector sin² 2 θ_{13} analysis

Projected precision $\sin^2 2\theta_{13}$, using only Gd captures: (Adding H capture data \rightarrow better precision in shorter timescale.)

Backup

Backup

Energy reconstruction

$$E_{vis} = N_{pe} \times \underbrace{\widetilde{f_u(\rho, z)}}_{Vis} \times f_{PE/MeV} \times \underbrace{\widetilde{f_s^{data}(E_{vis}^0, t)}}_{Sim} \times f_{nl}^{MC}$$

(1) Charge to PE non-linearity correction (using light injection system) correct for non-linear effects due to electronics response

$$E_{vis} = N_{pe} imes f_u(
ho, z) imes f_{PE/MeV} imes f_s^{data}(E_{vis}^0, t) imes f_{nl}^{MC}$$

(2) Energy non-uniformity correction (using spallation n captures on H) correct for detector response position dependence

$$E_{vis} = N_{pe} imes f_u(
ho, z) imes f_{PE/MeV} imes f_s^{data}(E_{vis}^0, t) imes f_{nl}^{MO}$$

(3) Absolute energy scale determination (using ^{252}Cf source at detector center) Determine PE to MeV conversion factor from (H-n) captures

$$E_{vis} = N_{pe} imes f_u(
ho, z) imes f_{PE/MeV} imes f_s^{data}(E_{vis}^0, t) imes f_{nl}^{MC}$$

(4) Energy time stability correction (using natural radioactivity sources) correct time fluctuations due to electronics response and liquid scintillator deterioration

Energy resolution

Very good agreement data to MC over whole energy range Constant term of resolution b ~ 0.018

29/23

Reactor flux prediction

$$N_{i} = \frac{\epsilon N_{p}}{4\pi} \sum_{R} \frac{1}{L_{R}^{2}} \frac{\mathsf{P}_{\mathsf{th}}^{\mathsf{R}}}{\langle \mathsf{E}_{\mathsf{f}} \rangle_{\mathsf{R}}} \left(\frac{\langle \sigma_{\mathsf{f}} \rangle_{\mathsf{R}}}{\sum_{\mathsf{k}} \alpha_{\mathsf{k}}^{\mathsf{R}} \langle \sigma_{\mathsf{f}} \rangle_{\mathsf{k}}} \sum_{\mathsf{k}} \alpha_{\mathsf{k}}^{\mathsf{R}} \langle \sigma_{\mathsf{f}} \rangle_{\mathsf{k},\mathsf{i}} \right)$$

Bugey4 "anchor":
$$\langle \sigma_f \rangle_R = \langle \sigma_f \rangle_{Bugey} + \sum_k (\alpha_k - \alpha_k^{Bugey}) \langle \sigma_f \rangle_k$$

i = energy bin index, R = {Reactor 1, Reactor 2}, k = { 235 U, 238 U, 239 P, 241 P}

 ϵ = detection efficiency, N_p = number of protons in fiducial volume, L_R = distance between R^{th} reactor and detector

Flux Systematics

DC used Bugey4 as effective ND (via MC)

Leads to a flux error of 1.7% (\sim 30% reduction)

Remaining Correlated background

Measurement method:

- Tag with IV (or OV) allows to get shape in IBD region. Get norm. from region beyond IBD.
- **Exponential shape** (flat for Gd)
- Included the stopped muon contamination (negligible: $\sim 0.02 \text{ cpd}$)

Reactor OFF-OFF

Number of events	All	E > 12 <i>MeV</i> (Correlated BG)
Before Vetos	10185	23
After Vetos	63	1
Rejection	\sim 160 $ imes$	$\sim 23 imes$

- Expected rate: $7.05^{+0.6}_{-0.4}$ events/day
- \blacktriangleright Measured rate: 8.8 \pm 1.1 events/day
- Demonstration of the power of our selection
- Validation of our background model
- ▶ Rates includes residual neutrino: 0.33 ± 0.10 event/day

Detection Systematics

- ► $\delta(detection)$: error on all corrections
 - DATA/MC normalization from errors due to: Dead time, vetoes inefficiencies, etc.
 - ▷ MC corrections (w.r.t. FD)
- Contributions from MC corrections:
 - ▷ **Proton number**: ~ 0.91% (dominant)
 - \blacktriangleright Computed for $\gamma\text{-catcher}$ (GC) and acrylics
 - GC was not designed to be used for high precision physics
 - \triangleright Spill uncertainty: $\sim 0.29\%$
 - \triangleright Hydrogen fraction: $\sim 0.21\%$ (T and GC)
- ▶ Selection efficiency: $\sim 0.22\%$
- $\delta(\text{detection}) \simeq 1.0\%$ (all systematics comparable to Gd except proton number)

Spill effect and Selection efficiency

- Spill: Neutrons travel through different volumes
 - Captures can occur in a different volume than IBD
- High model dependency
- Comparison between Tripoli4 and an ad hoc Geant4 neutron model

- **Selection efficiency**:
- Computed on whole detection volume
- Neutron efficiency defined as $\varepsilon = \frac{\# Standard \ delayed \ cuts}{\# Extended \ delayed \ cuts}$
- Computed for data (taking BGs into account) and MC

RRM without background model

No a priori background model ... a unique Double Chooz analysis!

$\sin^2 2\theta_{13} = 0.123^{+0.042}_{-0.043}$

36/23

Rate+Shape fit

- Uses prompt energy spectrum, with single reactor power bin
- ► Able to constrain backgrounds \rightarrow better sin² 2 θ_{13} precision
- $\blacktriangleright \sin^2 2\theta_{13} = 0.124^{+0.030}_{-0.039}$
- ► Large χ^2 in ~ 4-6 MeV, region of spectrum distortion observed in latest Gd analysis