The Muon g-2 Experiment at Fermilab

Kevin Lynch For the Muon g-2 Collaboration NuFact 2015 Centro Brasileiro de Pesquisas Físicas Rio de Janeiro, Brazil August 10-15, 2015

Muon g-2 holds a prominent place in the near term US HEP program

Building for Discovery

Strategic Plan for U.S. Particle Physics in the Global Context

P5 Report Recommendation 22: Complete the Mu2e and Muon g-2 projects.

Why this emphasis on muon physics?

Muon g-2 is interesting precisely because theorists can calculate it!

Muon g-2 is interesting precisely because theorists can calculate it!

Muon g-2 is interesting precisely because theorists can calculate it!

Muon g-2 can both be calculated and measured to fabulously high precision

We achieve this experimental precision because we measure frequencies

If we put a point charged fermion into motion in a plane transverse to a pure magnetic dipole field, both the momentum and the spin precess

Momentum precession – cyclotron motion:

$$\frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = e\vec{v} \times \vec{B} \longrightarrow \omega_C = \frac{eB}{\gamma mc}$$

Spin precession – Larmor plus Thomas motion:

$$\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\mu} \times \vec{B} \longrightarrow \omega_s = \frac{geB}{2mc} + (1-\gamma)\frac{eB}{\gamma mc}$$

We achieve this experimental precision because we measure frequencies

The difference between these two comes from an *anomalous magnetic moment* not predicted by pure Dirac theory

$$\omega_a = \omega_C - \omega_s = \left(\frac{g-2}{2}\right)\frac{eB}{mc} = a_\mu \frac{eB}{mc}$$

If we're a little more careful and include other moments and fields, the frequency to be measured becomes more complicated

$$\vec{\omega}_a = \frac{e}{mc} \left(a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \vec{\beta} \times \vec{E} - a_\mu \frac{\gamma}{\gamma + 1} (\vec{\beta} \cdot \vec{B}) \vec{\beta} \right)$$

We can address these additional terms by careful experimental design

$$\vec{\omega}_a = \frac{e}{mc} \left(a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \vec{\beta} \times \vec{E} - a_\mu \frac{\gamma}{\gamma + 1} (\vec{\beta} \cdot \vec{B}) \vec{\beta} \right)$$

We can address these additional terms by careful experimental design

$$\vec{\omega}_{a} = \frac{e}{mc} \left(a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \vec{\beta} \times \vec{E} - a_{\mu} \frac{\gamma}{\gamma + 1} (\vec{\beta} \cdot \vec{B}) \vec{\beta} \right)$$
Make motion
transverse to the field

We can address these additional terms by careful experimental design

 $\vec{\omega}_a = \frac{e}{mc} \left(a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \vec{\beta} \times \vec{E} - a_\mu \frac{\gamma}{\gamma + 1} (\vec{\beta} / \vec{B}) \vec{\beta} \right)$

If these terms can be set equal, we have complete freedom with the electric fields - "magic gamma" $\gamma \approx 29.3$

Make motion transverse to the field We can address these additional terms by careful experimental design

 $\vec{\omega}_{a} = \frac{e}{mc} \left(a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \vec{\beta} \times \vec{E} - a_{\mu} \frac{\gamma}{\gamma + 1} (\vec{\beta} \cdot \vec{B}) \vec{\beta} \right)$ Make motion If these terms can be set equal, we have complete freedom with the electric fields - "magic gamma" $\gamma \approx 29.3$

> There are, of course, small corrections that must be applied for deviations from these ideals, but they are small, well understood, and well controlled.

Muon decays are self-analyzing for the spin orientation

The same chirality violating SM weak physics that produces polarized muon beams in pion decay imprints the muon spin on the electron momentum

$$\frac{\mathrm{d}^2\Gamma^{\pm}_{\mu}}{\mathrm{d}y\mathrm{d}\Omega} = n(y)\left(1 \mp a(y)\mathbf{\cos}\theta\right)$$

Proton bunch from accelerator

Production target

Proton bunch from accelerator complex π^{\pm} Decay channel Production

target

We measure the electron energies, choose a cutoff, and fit for ω_a ...

 $f(t) = N_0(E)e^{-t/\tau} [1 + A(E)\cos(\omega_a t + \phi)]$

electron time spectrum (2001)

We measure the electron energies, choose a cutoff, and fit for ω_a ...

 $f(t) = N_0(E)e^{-t/\tau} [1 + A(E)\cos(\omega_a t + \phi)]$

We simultaneously find the magnetic field with a frequency measurement

Pulsed NMR and FID of protons with mobile and fixed probes measure the Larmor frequency, ω_p , in the storage field.

Free induction decay signals:

The B-field at E821 was uniform at the 1ppm level with uncertainty on is less than 0.03ppm

$$\omega_a = \left(\frac{eB}{m_{\mu}}\right) \frac{g_{\mu} - 2}{2}$$

$$\omega_p = \left(\frac{eB}{2m_p}\right)g_p$$

$$\omega_{a} = \left(\frac{eB}{m_{\mu}}\right) \frac{g_{\mu} - 2}{2} \qquad \omega_{p} = \left(\frac{eB}{2m_{p}}\right) g_{p}$$

$$a_{\mu} = \frac{\omega_{a}/\omega_{p}}{\mu_{\mu}/\mu_{p} - \omega_{a}/\omega_{p}}$$

$$\omega_{a} = \left(\frac{eB}{m_{\mu}}\right) \frac{g_{\mu} - 2}{2} \qquad \omega_{p} = \left(\frac{eB}{2m_{p}}\right) g_{p}$$

$$a_{\mu} = \frac{\omega_{a}/\omega_{p}}{\mu_{\mu}/\mu_{p} - \omega_{a}/\omega_{p}}$$

 $a_{\mu} = 11\ 659\ 208(6) \times 10^{-10} \ (0.54\,\mathrm{ppm})$

$$\omega_{a} = \left(\frac{eB}{m_{\mu}}\right) \frac{g_{\mu} - 2}{2} \qquad \omega_{p} = \left(\frac{eB}{2m_{p}}\right) g_{p}$$

$$a_{\mu} = \frac{\omega_{a}/\omega_{p}}{\mu_{\mu}/\mu_{p} - \omega_{a}/\omega_{p}}$$

 $a_{\mu} = 11\ 659\ 208(6) \times 10^{-10} \ (0.54\,\mathrm{ppm})$

 $\sigma_{\rm BNL} = \left\{ \begin{array}{c} 0.46 \, \rm ppm \ statistical \\ 0.28 \, \rm ppm \ systematic \end{array} \right\} = 0.54 \, \rm ppm$

To do better using this technique, requires many small improvements in a lot of areas

Field Systematics:

Source of uncertainty	R99	R00	R01	E989
	[ppb]	[ppb]	[ppb]	[ppb]
Absolute calibration of standard probe	50	50	50	35
Calibration of trolley probes	200	150	90	30
Trolley measurements of B_0	100	100	50	30
Interpolation with fixed probes	150	100	70	30
Uncertainty from muon distribution	120	30	30	10
Inflector fringe field uncertainty	200	-	-	-
Time dependent external B fields	-	-	-	5
Others †	150	100	100	30
Total systematic error on ω_p	400	240	170	70
Muon-averaged field [Hz]: $\tilde{\omega}_p/2\pi$	61791256	61791595	61791400	-

 [†]Higher multipoles, trolley temperature (≤ 50 ppb/° C) and power supply voltage response (400 ppb/V, ΔV=50 mV), and eddy currents from the kicker. To do better using this technique, requires many small improvements in a lot of areas

Precession Systematics:

	-		-
Category	E821	E989 Improvement Plans	Goal
	[ppb]		[ppb]
Gain changes	120	Better laser calibration	
		low-energy threshold	20
Pileup	80	Low-energy samples recorded	
		calorimeter segmentation	40
Lost muons	90	Better collimation in ring	20
CBO	70	Higher n value (frequency)	
		Better match of beamline to ring	< 30
E and pitch	50	Improved tracker	
		Precise storage ring simulations	30
Total	180	Quadrature sum	70

Along with the additional statistics, the total uncertainty will improve by a factor of 5

140 ppb! DHMZ **▲**— 180.2 + 4.9Theory HLMNT 182.8+5.0 SMXX ЮН 181.5+3.5 Theory is improving Experiment steadily as well! If the BNL-E821 04 ave. central values don't 208.9+6.3 move, we'll have a 7.5 σ discrepancy New (g-2) exp. 208.9+1.6 140 150 160 170 180 190 200 210 220 230 a_μ-11 659 000 (10⁻¹⁰)

The first step was moving the ring from BNL to FNAL ...

... and giving it a new home

MC-1

We need a new, highly polarized muon source

We need a new, highly polarized muon source

The detector systems will be all new

Energy [GeV] 41

The detector systems will be all new

Three multiplane straw tracker systems will reconstruct the timedependent muon decay position within the ring

There are numerous improvements to both the field and field measurements

New fixed and mobile field mapping probes

Improved temperature control, passive shimming, and active low order multipole correction

Compared to E821, there are a whole host of other improvements too numerous to discuss

- New quadrupoles
- New kicker modules
- New absolute field calibration
- New trolley field calibration system
- New detectors to measure beam profiles
- New analysis algorithms
- More complete simulation framework
- New data acquisition hardware
- New data acquisition software
- New laser gain stabilization system

Schedule

Recent significant progress

After 14 years, the ring has been cooled to superconducting temperatures and partially energized; some inevitable teething problems have been fixed, and the cooling should begin again on Monday

$$\vec{\omega}_e = -\frac{\eta e}{2mc} \left(\vec{E} + \vec{\beta} \times \vec{B} - \frac{\gamma}{\gamma+1} (\vec{\beta} \cdot \vec{E}) \vec{\beta} \right)$$

 $\vec{\omega}_e = -\frac{\eta e}{2mc} \left(\vec{E} + \vec{\beta} \times \vec{B} - \frac{\gamma}{\gamma+1} (\vec{\beta} \cdot \vec{E}) \vec{\beta} \right)$

Causes an out of plane rotation that is in phase with the g-2 precession!

Causes an out of plane rotation that is in phase with the g-2 precession!

The trackers are designed to enable a measurement of this rotation; we expect a 100 fold improvement over the E821 value using the same method due to greater statistics.

Thanks for your continuing interest!

