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Muon g-2 holds a prominent place in 
the near term US HEP program

P5 Report 
Recommendation 22: 

Complete the Mu2e and 
Muon g-2 projects.

Why this emphasis 
on muon physics?

*P5 = Particle Physics Project Prioritization Panel http://www.usparticlephysics.org/p5/
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Muon g-2 is interesting precisely 
because theorists can calculate it!

QED Electroweak Hadronic

+ aμ(NP)
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Muon g-2 is interesting precisely 
because theorists can calculate it!

QED Electroweak Hadronic

+ aμ(NP)

QED dominates the value

But hadrons dominate the uncertainty
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Muon g-2 can both be calculated and measured 
to fabulously high precision
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discrepancy currently 
sits at 3.6σ

These error bars are 
all smaller than 1ppm
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We achieve this experimental precision 
because we measure frequencies
If we put a point charged fermion into motion in a 
plane transverse to a pure magnetic dipole field, 
both the momentum and the spin precess

Momentum precession – cyclotron motion:

Spin precession – Larmor plus Thomas motion:
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We achieve this experimental precision 
because we measure frequencies

The difference between these two comes 
from an anomalous magnetic moment not 
predicted by pure Dirac theory

If we're a little more careful and include other 
moments and fields, the frequency to be 
measured becomes more complicated
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We can address these additional terms 
by careful experimental design
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We can address these additional terms 
by careful experimental design
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Make motion 
transverse to the field

If these terms can be set 
equal, we have complete 
freedom with the electric fields 
- “magic gamma”

There are, of course, small corrections that must be 
applied for deviations from these ideals, but they 
are small, well understood, and well controlled.
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Muon decays are self-analyzing for the 
spin orientation

The same chirality violating SM weak 
physics that produces polarized muon 
beams in pion decay imprints the 
muon spin on the electron momentum
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We measure the electron energies, 
choose a cutoff, and fit for !a ...

f(t) = N0(E)e
¡t=¿ [1 +A(E) cos(!at+ Á)]



We measure the electron energies, 
choose a cutoff, and fit for !a ...

f(t) = N0(E)e
¡t=¿ [1 +A(E) cos(!at+ Á)]

Any systematic changes early-
to-late in the fill have a huge 
impact on ω

a
 systematics



We simultaneously find the magnetic field with a 
frequency measurement

Pulsed NMR and FID of 
protons with mobile and fixed 
probes measure the Larmor 
frequency, !p, in the storage 
field.

The B-field at E821 
was uniform at the 
1ppm level with 
uncertainty on <B> is 
less than 0.03ppm
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Finally, combine the omegas to get a result

¾BNL =

½
0:46 ppm statistical
0:28 ppm systematic

¾
= 0:54 ppm
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To do better using this technique, requires 
many small improvements in a lot of areas 

Field Systematics:
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To do better using this technique, requires 
many small improvements in a lot of areas 

Precession Systematics:
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Along with the additional statistics, the total 
uncertainty will improve by a factor of 5
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140 ppb!

Theory is improving 
steadily as well!  If the 
central values don't 
move, we'll have a 
7.5σ discrepancy
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The first step was moving the ring from 
BNL to FNAL ...
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… and giving it a new home

Mu2e

g-2

Delivery
Ring

MC-1
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We need a new, highly polarized muon 
source

Recycler 
Ring

Delivery Ring
The original antiproton 
source becomes the g-2 pion 
production target station, 
while the delivery ring acts as 
a pion decay channel
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The detector systems will be all new

24 segmented PbF
2
 with SiPM 

readout optimized to behave 
like short pulse duration PMTs 
to minimize pileup and 
excellent resolution
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The detector systems will be all new

Three multiplane straw 
tracker systems will 
reconstruct the time-
dependent muon decay 
position within the ring
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There are numerous improvements to 
both the field and field measurements

New fixed and mobile field 
mapping probes

Improved temperature 
control, passive shimming, 
and active low order 
multipole correction
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Compared to E821, there are a whole host of 
other improvements too numerous to discuss

● New quadrupoles
● New kicker modules
● New absolute field calibration 
● New trolley field calibration system
● New detectors to measure beam profiles
● New analysis algorithms
● More complete simulation framework
● New data acquisition hardware
● New data acquisition software
● New laser gain stabilization system
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Schedule

MC-1 (GPP)MC-1 (GPP)

g-2 Cryo Plant (AIP)g-2 Cryo Plant (AIP)

Ring AssemblyRing Assembly

Shim FieldShim Field

Prep Chambers/InstallPrep Chambers/Install

Construct/Install Sub-systemsConstruct/Install Sub-systems

Accelerator ModificationsAccelerator Modifications

Ring cold ready for operations

Experiment ready for operations

Accelerator ready for operations

Ring ColdRing Cold

Detector/DAQ 
Commission

Detector/DAQ 
Commission

Beam
Tune-up

Beam
Tune-up

Physics Production RunningPhysics Production Running

Analysis Tools DevelopmentAnalysis Tools Development

Mock DataMock Data

2nd Results2nd Results

Full Running Intensity

Construction (Project & Muon Campus):

Operations (Laboratory):

Analysis (Collaboration):

1-2 x BNL statistics

~5-10 x BNL
21 x BNL

Final ResultsFinal Results

1st Results1st Results

FY19FY18FY14 FY15 FY16 FY17
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Recent significant progress

After 14 years, the ring has been cooled to 
superconducting temperatures and partially energized; 
some inevitable teething problems have been fixed, and 
the cooling should begin again on Monday
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We can do other muon physics in 
parallel:EDMs, Lorentz Violation searches
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We can do other muon physics in 
parallel:EDMs, Lorentz Violation searches

Causes an out of plane rotation that 
is in phase with the g-2 precession!

The trackers are designed to enable a 
measurement of this rotation; we expect a 100 
fold improvement over the E821 value using 
the same method due to greater statistics.
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Thanks for your continuing interest!


