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Where Do We Stand?

• Latest 3 neutrino global analysis (including recent results from reactor experiments and T2K):
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➡evidence of θ13 ≠ 0 

➡hints of θ23 ≠ π/4 

➡expectation of Dirac CP phase δ 

➡no clear preference for hierarchy

➡Majorana vs Dirac

Where Do We Stand?

• Exciting Time in ν Physics: recent hints/evidences of large θ13 from T2K, MINOS, Double Chooz, 
Daya Bay and RENO


• Latest 3 neutrino global analysis (including recent results from reactor experiments and T2K):


57

Capozzi, Fogli, Lisi, Marrone, Montanino, Palazzo (2013, updated March 2014)

➡ Evidence of θ13 ≠ 0  
➡ hints of θ23 ≠ π/4  
➡ expectation of Dirac CP phase δ 

➡ no clear preference for hierarchy

➡ Majorana vs Dirac
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TABLE I: Results of the global 3ν oscillation analysis, in terms of best-fit values and allowed 1, 2 and 3σ ranges for the 3ν
mass-mixing parameters. See also Fig. 3 for a graphical representation of the results. We remind that ∆m2 is defined herein as
m2

3− (m2
1 +m2

2)/2, with +∆m2 for NH and −∆m2 for IH. The CP violating phase is taken in the (cyclic) interval δ/π ∈ [0, 2].
The overall χ2 difference between IH and NH is insignificant (∆χ2

I−N = −0.3).

Parameter Best fit 1σ range 2σ range 3σ range

δm2/10−5 eV2 (NH or IH) 7.54 7.32 – 7.80 7.15 – 8.00 6.99 – 8.18

sin2 θ12/10
−1 (NH or IH) 3.08 2.91 – 3.25 2.75 – 3.42 2.59 – 3.59

∆m2/10−3 eV2 (NH) 2.43 2.37 – 2.49 2.30 – 2.55 2.23 – 2.61

∆m2/10−3 eV2 (IH) 2.38 2.32 – 2.44 2.25 – 2.50 2.19 – 2.56

sin2 θ13/10−2 (NH) 2.34 2.15 – 2.54 1.95 – 2.74 1.76 – 2.95

sin2 θ13/10
−2 (IH) 2.40 2.18 – 2.59 1.98 – 2.79 1.78 – 2.98

sin2 θ23/10
−1 (NH) 4.37 4.14 – 4.70 3.93 – 5.52 3.74 – 6.26

sin2 θ23/10−1 (IH) 4.55 4.24 – 5.94 4.00 – 6.20 3.80 – 6.41

δ/π (NH) 1.39 1.12 – 1.77 0.00 – 0.16 ⊕ 0.86 – 2.00 —

δ/π (IH) 1.31 0.98 – 1.60 0.00 – 0.02 ⊕ 0.70 – 2.00 —

IV. COVARIANCES OF OSCILLATION PARAMETERS

In this Section we show the allowed regions for selected couples of oscillation parameters, and discuss some interesting
correlations.
Figure 4 shows the global fit results in the plane charted by (sin2 θ23, ∆m2), in terms of regions allowed at 1, 2

and 3σ (∆χ2 = 1, 4 and 9). Best fits are marked by dots, and it is understood that all the other parameters are
marginalized away. From left to right, the panels refer to increasingly rich datasets, as previously discussed: LBL
accelerator + solar + KamLAND data (left), plus SBL reactor data (middle), plus SK atmospheric data (right). The
upper (lower) panels refer to normal (inverted) hierarchy. This figure shows the instability of the θ23 octant discussed
above, in a graphical format which is perhaps more familiar to most readers. It is worth noticing the increasing
(sin2 θ23, ∆m2) covariance for increasingly nonmaximal θ23 (both in first and in the second octant), which contributes
to the overall ∆m2 uncertainty. In this context, the measurement of ∆m2 at SBL reactor experiments (although
not yet competitive with accelerator and atmospheric experiments [15]) may become relevant in the future: being
θ23-independent, it will help to break the current correlation with θ23 and to improve the overall ∆m2 accuracy in
the global fit.
Figure 5 shows the allowed regions in the plane charted by (sin2 θ23, sin

2 θ13). Let us consider first the left panels,
where a slight negative correlation between these two parameters emerges from LBL appearance data, as discussed in
[4]. The contours extend towards relatively large values of θ13, especially in IH, in order to accommodate the relatively
strong T2K appearance signal [17]. However, solar + KL data provide independent (although weaker) constraints on
θ13 and, in particular, prefer sin2 θ13 ∼ 0.02 in our analysis. This value, being on the “low side” of the allowed regions
of θ13, leads (via anticorrelation) to a best-fit value of θ23 on the “high side” (i.e., in the second-octant) for both NH
and IH. However, when current SBL reactor data are included in the middle panels, a slightly higher value of θ13 is
preferred (sin2 θ13 ≃ 0.023) with very small uncertainties: this value is high enough to flip the θ23 best fit from the
second to the first octant in NH, but not in IH.
It is useful to compare the left and middle panels of Fig. 5 with the analogous ones of Fig. 1 from our previous

analysis [4]: the local minima in the two θ23 octants are now closer and more degenerate. This fact is mainly due to
the persisting preference of T2K disappearance data for nearly maximal mixing [19], which is gradually diluting the
MINOS preference for nonmaximal mixing [23]. Moreover, accelerator data are becoming increasingly competitive
with atmospheric data in constraining θ23 [19]. Therefore, although we still find (as in previous works [2, 4]) that
atmospheric data alone prefer θ23 < π/4, the overall combination with current non-atmospheric data (right panels
of Fig. 5) makes this indication less significant than in previous fits (compare, e.g., with Fig. 1 in [4]), especially in
IH where non-atmospheric data now prefer the opposite case θ23 > π/4. The fragility of the θ23 octant fit (with
and without atmospheric neutrinos) was also noted in the recent analysis [6]. In conclusion, the overall indication
for θ23 < π/4 in both NH and IH (right panels of Fig. 5) is currently weaker than in our previous analysis [4]; in
particular, its significance reaches only ∼ 1.6σ ( 90% C.L.) in NH, while it is < 1σ in IH. Further accelerator neutrino
data will become increasingly important in assessing the status of θ23 in the near future.

Capozzi, Fogli, Lisi, Marrone, Montanino, Palazzo (2013, updated May 2014)

Recent T2K result ➪ δ ≃ - π/2, consistent with global fit best fit value 



Where Do We Stand? 

• search for absolute mass scale:

• end point kinematic of tritium beta decays


• neutrinoless double beta decay 

• Cosmology  ∑(mνi) < 0.23 eV 
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Searches for Absolute Neutrino Mass Scale

! Cosmology:

       Very sensitive but model dependent

       WMAP+2dFRGS+Ly!:   "(m!
i

) < (0.7 - 1.2) eV

        degenerate neutrinos # < 0.4 eV

        future improvement: factor of 5-10?

! Neutrinoless double beta decay:

        Very sensitive but neutrinos have to be Majorana

        Reminder: Klepdor’s claim of signal at 0.4 eV

! Direct mass determination (no assumption needed):

      *  End point kinematic of tritium decays

      *  Current limit:

      *  New proposal to increase sensitivity to < 0.25 eV (KATRIN)

  

! 

m"
e

< 2.2  eV  (95% CL)     Mainz

m" µ
<170  keV     

m"#
<15.5  MeV  

! 

Tritium" He
3

+ e
#

+ $ e

  

! 

mee = "miUei
2

 <  (0.2#1.1)  eV  (Cuorcino 2005)

Tritium� He3 + e� + �e

KATRIN: increase sensitivity ~ 0.2 eV

sin 2⇥ = 0.672+0.069
�0.07

⇤ (deg) = 71

+46
�45

� (deg) = 89

+21
�13

⌃(p ⇤ e+⇧0
) > 8.2� 10

33
years (90% CL, SuperK 2009) (1)

⌃(p ⇤ ⌅K+
) > 2.3� 10

33
years (90% CL, SuperK 2005) (2)

V †
e,RMeVe,L = diag(me,mµ,m⇥ )

V T
�,LM�V�,L = diag(m1,m2,m3)

V †
u,RMuVu,L = diag(mu,mc,mt)

V †
d,RM�Vd,L = diag(md,ms,mb)

current bound: | ⌅m⇧ | ⇥
����
X

i=1,2,3

miU
2
ie

���� (3)

1

   < (0.14-0.38) eV  (EXO, 2012)    

 Neff = 3.04 ± 0.2 [Plankck 2015]  ⇒ sterile neutrino disfavored                                     
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  ☞ Majorana vs Dirac? 


  ☞ CP violation in lepton sector? 


 ☞ Absolute mass scale of neutrinos?


 ☞ Mass ordering: sign of (Δm132)?


 ☞ Precision:  θ23 > π/4,  θ23 < π/4,  θ23 = π/4 ? 


 ☞ Sterile neutrino(s)?

Open Questions - Neutrino Properties

a suite of current and upcoming experiments to address these puzzles

some can only be answered by oscillation experiments
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  ☞ Smallness of neutrino mass:

Open Questions - Theoretical

mν ≪ me, u, d

  ☞ Flavor structure:
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  ☞ Smallness of neutrino mass:

Open Questions - Theoretical

mν ≪ me, u, d

  ☞ Flavor structure:

quark mixing leptonic mixing

[ [] ]
Fermion mass and hierarchy 

problem ➟ Many free parameters in 
the Yukawa sector of SM



Smallness of neutrino masses 
What is the operator for neutrino mass generation?

 - Majorana vs Dirac

 - scale of the operator

 - suppression mechanism
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New questions for Nufact 15 
� Are atmospheric neutrino measurements competitive with 
next generation long baseline facilities in the determination of 
the mass hierarchy? And the octant of q23? How much 
complementarity is there between them? 

� What is the target for the systematic error budget of next 
generation facilities? What do we need to reach this level? 
How much improvement in constraining flux uncertainties can 
we expect from nuPRISM and dedicated hadron production 
efforts? 

� What is the best strategy to fully probe the LSND anomaly? 
And the reactor/gallium anomaly? 
 

� What can we say about the new Majorana mass scale 
implied by neutrino masses? What are the current bounds 
and how much will they improve over the next decade? 
 

Question from NuFact’14



Neutrino Mass beyond the SM

• SM: effective low energy theory


• only one dim-5 operator: most sensitive to high scale physics


• mν ~ (Δm2atm)1/2  ~ 0.1 eV with v ~ 100 GeV, λ ~ O(1) ⇒ M ~ 1014 GeV 


• Lepton number violation ➩ Majorana fermions

9

L = LSM +
O5D

M
+
O6D

M2
+ ... (1)

1

new physics effects

�ij

M HHLiLj � m⇥ = �ij
v2

M

Weinberg, 1979

GUT scale
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Type-I seesaw Type-II seesaw Type-III seesaw
Seesaw model has been previously shown [11] to induce a non-unitary leptonic mixing
matrix. In this work we will explicitly analyze the issue for the other types of Seesaw
models.
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Figure 1: The three generic realizations of the Seesaw mechanism, depending on the
nature of the heavy fields exchanged: SM singlet fermions (type I Seesaw) on the left,
SM triplet scalars (type II Seesaw) and SM triplet fermions (type III Seesaw) on the
right.

6

NR: SU(3)c x SU(2)w x U(1)Y ~(1,1,0)

Minkowski, 1977; Yanagida, 1979; Glashow, 1979; 

Gell-mann, Ramond, Slansky,1979; 

Mohapatra, Senjanovic, 1979; 

Seesaw model has been previously shown [11] to induce a non-unitary leptonic mixing
matrix. In this work we will explicitly analyze the issue for the other types of Seesaw
models.

NR

ℓ

φ

YNY †
N

φ

ℓ

φ

ℓ

φ

ℓ

∆

µ∆

Y∆

ΣR

ℓ

φ

YΣY †
Σ

φ

ℓ

Figure 1: The three generic realizations of the Seesaw mechanism, depending on the
nature of the heavy fields exchanged: SM singlet fermions (type I Seesaw) on the left,
SM triplet scalars (type II Seesaw) and SM triplet fermions (type III Seesaw) on the
right.

6

Δ: SU(3)c x SU(2)w x U(1)Y ~(1,3,2)

Seesaw model has been previously shown [11] to induce a non-unitary leptonic mixing
matrix. In this work we will explicitly analyze the issue for the other types of Seesaw
models.
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nature of the heavy fields exchanged: SM singlet fermions (type I Seesaw) on the left,
SM triplet scalars (type II Seesaw) and SM triplet fermions (type III Seesaw) on the
right.
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Foot, Lew, He, Joshi, 1989; Ma, 1998

June 3, 2011 0:18 WSPC/INSTRUCTION FILE TeVSeesaw-proof

4 M.-C. Chen and J.R. Huang

exist seven massive physical Higgs bosons: two neutral Higgses, H1, H2, one CP
odd Higgs, A, two singlet charged Higgses, H±, and two doubly charged Higgses,
H±±.

The generic prediction of the model is the existence of the doubly charged Hig-
gses, which couple only to the leptons, but not to the quarks. A unique signature
of this class of model is that the doubly charged Higgses decay into same sign di-
leptons (for a recent general discussion on the same sign dilepton signals at the
collider experiments, see, Ref. 9),

�±± ! `±`±, (` = e, µ, ⌧) (5)

which do not have any SM or MSSM backgrounds. As pointed out in Ref. 10, the
doubly charged Higgses can be produced at the LHC via the Drell-Yan,

qq ! �⇤, Z⇤ ! H++H��, qq0 ! W ⇤ ! H±±H⌥ . (6)

As the production of the triplet Higgs is through the gauge interactions, it is in-
dependent of the small light-heavy neutrino mixing and consequently can have un-
suppressed production cross section, in contrast to the case of the Type-I seesaw.
It has been shown that, for a triplet mass in the range of (200-1000) GeV, the cross
section can be 0.1-100 fb. With 300 fb�1, a doubly charged Higgs, �++, with mass
of 600 GeV can be discovered at the LHC.

Phenomenology associated with the triplet Higgs at a linear collider has also
been investigated11.

2.1.3. Type-III Seesaw

The Weinberg operator can also be UV completed by the mediation of a SU(2)L
triplet fermion, ⌃ = (⌃+,⌃0,⌃�), with zero hypercharge12. The e↵ective neutrino
mass is y2⌫v

2/⇤, where y⌫ is the Dirac Yukawa coupling of the triplet lepton to the
SM lepton doublet and the Higgs and ⇤ is the lepton number violation scale. To
have ⇤ ⇠ 1 TeV, y⌫ has a value ⇠ 10�6.

Because the triplet lepton ⌃ has weak gauge interactions, their production cross
section is unsuppressed, contrary to the case of the Type-I seesaw. The signature
with relatively high rate is13

pp ! ⌃0⌃+ ! ⌫W+W±`⌥ ! 4 jets + /ET + ` . (7)

As the masses of ⌃± and ⌃0 are on the order of sub-TeV region, the displaced
vertices from the primary production vertex in the ⌃0, ⌃± decays can be visible13.
The triplet lepton lifetime is related to the e↵ective neutrino mass spectrum

⌧  1 mm⇥
✓
0.05 eVP

i mi

◆✓
100 GeV

⇤

◆2

. (8)

For the normal hierarchy case (
P

i mi ' 0.05 eV), this leads to ⌧  1 mm for ⇤ '
100 GeV. (For other collider studies, see Ref. 14.) In addition, in the supersymmetric

ΣR: SU(3)c x SU(2)w x U(1)Y ~(1,3,0) Lazarides, 1980; Mohapatra, Senjanovic, 1980

3 possible portals

10

Neutrino Mass beyond the SM



Grand Unification Naturally Accommodates Seesaw

11

LHC neutrino mass 
from seesaw 

Fritzsch, Minkowski, 1975

Grand Unification

10

EM *

weak

strong

MGUT

Dimopoulos, Raby, Wilczek, 1981

LHC

coupling strengths run!

neutrino mass 
from seesaw 

Fritzsch, Minkowski, 1975

SO(10):
☞ origin of the heavy scale ⇒ U(1)B-L   

☞ exotic mediators ⇒ predicted in 
many GUT theories, e.g. SO(10)

☞ exotic mediators in Type II, III: not 
easy to get in string theories

Dienes, March-Russell (1996)

Fritzsch, Minkowski, 1975



Low Scale Seesaws

• New particles:


• Type I seesaw: generally decouple from collider experiments


• Type II seesaw: 


• Type III seesaw: observable displaced vertex


• inverse seesaw: non-unitarity effects


• radiative mass generation: model dependent - singly/doubly charged SU(2) 
singlet, even colored scalars in loops


• New interactions:


• LR symmetric model: WR


• R parity violation:


• …..

TeV Scale Seesaw Models

• With new particles:

• type-I seesaw 


• generally decouple from collider physics


• type-II seesaw


• TeV scale doubly charged Higgs ⇔ small couplings

• unique signatures:


• decay BR � mass ordering
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m⇤ ⌅= 0

yD, m⇤ ⇥ 0

MR � 100 GeV

mD � me � 10�4 GeV

⇤ V =
mD

MR
� 10�4 GeV

100 GeV
= 10�6

V > 0.01

V < 0.1

qq ⇥ �+� ��⇥ + jets (� ⌅= ⇥)

y�LL

�++ ⇥ e+e�, µ+µ�, ⌅+⌅�

1

Han, Mukhopadhyaya, Si, Wang, ‘07; Akeroyd, Aoki, Sugiyama, ‘08; ...Perez, Han, Huang, Li, Wang, ‘08; 

Kersten, Smirnov, 2007
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 Lazarides, 1980; Mohapatra, Senjanovic, 1980

~(1,3,2)
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persymmetry (SUSY) with bilinear violation of R parity can be tested at the LHC in a crucial way and potentially

falsified. We identify the regions of minimal supergravity (mSUGRA) parameters, event reconstruction efficiencies and

luminosities where the LHC will be able to probe the atmospheric neutrino mixing angle with sensitivity competitive

to its low-energy determination by underground experiments, both for 7 and 14 TeV center-of-mass energies.

For the sake of definiteness, we consider the minimal supergravity model supplemented with bilinear R parity

breaking [22–24] added at the electroweak scale; we refer to this scenario as RmSUGRA. In this effective model one

typically finds that the atmospheric scale is generated at tree level by a weak-scale neutralino-exchange seesaw, while

the solar scale is induced radiatively [22]. The LSP lacks a symmetry to render it stable and, given the neutrino mass

scales indicated by oscillation experiments, typically decays inside the LHC detectors [22, 23, 25] 1. As an illustration

we depict the neutralino LSP decay length in Fig. 1. We can see from Fig. 1 that the expected decay lengths are large

enough to be experimentally resolved, leading to displaced vertex events [33, 34].

Figure 1: χ̃0
1 decay length in the plane m0,m1/2 for A0 = −100 GeV, tan β = 10 and µ > 0.

More strikingly, one finds that in such a RmSUGRA model one has a strict correlation between neutralino de-

cay properties measurable at high-energy collider experiments and neutrino mixing angles determined in low-energy

neutrino oscillation experiments, that is

tan2 θatm ≃
BR(χ̃0

1 → µ±W∓)

BR(χ̃0
1 → τ±W∓)

. (1)

The derivation of Eq. (1) can be found in [25]. In short, the relation between the neutralino decay branching ratio

and the low-energy neutrino angle in the bilinear model can be understood in the following way. At tree-level in

RmSUGRA the neutrino mass matrix is given by [22]

meff =
M1g2+M2g′

2

4 det(Mχ0)

⎛

⎜

⎝

Λ2
e ΛeΛµ ΛeΛτ

ΛeΛµ Λ2
µ ΛµΛτ

ΛeΛτ ΛµΛτ Λ2
τ

⎞

⎟

⎠
(2)

where Λi = µvi+vDϵi and ϵi and vi are the bilinear superpotential parameters and scalar neutrino vacuum expectation

value, respectively. Equation (2) is diagonalized by two angles; the relevant one for this discussion is the angle

tan θ23 = −Λµ

Λτ
. One can understand this tree-level mass as a seesaw-type neutrino mass with the right-handed

neutrino and the Yukawa couplings of the ordinary seesaw replaced by the neutralinos of the minimal supersymmetric

1 We may add, parenthetically, that such schemes require a different type of dark matter particle, such as the axion [28]. Variants with
other forms of supersymmetric dark matter, such as the gravitino [29–32], are also possible.

Mukhopadhyaya, Roy, Vissani, 1998

Franceschino, Hambye, Strumia,2008

mν ~ (Δm2atm)1/2  ~ 0.1 eV with v ~ 100 GeV, λ ~ 10-6 ⇒ M ~ 102 GeV



Cautions!!! Is it really the νR in Type I seesaw?

Limits on Neutrino Mixing 

E. Tiras – University of  Iowa
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Dimuon(

Expanded(view(of(the(region:(
40(GeV(<(mN(<(250(GeV(

Phys."Le<."B"748"(2015)"144"

•  By(assuming(the(theoretical(prediction(for(the(branching(fraction(for((((N ! W±µ⌥

|VµN |2 < 0.00470 for mN = 90 GeV

|VµN |2 < 0.0123 for mN = 200 GeV

|VµN |2 < 0.583 for mN = 500 GeV

•  These"results"extend"considerably"the"regions"excluded"by"previous"direct"searches.""

PLB748 (2015)144

m� ⌅= 0

yD, m� ⇥ 0

MR � 100 GeV

mD � me � 10�4 GeV

⇤ V =
mD

MR
� 10�4 GeV

100 GeV
= 10�6

1

Introduction Cancellations & Symmetries Colliders Conclusions

Electroweak-Scale Singlets

What if mR ∼ 100 GeV?

mD ∼ 10−4 GeV = 100 keV ∼ me
! Not totally unreasonable

⇒ RH neutrinos may be within reach of LHC and ILC

Yukawa couplings tiny⇒ irrelevant for colliders

Gauge interactions via mixing, e.g.

N

l−

W
∝ V = mDmR

−1 ∼ 10−4 GeV
100 GeV

= 10−6

Observation at colliders needs V " 0.01
Han, Zhang, PRL 97 (2006); del Aguila, Aguilar-Saavedra, Pittau, J. Phys. Conf.
Ser. 53 (2006); Bray, Lee, Pilaftsis, hep-ph/0702294

⇒ no way?

RH neutrino production thru 
active-sterile mixing:

RH neutrino relevant for ν 
mass generation  
     ➪ ｜VμN｜2 = 10-12   
unless extremely fine-tuned

Kersten, Smirnov (2007)
13



‣ naturally small Dirac neutrino masses can arise

‣Randall-Sundrum model

‣ Supersymmetry breaking


‣ before SUSY breaking: absence of Dirac neutrino masses (as well as Weinberg 
operator)

‣ after SUSY breaking: realistic effective Dirac neutrino masses generated


‣ similar to the Giudice-Masiero Mechanism for the mu problem 


‣Need a symmetry reason for the absence of these operators before SUSY breaking
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metries we find that, by demanding that the Weinberg operator LHu LHu be allowed,
there exists only one possible symmetry, namely a R

4 symmetry. Following a different
approach, this R

4 has also recently been shown to be the unique anomaly–free symmetry
that commutes with SO(10) [20]. The proof in [20] assumed that the charge of the su-
perspace coordinate θ can always be set 1, which we find to be too strong a requirement.
However, we find that, if one is to allow for arbitrary θ charges, this only leads to trivial
extensions of R

4 , such that the uniqueness of R
4 still prevails.

If one requires instead the discrete symmetry to forbid the Weinberg operator, one
can explain small Dirac neutrino masses. In particular, we successfully obtain a relation
between the smallness of Dirac neutrino Yukawa couplings and the µ term which is
based on anomaly–free discrete R symmetries with the above properties. Specifically,
we find a class of anomaly–free discrete symmetries in which the appealing relations
µ ∼ ⟨W ⟩/M2

P ∼ m3/2 and Yν ∼ µ/MP naturally emerge.

Acknowledgments

We would like to thank Maximilian Fallbacher and Hans Peter Nilles for useful dis-
cussions. M.R. would like to thank the UC Irvine, where part of this work was done,
for hospitality. M.-C.C. would like to thank TU München, where part of the work was
done, for hospitality. This work was partially supported by the DFG cluster of excellence
“Origin and Structure of the Universe” and the Graduiertenkolleg “Particle Physics at
the Energy Frontier of New Phenomena” by Deutsche Forschungsgemeinschaft (DFG).
P.V. is supported by SFB grant 676. The work of M.-C.C. was supported, in part,
by the U.S. National Science Foundation under Grant No. PHY-0970173. M.-C.C.,
M.R. and P.V. would like to thank the Aspen Center for Physics for hospitality and
support. M.-.C.C. thanks the Galileo Galilei Institute for Theoretical Physics for the
hospitality. This research was done in the context of the ERC Advanced Grant project
“FLAVOUR” (267104).
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M symmetries with ar-

bitrary qθ

The anomaly conditions for discrete R symmetries depend on qθ. Consider a R
M sym-

metry, under which the superpotential transforms as

W → e2π i qW /M
W (A.1)

with qW = 2qθ (such that
∫
d2θW is invariant). Superfields Φ(f) = φ(f) +

√
2 θψ(f) +

θθ F (f) transform as

Φ(f) → e2π i q(f)/M Φ(f) . (A.2)

Correspondingly, the fermions transform as

ψ(f) = e2π i (q(f)−qθ)/M ψ(f) . (A.3)
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Here, in an obvious notation, ν̄ denotes the right–handed neutrino superfield(s), kLHuν̄

and kH†
dLν̄

are dimensionless coefficients, and we suppress flavor indices. The first

term (2.26a) leads to Dirac neutrino masses when X attains its F–term VEV, ⟨FX⟩ ∼
m3/2 MP, while in the case of (2.26b) one has to observe that, due to the presence of the
‘non–perturbative’ µ term, also Hd attains an F term VEV, ⟨FHd

⟩ ∼ µ ⟨Hu⟩ ∼ m3/2 vEW.
As qHu +qHd

= 0 mod M , both terms are allowed if qν̄+qHu +qL = 0 mod M , which is
precisely the condition that an effective holomorphic Yν term is allowed. Altogether we
find, analogous to what we have discussed around (2.2), that effective neutrino Yukawa
couplings

Yν ∼
m3/2

MP
∼

µ

MP
(2.27)

will arise. For m3/2 in the multi–TeV range this can lead to realistic Dirac neutrino
masses. If we are to connect the suppression of Yν to the smallness of the µ term, it
is natural to assume that the neutrino Yukawa coupling is forbidden by the same R
symmetry that also forbids µ. As discussed above, LHu ν̄ has to have R charge 0.
Moreover, there will also be holomorphic contributions to the Yukawa coupling. That
is, even if both kLHuν̄ and kH†

dLν̄
vanish, Dirac Yukawa couplings of the order m3/2/MP

will get induced, where, as in our discussion of the µ term, m3/2 represents the order
parameter for R symmetry breaking.

2.7 Discussion

We have surveyed anomaly–free symmetries which forbid the µ term and are consistent
with the Giudice–Masiero mechanism and SU(5). We find that these are discrete R
symmetries R

M with M = 4m, m ∈ . The R charges of the Hu Hd are such that
one expects a holomorphic contribution to the µ term of similar size. That is, the
Giudice–Masiero mechanism strongly suggests the presence of additional holomorphic
contributions to the effective µ term!

Assuming further that the symmetries allow the up- and down–type Yukawa coup-
lings and commute with flavor we find that they automatically forbid the troublesome
dimension five proton decay operators and in many cases those of dimension four. In-
terestingly, all these symmetries require a GS axion for anomaly cancellation. That is,
these symmetries appear to be broken at the non–perturbative level. In other words,
imposing compatibility with the Giudice–Masiero mechanism leads us to a situation in
which a holomorphic µ term appears at the non–perturbative level, i.e. in a way the
Giudice–Masiero term is unnecessary.

3 Classification and models

In this section, we explore anomaly–free discrete symmetries that solve some of the most
severe problems of the MSSM. We will demand that the symmetry

1. is flavor–universal and Abelian, i.e. a R
M symmetry;
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metries we find that, by demanding that the Weinberg operator LHu LHu be allowed,
there exists only one possible symmetry, namely a R

4 symmetry. Following a different
approach, this R

4 has also recently been shown to be the unique anomaly–free symmetry
that commutes with SO(10) [20]. The proof in [20] assumed that the charge of the su-
perspace coordinate θ can always be set 1, which we find to be too strong a requirement.
However, we find that, if one is to allow for arbitrary θ charges, this only leads to trivial
extensions of R

4 , such that the uniqueness of R
4 still prevails.

If one requires instead the discrete symmetry to forbid the Weinberg operator, one
can explain small Dirac neutrino masses. In particular, we successfully obtain a relation
between the smallness of Dirac neutrino Yukawa couplings and the µ term which is
based on anomaly–free discrete R symmetries with the above properties. Specifically,
we find a class of anomaly–free discrete symmetries in which the appealing relations
µ ∼ ⟨W ⟩/M2

P ∼ m3/2 and Yν ∼ µ/MP naturally emerge.
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∫
d2θW is invariant). Superfields Φ(f) = φ(f) +
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2 θψ(f) +

θθ F (f) transform as

Φ(f) → e2π i q(f)/M Φ(f) . (A.2)

Correspondingly, the fermions transform as

ψ(f) = e2π i (q(f)−qθ)/M ψ(f) . (A.3)

15

Here, in an obvious notation, ν̄ denotes the right–handed neutrino superfield(s), kLHuν̄

and kH†
dLν̄

are dimensionless coefficients, and we suppress flavor indices. The first

term (2.26a) leads to Dirac neutrino masses when X attains its F–term VEV, ⟨FX⟩ ∼
m3/2 MP, while in the case of (2.26b) one has to observe that, due to the presence of the
‘non–perturbative’ µ term, also Hd attains an F term VEV, ⟨FHd

⟩ ∼ µ ⟨Hu⟩ ∼ m3/2 vEW.
As qHu +qHd

= 0 mod M , both terms are allowed if qν̄+qHu +qL = 0 mod M , which is
precisely the condition that an effective holomorphic Yν term is allowed. Altogether we
find, analogous to what we have discussed around (2.2), that effective neutrino Yukawa
couplings

Yν ∼
m3/2

MP
∼

µ

MP
(2.27)

will arise. For m3/2 in the multi–TeV range this can lead to realistic Dirac neutrino
masses. If we are to connect the suppression of Yν to the smallness of the µ term, it
is natural to assume that the neutrino Yukawa coupling is forbidden by the same R
symmetry that also forbids µ. As discussed above, LHu ν̄ has to have R charge 0.
Moreover, there will also be holomorphic contributions to the Yukawa coupling. That
is, even if both kLHuν̄ and kH†

dLν̄
vanish, Dirac Yukawa couplings of the order m3/2/MP

will get induced, where, as in our discussion of the µ term, m3/2 represents the order
parameter for R symmetry breaking.

2.7 Discussion

We have surveyed anomaly–free symmetries which forbid the µ term and are consistent
with the Giudice–Masiero mechanism and SU(5). We find that these are discrete R
symmetries R

M with M = 4m, m ∈ . The R charges of the Hu Hd are such that
one expects a holomorphic contribution to the µ term of similar size. That is, the
Giudice–Masiero mechanism strongly suggests the presence of additional holomorphic
contributions to the effective µ term!

Assuming further that the symmetries allow the up- and down–type Yukawa coup-
lings and commute with flavor we find that they automatically forbid the troublesome
dimension five proton decay operators and in many cases those of dimension four. In-
terestingly, all these symmetries require a GS axion for anomaly cancellation. That is,
these symmetries appear to be broken at the non–perturbative level. In other words,
imposing compatibility with the Giudice–Masiero mechanism leads us to a situation in
which a holomorphic µ term appears at the non–perturbative level, i.e. in a way the
Giudice–Masiero term is unnecessary.

3 Classification and models

In this section, we explore anomaly–free discrete symmetries that solve some of the most
severe problems of the MSSM. We will demand that the symmetry

1. is flavor–universal and Abelian, i.e. a R
M symmetry;
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metries we find that, by demanding that the Weinberg operator LHu LHu be allowed,
there exists only one possible symmetry, namely a R

4 symmetry. Following a different
approach, this R

4 has also recently been shown to be the unique anomaly–free symmetry
that commutes with SO(10) [20]. The proof in [20] assumed that the charge of the su-
perspace coordinate θ can always be set 1, which we find to be too strong a requirement.
However, we find that, if one is to allow for arbitrary θ charges, this only leads to trivial
extensions of R

4 , such that the uniqueness of R
4 still prevails.

If one requires instead the discrete symmetry to forbid the Weinberg operator, one
can explain small Dirac neutrino masses. In particular, we successfully obtain a relation
between the smallness of Dirac neutrino Yukawa couplings and the µ term which is
based on anomaly–free discrete R symmetries with the above properties. Specifically,
we find a class of anomaly–free discrete symmetries in which the appealing relations
µ ∼ ⟨W ⟩/M2

P ∼ m3/2 and Yν ∼ µ/MP naturally emerge.
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Here, in an obvious notation, ν̄ denotes the right–handed neutrino superfield(s), kLHuν̄

and kH†
dLν̄

are dimensionless coefficients, and we suppress flavor indices. The first

term (2.26a) leads to Dirac neutrino masses when X attains its F–term VEV, ⟨FX⟩ ∼
m3/2 MP, while in the case of (2.26b) one has to observe that, due to the presence of the
‘non–perturbative’ µ term, also Hd attains an F term VEV, ⟨FHd

⟩ ∼ µ ⟨Hu⟩ ∼ m3/2 vEW.
As qHu +qHd

= 0 mod M , both terms are allowed if qν̄+qHu +qL = 0 mod M , which is
precisely the condition that an effective holomorphic Yν term is allowed. Altogether we
find, analogous to what we have discussed around (2.2), that effective neutrino Yukawa
couplings

Yν ∼
m3/2

MP
∼

µ

MP
(2.27)

will arise. For m3/2 in the multi–TeV range this can lead to realistic Dirac neutrino
masses. If we are to connect the suppression of Yν to the smallness of the µ term, it
is natural to assume that the neutrino Yukawa coupling is forbidden by the same R
symmetry that also forbids µ. As discussed above, LHu ν̄ has to have R charge 0.
Moreover, there will also be holomorphic contributions to the Yukawa coupling. That
is, even if both kLHuν̄ and kH†

dLν̄
vanish, Dirac Yukawa couplings of the order m3/2/MP

will get induced, where, as in our discussion of the µ term, m3/2 represents the order
parameter for R symmetry breaking.

2.7 Discussion

We have surveyed anomaly–free symmetries which forbid the µ term and are consistent
with the Giudice–Masiero mechanism and SU(5). We find that these are discrete R
symmetries R

M with M = 4m, m ∈ . The R charges of the Hu Hd are such that
one expects a holomorphic contribution to the µ term of similar size. That is, the
Giudice–Masiero mechanism strongly suggests the presence of additional holomorphic
contributions to the effective µ term!

Assuming further that the symmetries allow the up- and down–type Yukawa coup-
lings and commute with flavor we find that they automatically forbid the troublesome
dimension five proton decay operators and in many cases those of dimension four. In-
terestingly, all these symmetries require a GS axion for anomaly cancellation. That is,
these symmetries appear to be broken at the non–perturbative level. In other words,
imposing compatibility with the Giudice–Masiero mechanism leads us to a situation in
which a holomorphic µ term appears at the non–perturbative level, i.e. in a way the
Giudice–Masiero term is unnecessary.

3 Classification and models

In this section, we explore anomaly–free discrete symmetries that solve some of the most
severe problems of the MSSM. We will demand that the symmetry

1. is flavor–universal and Abelian, i.e. a R
M symmetry;
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metries we find that, by demanding that the Weinberg operator LHu LHu be allowed,
there exists only one possible symmetry, namely a R

4 symmetry. Following a different
approach, this R

4 has also recently been shown to be the unique anomaly–free symmetry
that commutes with SO(10) [20]. The proof in [20] assumed that the charge of the su-
perspace coordinate θ can always be set 1, which we find to be too strong a requirement.
However, we find that, if one is to allow for arbitrary θ charges, this only leads to trivial
extensions of R

4 , such that the uniqueness of R
4 still prevails.

If one requires instead the discrete symmetry to forbid the Weinberg operator, one
can explain small Dirac neutrino masses. In particular, we successfully obtain a relation
between the smallness of Dirac neutrino Yukawa couplings and the µ term which is
based on anomaly–free discrete R symmetries with the above properties. Specifically,
we find a class of anomaly–free discrete symmetries in which the appealing relations
µ ∼ ⟨W ⟩/M2

P ∼ m3/2 and Yν ∼ µ/MP naturally emerge.
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bitrary qθ

The anomaly conditions for discrete R symmetries depend on qθ. Consider a R
M sym-

metry, under which the superpotential transforms as

W → e2π i qW /M
W (A.1)

with qW = 2qθ (such that
∫
d2θW is invariant). Superfields Φ(f) = φ(f) +

√
2 θψ(f) +

θθ F (f) transform as

Φ(f) → e2π i q(f)/M Φ(f) . (A.2)

Correspondingly, the fermions transform as

ψ(f) = e2π i (q(f)−qθ)/M ψ(f) . (A.3)
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Here, in an obvious notation, ν̄ denotes the right–handed neutrino superfield(s), kLHuν̄

and kH†
dLν̄

are dimensionless coefficients, and we suppress flavor indices. The first

term (2.26a) leads to Dirac neutrino masses when X attains its F–term VEV, ⟨FX⟩ ∼
m3/2 MP, while in the case of (2.26b) one has to observe that, due to the presence of the
‘non–perturbative’ µ term, also Hd attains an F term VEV, ⟨FHd

⟩ ∼ µ ⟨Hu⟩ ∼ m3/2 vEW.
As qHu +qHd

= 0 mod M , both terms are allowed if qν̄+qHu +qL = 0 mod M , which is
precisely the condition that an effective holomorphic Yν term is allowed. Altogether we
find, analogous to what we have discussed around (2.2), that effective neutrino Yukawa
couplings

Yν ∼
m3/2

MP
∼

µ

MP
(2.27)

will arise. For m3/2 in the multi–TeV range this can lead to realistic Dirac neutrino
masses. If we are to connect the suppression of Yν to the smallness of the µ term, it
is natural to assume that the neutrino Yukawa coupling is forbidden by the same R
symmetry that also forbids µ. As discussed above, LHu ν̄ has to have R charge 0.
Moreover, there will also be holomorphic contributions to the Yukawa coupling. That
is, even if both kLHuν̄ and kH†

dLν̄
vanish, Dirac Yukawa couplings of the order m3/2/MP

will get induced, where, as in our discussion of the µ term, m3/2 represents the order
parameter for R symmetry breaking.

2.7 Discussion

We have surveyed anomaly–free symmetries which forbid the µ term and are consistent
with the Giudice–Masiero mechanism and SU(5). We find that these are discrete R
symmetries R

M with M = 4m, m ∈ . The R charges of the Hu Hd are such that
one expects a holomorphic contribution to the µ term of similar size. That is, the
Giudice–Masiero mechanism strongly suggests the presence of additional holomorphic
contributions to the effective µ term!

Assuming further that the symmetries allow the up- and down–type Yukawa coup-
lings and commute with flavor we find that they automatically forbid the troublesome
dimension five proton decay operators and in many cases those of dimension four. In-
terestingly, all these symmetries require a GS axion for anomaly cancellation. That is,
these symmetries appear to be broken at the non–perturbative level. In other words,
imposing compatibility with the Giudice–Masiero mechanism leads us to a situation in
which a holomorphic µ term appears at the non–perturbative level, i.e. in a way the
Giudice–Masiero term is unnecessary.

3 Classification and models

In this section, we explore anomaly–free discrete symmetries that solve some of the most
severe problems of the MSSM. We will demand that the symmetry

1. is flavor–universal and Abelian, i.e. a R
M symmetry;
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metries we find that, by demanding that the Weinberg operator LHu LHu be allowed,
there exists only one possible symmetry, namely a R

4 symmetry. Following a different
approach, this R

4 has also recently been shown to be the unique anomaly–free symmetry
that commutes with SO(10) [20]. The proof in [20] assumed that the charge of the su-
perspace coordinate θ can always be set 1, which we find to be too strong a requirement.
However, we find that, if one is to allow for arbitrary θ charges, this only leads to trivial
extensions of R

4 , such that the uniqueness of R
4 still prevails.

If one requires instead the discrete symmetry to forbid the Weinberg operator, one
can explain small Dirac neutrino masses. In particular, we successfully obtain a relation
between the smallness of Dirac neutrino Yukawa couplings and the µ term which is
based on anomaly–free discrete R symmetries with the above properties. Specifically,
we find a class of anomaly–free discrete symmetries in which the appealing relations
µ ∼ ⟨W ⟩/M2

P ∼ m3/2 and Yν ∼ µ/MP naturally emerge.
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Here, in an obvious notation, ν̄ denotes the right–handed neutrino superfield(s), kLHuν̄

and kH†
dLν̄

are dimensionless coefficients, and we suppress flavor indices. The first

term (2.26a) leads to Dirac neutrino masses when X attains its F–term VEV, ⟨FX⟩ ∼
m3/2 MP, while in the case of (2.26b) one has to observe that, due to the presence of the
‘non–perturbative’ µ term, also Hd attains an F term VEV, ⟨FHd

⟩ ∼ µ ⟨Hu⟩ ∼ m3/2 vEW.
As qHu +qHd

= 0 mod M , both terms are allowed if qν̄+qHu +qL = 0 mod M , which is
precisely the condition that an effective holomorphic Yν term is allowed. Altogether we
find, analogous to what we have discussed around (2.2), that effective neutrino Yukawa
couplings

Yν ∼
m3/2

MP
∼

µ

MP
(2.27)

will arise. For m3/2 in the multi–TeV range this can lead to realistic Dirac neutrino
masses. If we are to connect the suppression of Yν to the smallness of the µ term, it
is natural to assume that the neutrino Yukawa coupling is forbidden by the same R
symmetry that also forbids µ. As discussed above, LHu ν̄ has to have R charge 0.
Moreover, there will also be holomorphic contributions to the Yukawa coupling. That
is, even if both kLHuν̄ and kH†

dLν̄
vanish, Dirac Yukawa couplings of the order m3/2/MP

will get induced, where, as in our discussion of the µ term, m3/2 represents the order
parameter for R symmetry breaking.

2.7 Discussion

We have surveyed anomaly–free symmetries which forbid the µ term and are consistent
with the Giudice–Masiero mechanism and SU(5). We find that these are discrete R
symmetries R

M with M = 4m, m ∈ . The R charges of the Hu Hd are such that
one expects a holomorphic contribution to the µ term of similar size. That is, the
Giudice–Masiero mechanism strongly suggests the presence of additional holomorphic
contributions to the effective µ term!

Assuming further that the symmetries allow the up- and down–type Yukawa coup-
lings and commute with flavor we find that they automatically forbid the troublesome
dimension five proton decay operators and in many cases those of dimension four. In-
terestingly, all these symmetries require a GS axion for anomaly cancellation. That is,
these symmetries appear to be broken at the non–perturbative level. In other words,
imposing compatibility with the Giudice–Masiero mechanism leads us to a situation in
which a holomorphic µ term appears at the non–perturbative level, i.e. in a way the
Giudice–Masiero term is unnecessary.

3 Classification and models

In this section, we explore anomaly–free discrete symmetries that solve some of the most
severe problems of the MSSM. We will demand that the symmetry

1. is flavor–universal and Abelian, i.e. a R
M symmetry;
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Hidden sector:
SUSY    ⟨W⟩

Giudice, Masiero (1988) 

Arkani-Hamed, Hall, Murayama, Tucker-Smith, Weiner (2001) 



Question from NuFact’14New questions for Nufact 15 

� What are the new developments and predictions from 
flavour models on neutrino oscillation parameters? What 
precision do we need to achieve to probe them? Which 
parameters (or combinations of them) are more powerful to 
test them? 

� Do the current bounds on new physics in the neutrino 
sector (NSI, non-unitarity, steriles…) allow for effects large 
enough to interfere with CPV searches? Which experimental 
setups can improve these bounds? 

� Explore the synergy between neutrino oscillations and other 
experiments (absolute mass searches, cosmological 
constraints, CLFV) to constrain new physics. 



Flavor structure 

anarchy symmetryvs
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Anarchy

• there are no parametrically small numbers

• large mixing angle, near mass degeneracy statistically preferred


• UV theory prediction can resemble anarchy

• warped extra dimensions

• heterotic string theory

4

(parabolic [blue] region). We refer to this region of the parameter space as the prediction of the ‘ordered hypothesis.’
The figure also depicts the experimentally allowed values of sin2 θ23, sin

2 θ13 at the one and three sigma levels, and
the region of the parameter space preferred by anarchy at the one and two sigma levels, as in Fig. 2(top-right).
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FIG. 3: Prediction of the ordered hypothesis in the sin2 θ23 × sin2 θ13 plane ([blue] parabolic contours), dictated by Eq. (10)
for C ∈ [0.8, 1.2]. The light [yellow] curve corresponds to C = 1. The currently allowed region of the parameter space and the
expectations from the anarchy hypothesis, both in Fig. 2(top-right), are also depicted.

Fig. 3 reveals that the ordered hypothesis and the anarchy one prefer somewhat different regions of the currently
allowed sin2 θ23 × sin2 θ13 parameter space. The anarchy hypothesis does not strongly prefer any region of the
experimentally available space. It does, however, favor maximal sin2 θ23 = 1/2 and “large” values of sin2 θ13. On
the other hand, the ordered hypothesis, in light of the Day Bay result, rules out sin2 θ23 = 1/2, instead preferring
cos 2θ23 ∼ ±0.1 (this point was recently also emphasized in [15]). It is also curious to note that C ! 0.5 values are
disfavored.
Precision measurements of the neutrino oscillation parameters may ultimately favor anarchy versus order, or vice-

versa. The values of the parameters are such that an improved determination of sin2 θ23 will provide the most
discriminating power. If one interprets the width of the blue region in Fig. 3 as indicative of the uncertainty in the
ordered predictions, next-generation experiments sensitive to δ(sin2 θ23) ∼ 0.02 – an uncertainty of a few percent –
would be required to qualitatively change our understanding of structure in lepton mixing. The NOνA experiment,
for example, is aiming at measuring, from νµ disappearance, sin2 2θ23 at the 0.4% level for sin2 2θ23 = 1 [16], which
translates into an uncertainty of 0.03 for sin2 θ23 = 0.5. Similar, albeit slightly worse, precision is expected from T2K
[17]. The fact that θ13 is large implies that νµ → νe searches at T2K and NOνA, combined with reactor measurements
of ν̄e disappearance, will allow one to directly measure sin2 θ23. The precision with which sin2 θ23 can be measured
will be dominated by the precision with which T2K and NOνA can measure sin2 θ23 sin

2 2θ13,[23] which is expected
to be markedly worse than the one advertised for sin2 θ23 from νµ disappearance, above. Interesting information is
also expected from precision measurements of the atmospheric neutrinos at, for example, the INO experiment (see,
for example, [18, 19], and references therein).
Similar arguments can be made in the sin2 θ12 × sin2 θ13 and sin2 θ12 × sin2 θ23 planes. The circumstances here,

however, are different. sin2 θ12 is already known at the few percent level. This implies that constraints on successful
ordered scenarios are either very stringent and the associated “predictions” are very tight (e.g., sin2 θ12 may almost
uniquely determine the value of sin2 θ13 and sin2 θ23) or correlations are either absent or very weak. In the sin2 θ12 ×
sin2 θ23 plane, the anarchical prediction works almost “too well,” as the currently three-sigma experimentally allowed
region is entirely contained deep in the one-sigma anarchy hypothesis prediction. It is quite unlikely that an ordered
hypothesis will lead to a significantly better, statistically speaking, a posteriori agreement with the data.
The next obvious target for neutrino oscillation experiments is the discovery of leptonic CP-invariance violation,

whose magnitude is governed by the Dirac phase δ. For example, for neutrinos propagating in vacuum, P (νµ →
νe) − P (ν̄µ → ν̄e) ∝ sin δ. Since the Haar measure Eq. (3) is flat in δ, the probability distribution of sin δ is peaked
at sin δ = ±1 [2]: the anarchy hypothesis implies that “large” leptonic CP-invariance violation is quite probable.
If the neutrinos are Majorana fermions, the Majorana phases χ1,2 in Eq. (1) are physical observables. Similar

to that of δ, their probability distributions are flat in χ1,2, respectively. Majorana phases are known to affect the
magnitude of the neutrino exchange contribution to neutrinoless double-beta decay (0νββ), and it is interesting to ask
whether the anarchy hypothesis has any impact on the expected rates for these rare nuclear processes. The answer,
unfortunately, depends on the value of the lightest neutrino mass, which is both experimentally unknown and not
addressed by the anarchy hypothesis, which concerns only mixing parameters. Nonetheless, we would like to advertise
that, if the anarchy hypothesis is correct and neutrinos are Majorana fermions, it is quite unlikely that the rate for

Hall, Murayama, Weiner (2000); 

de Gouvea, Murayama (2003)

 de Gouvea, Murayama (2012)
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Expectations from Heterotic String Theories

• heterotic string models: O(100) RH neutrinos


• statistical expectations with large N  ( = # of RH neutrinos)

18

Dirac versus Majorana

• efforts 

20

Neutrinos & Strings An explicit example

See–saw couplings

Heterotic see–saw
Buchmüller et al. (2007b) ; Buchmüller et al. (2007a) ; Lebedev et al. (2007) ; Kappl et al. (2011)

☞ there are O(100) neutrinos (= R parity odd SM singlets)

➥ O(100) contributions to the (effective) neutrino mass operator

➥ effective suppression of the see–saw scale

mν ∼
v2

M∗
M∗ ∼

MGUT

10...100

. . . seems consistent with observation(√
∆m2

atm ≃ 0.04 eV &
√
∆m2

sol ≃ 0.008 eV
)

Talk by Michael Ratz at BeNE 2012

Buchmüller, Hamaguchi, Lebedev, 
Ramos-Sánchez, Ratz (2007)

Neutrinos & Strings An explicit example

See–saw couplings

Heterotic see–saw
Buchmüller et al. (2007b) ; Buchmüller et al. (2007a) ; Lebedev et al. (2007) ; Kappl et al. (2011)

☞ there are O(100) neutrinos (= R parity odd SM singlets)

➥ O(100) contributions to the (effective) neutrino mass operator

ℓ

φ

φ

ℓ

mν =

∑

 ν ℓ

φ

φ

ℓ

ν̄

+
ℓ

φ

φ

ℓ

ν̄

near maximal mixing angle and one large mixing angle. Because maximal mixing, with

sin2(2✓) = 1, is a special point, we look for cases which have at least as much mixing

as the 1� experimental bounds, requiring that one angle satisfies sin2(2✓) � 0.98 and

another satisfies sin2(2✓) � 0.84. The results are shown in Figure 2, from which we see

a clear indication that as the number of right-handed neutrinos increases, so too does

the likelihood of obtaining large mixing angles – as expected for the reasons laid out in

Section 2.This e↵ect is further illustrated in Figure 3, where we see the shift to larger

mixing angles as N increases.
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Figure 3: Distribution of mixing angles. The three di↵erent bands represent the largest,
middle, and smallest sin2(2✓).

Other parameters

While the absolute masses of the neutrinos are not well measured, oscillation experiments

give us a good measure of their mass squared di↵erences, with a best fit of �m2

21

=

7.59+0.20
�0.18⇥10�5 eV2 and �m2

31

= 2.50+0.09
�0.16⇥10�3 eV2 (assuming a normal hierarchy, with

comparable values for an inverted hierarchy) [17]. To see if our construction accommodates

this small but non-trivial hierarchy, and to determine whether there is a preference for a

normal or inverted structure, in Figure 4 we consider the ratio of neutrino mass squared

di↵erences, which we plot as log
10

�m2

32

/�m2

21

. Here we label the masses such that

13

m
3

> m
2

> m
1

, so that this quantity is positive for a normal hierarchy and negative

for an inverted one.9 Observed masses give a value of about ±1.5. We see that for

large N , the masses are much less hierarchical, and easily accommodate the observed

values. Furthermore, we see an overwhelming preference for the normal hierarchy, which

in particular justifies our use of the associated mass and mixing angle measurements in

later parts of this section.10
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Figure 4: Ratio of mass squared di↵erences log
10

�m2

32

/�m2

21

for N = 3, 10, 30 and
100. Here we choose the convention m

3

> m
2

> m
1

, so that positive(negative) values
correspond to a normal (inverted) hierarchy.

Having seen that the mixing angles and mass splittings observed in nature are in-

creasingly typical as N increases, we wish to look at other properties of viable matrices

produced within our framework. To select cases close to reality, we consider only matrices

which satisfy: 0.28  sin2(✓
12

)  0.35; 0.41  sin2(✓
23

)  0.61; 29.1  �m2

31

/�m2

21


35.6; and 0.004  sin2(✓

13

)  0.028, which come from best fit 2� bounds [17]. In Figure

5, we show the distribution of sin(✓
13

), subject to the large angle and mass constraints,

and find that there is some tension with the best fit, which at 2� corresponds to about

9Note that for an inverted hierarchy, our labeling is non-standard.
10 The reason our scenario strongly prefers a normal versus an inverted hierarchy is that the reasonably

large observed ratio of solar and atmospheric mass squared di↵erences necessitates that either the heaviest
(normal hierarchy) or the lightest (inverted hierarchy) of the neutrinos is a mild outlier. Having the
heaviest neutrino as the outlier in our scenario is much more probable, since this requires fewer outlying
elements in our typically degenerate mass matrix.

14

Feldstein, Klemm (2012)

preference for large 
mixing angles

preference for 
normal hierarchy



Origin of Flavor Mixing and Mass Hierarchy

• Several models have been constructed based on 

• GUT Symmetry [SU(5), SO(10)] ⊕ Family Symmetry GF   


• Family Symmetries GF based on continuous groups:

• U(1) 

• SU(2) 

• SU(3) 


• Recently, models based on discrete family symmetry groups have been constructed 

• A4 (tetrahedron)

• T´ (double tetrahedron) 

• S3 (equilateral triangle)

• S4 (octahedron, cube)

• A5 (icosahedron, dodecahedron)

• ∆27 

• Q6 
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33

The Horizontal Symmetry

• Three families are the

same under vertical

symmetry; yet

different under

horizontal symmetry

• Zeros in the mass

matrices are protected

by a family symmetry

SU(2)F

uuu

ddd

eee

sss

ttt

bbb

!!!µµµ

"""µµµ

!!!"""

ccc

!!!eee

SU(2)F

SU(10)GUT Symmetry
SU(5), SO(10), ...

family symmetry 
(T′, SU(2), ...)



Tri-bimaximal Neutrino Mixing

• Latest Global Fit (3σ)


• Tri-bimaximal Mixing Pattern 


• Leading Order: TBM (from symmetry) + higher order corrections/contributions


• More importantly, corrections to the kinetic terms

Harrison, Perkins, Scott (1999)

I. INTRODUCTION

The measurements of neutrino oscillation parameters have entered a precision era. The global

fit to current data from neutrino oscillation experiments give the following best fit values and 2⇧

limits for the mixing parameters [1],

sin2 ⇤12 = 0.30 (0.25� 0.34), sin2 ⇤23 = 0.5 (0.38� 0.64), sin2 ⇤13 = 0 (< 0.028) . (1)

These values for the mixing parameters are very close to the values arising from the so-called

“tri-bimaximal” mixing (TBM) matrix [2],

UTBM =

�

⇧⇧⇧⇤

⌥
2/3 1/

⇧
3 0

�
⌥

1/6 1/
⇧

3 �1/
⇧

2

�
⌥

1/6 1/
⇧

3 1/
⇧

2

⇥

⌃⌃⌃⌅
, (2)

which predicts sin2 ⇤atm, TBM = 1/2 and sin ⇤13,TBM = 0. In addition, it predicts sin2 ⇤⇥,TBM = 1/3

for the solar mixing angle. Even though the predicted ⇤⇥,TBM is currently still allowed by the

experimental data at 2⇧, as it is very close to the upper bound at the 2⇧ limit, it may be ruled out

once more precise measurements are made in the upcoming experiments.

It has been pointed out that the tri-bimaximal mixing matrix can arise from a family symmetry

in the lepton sector based on A4 [3] , which is a group that describes the even permutations of

four objects and it has four in-equivalent representations, 1, 1⇤, 1⇤⇤ and 3. However, due to its lack

of doublet representations, CKM matrix is an identity in most A4 models. In addition, to explain

the mass hierarchy among the charged fermions, one needs to resort to additional symmetry. It is

hence not easy to implement A4 as a family symmetry for both quarks and leptons [4].

In this letter, we consider a di⇥erent finite group, the double tetrahedral group, (d)T , which is a

double covering of A4. (For a classification of all finite groups up to order 32 that can potentially

be a family symmetry, see [5]). Because it has the same four in-equivalent representations as in

A4, the tri-bimaximal mixing pattern can be reproduced. In addition, (d)T has three in-equivalent

doublets, 2, 2⇤, and 2⇤⇤, which can be utilized to give the 2 + 1 representation assignments for the

quarks [6]. In the context of SU(2) flavor group, this assignment has been known to give realistic

quark mixing matrix and mass hierarchy [7]. Utilizing (d)T as a family symmetry for both quarks

and leptons has been considered before in non-unified models [8, 9]. In Ref. [8], both quarks

and leptons (including the neutrinos) have 2 ⇤ 1 representation assignments under (d)T , and the

prediction for the solar mixing angle is ⌅ 10�3, which is in the region of small mixing angle solution

that has been ruled out by SNO and KamLAND. A recent attempt in [9] generalizes the (d)T to
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Capozzi, Fogli, Lisi, Marrone, Montanino, Palazzo (March 2014)

sin2 ✓23 = 0.437 (0.374� 0.626)

sin2 ✓12 = 0.308 (0.259� 0.359)

sin2 ✓13 = 0.0234 (0.0176� 0.0295)

1

[θlep23 ~ 41.2°]

[θlep12 ~ 33.7°]

[θlep13 ~ 8.80°]

Leurer, Nir, Seiberg (1993); 

Dudas, Pokorski, Savoy (1995)
M.-C.C, M. Fallbacher, M. Ratz, C. Staudt,  (2012) 
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Symmetry Relations 

• QLC-I


• QLC-II


• testing symmetry relations: a more robust way to distinguish different classes 

of models

mixing parameters best fit 3σ range

θq
23 2.36o 2.25o - 2.48o

θq
12 12.88o 12.75o - 13.01o

θq
13 0.21o 0.17o - 0.25o

mixing parameters best fit 3σ range

θe
23 41.2o 35.1o - 52.6o

θe
12 33.6o 30.6o - 36.8o

θe
13 8.9o 7.5o -10.2o 

Quark Mixing Lepton Mixing

θc + θsol ≅ 45o

tan2θsol ≅ tan2θsol,TBM + (θc / 2) * cos δe 

θq23 + θe23 ≅ 45o

Raidal, ‘04; Smirnov, Minakata, ‘04

Ferrandis, Pakvasa; Dutta, Mimura; 
M.-C.C., Mahanthappa 

θe13 ≅ θc / 3√2

(BM)

(TBM)
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measuring leptonic mixing parameters to the 
precision of those in quark sector

☜ slight inconsistent

☜ Too small



Aside: Precision Cross Section

• to

4

86 4 Neutrino Mixing, Mass Hierarchy, and CP Violation

baseline, there is no degeneracy between matter and CP asymmetries at the first oscillation node
where the LBNE neutrino beam spectrum peaks. The wide coverage of the oscillation patterns
enables the search for physics beyond the three-flavor model because new physics effects may
interfere with the standard oscillations and induce a distortion in the oscillation patterns. As a
next-generation neutrino oscillation experiment, LBNE aims to study in detail the spectral shape
of neutrino mixing over the range of energies where the mixing effects are largest. This is crucial
for advancing the science beyond the current generation of experiments, which depend primarily
on rate asymmetries.
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Figure 4.1: The simulated unoscillated spectrum of ‹µ events from the LBNE beam (black histogram)
overlaid with the ‹µ æ ‹e oscillation probabilities (colored curves) for different values of ”CP and normal
hierarchy.

The LBNE reconfiguration study [25] determined that the far detector location at the Sanford
Underground Research Facility provides an optimal baseline for precision measurement of neutrino
oscillations using a conventional neutrino beam from Fermilab. The 1,300≠km baseline optimizes
sensitivity to CP violation and is long enough to resolve the MH with a high level of confidence,
as shown in Figure 2.7.

Table 4.1 lists the beam neutrino interaction rates for all three known species of neutrinos as ex-
pected at the LBNE far detector. This table shows only the raw interaction rates using the neutrino
flux from the Geant4 simulations of the LBNE beamline and the default interaction cross sections
included in the GLoBeS package [130] with no detector effects included. A tunable LBNE beam
spectrum, obtained by varying the distance between the target and the first focusing horn (Horn 1),
is assumed. The higher-energy tunes are chosen to enhance the ‹· appearance signal and improve
the oscillation fits to the three-flavor paradigm. To estimate the NC event rates based on visible
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Origin of CP Violation

• CP violation ⇔ complex mass matrices


• Conventionally, CPV arises in two ways:


• Explicit CP violation: complex Yukawa coupling constants Y


• Spontaneous CP violation: complex scalar VEVs  <h>


• Complex CG coefficients in certain discrete groups ⇒ explicit CP violation  

• CPV in quark and lepton sectors purely from complex CG coefficients

3

which is parametrized by two parameters, giving the
three absolute neutrino masses [9] (see below). As these
interactions involve only the triplet representations of T ′,
the relevant product rule is 3 ⊗ 3. Consequently, all CG
coefficients are real, leading to a real neutrino Majo-
rana mass matrix. The neutrino mass matrix given in
Eq. 16 has the special property that it is form diagonal-
izable [14], i.e. independent of the values of ξ0 and u0, it
is diagonalized by the tri-bimaximal mixing matrix,

UT
TBM

MνUTBM = diag(u0 + 3ξ0, u0,−u0 + 3ξ0)
v2

u

MX
,

≡ diag(m1, m2, m3) . (17)

While the neutrino mass matrix is real, the complex
charged lepton mass matrix Me, which is diagonalized
by, V †

e,RMeVe,L = diag(me, mµ, mτ ), leads to a complex

VPMNS = V †
e,LUTBM (see below).

CPT Invariance and CP Violation.—Even though the
complexity of the Lagrangian arises in our model through
the complex CG coefficients, the hermiticity of the La-
grangian, which is required in order to have CPT invari-
ance, remains satisfied. This is easily seen using the com-
ponent form given in Eq. 11. Take the term URMuQL

for example. Its corresponding hermitian conjugate is

(URMuQL)† = (U †
Rγ0MuQL)† = QLM †

uUR . (18)

The hermiticity of the Lagrangian allows us to write, in
general,

L(x⃗, t) = αO(x⃗, t) + α∗
O

†(x⃗, t) , (19)

where O(x⃗, t) is some operator and α is some c-number.
Recall that, the charge conjugation C changes a left-
hande particle into a left-hande anti-particle, while the
parity P turns a left-handed particle into a right-handed
particle, and vice versa. Thus the CP transformation
converts a left-handed particle into a right-handed anti-
particle. Effectively,

O(x⃗, t)
CP−→ O

†(−x⃗, t) , α
CP−→ α , (20)

The time reversal operator is antiunitary. It reverses the
momentum of a particle and flips its spin. Effectively,

O(x⃗, t)
T−→ O(x⃗,−t) , α

T−→ α∗ , (21)

In the weak eigenstates, the interactions Lcc in Eq. 15 are
invariant under CP and T, as all coupling constants are
real. On the other hand, the Yukawa interactions violate
both CP and T. Using the up-quark sector again as an
example, for each conjugate pair specified by indices i
and j,

UR,i(Mu)ijQL,j + QL,j(M
†
u)jiUR,i

CP−→ QL,j(Mu)ijUR,i + UR,i(Mu)∗ijQL,j , (22)

UR,i(Mu)ijQL,j + QL,j(M
†
u)jiUR,i

T−→ UR,i(Mu)∗ijQL,j + QL,j(Mu)ijUR,i , (23)

The complexity of the mass matrix, giving rise to CP and
T violations, ensues from the complex CG coefficients in
T ′. Here we have suppressed the space-time coordinates
the inversions of which under the transformations are as-
sumed implicitly. Due to its hermiticity, the Lagrangian
is CPT invariant,

URMuQL +QLM †
uUR

CPT−→ QLM †
uUR +URMuQL , (24)

Alternatively, in the mass eigenstates, the Yukawa inter-
actions are invariant under CP and T, while the charged
current interactions violate CP and T individually and
are invariant under CPT. Note that CP violation is in-
herent in the Lagrangian Eq.3, which is T ′ and SU(5)
invariant.

Numerical Predictions.—The predicted charged
fermion mass matrices in our model are parametrized in
terms of 7 parameters,

Mu

ytvu
=

⎛

⎜

⎝

ig 1−i
2

g 0
1−i
2

g g + (1 − i
2
)h k

0 k 1

⎞

⎟

⎠
, (25)

Md, MT
e

ybvdφ0ζ0
=

⎛

⎜

⎝

0 (1 + i)b 0

−(1 − i)b (1,−3)c 0

b b 1

⎞

⎟

⎠
, (26)

With b ≡ φ0ψ′
0/ζ0 = 0.0029, c ≡ ψ0N0/ζ0 = −0.0169,

k ≡ y′ψ0ζ0 = −0.029, h ≡ φ2
0 = 0.008 and g ≡ φ′3

0 =
−9 × 10−6, the following mass ratios are obtained, md :
ms : mb ≃ θ4.7

c : θ2.7

c : 1, mu : mc : mt ≃ θ8

c : θ3.2

c : 1,
with θc ≃

√

md/ms ≃ 0.225. (These ratios in terms
of θc coincide with those give in [15].) We have also
taken yt = 1 and ybφ0ζ0 ≃ mb/mt ≃ 0.011. As a result
of the GJ relations, realistic charged lepton masses are
obtained. Making use of these parameters, the complex
CKM matrix is,

⎛

⎜

⎝

0.975e−i26.8o

0.225ei21.1o

0.00293ei164o

0.224ei124o

0.974e−i8.19o

0.032ei180o

0.00557ei103o

0.0317e−i7.33o

0.999

⎞

⎟

⎠
. (27)

The values for |VCKM | elements are in agreement with
current experimental values. The predictions of our
model for the angles in the unitarity triangle and the
Jarlskog invariant in the quark sector are,

β ≡ arg

(

−VcdV ∗
cb

VtdV ∗
tb

)

= 21.3o, sin 2β = 0.676 , (28)

α ≡ arg

(

−VtdV ∗
tb

VudV ∗
ub

)

= 114o , (29)

γ ≡ arg

(

−VudV ∗
ub

VcdV ∗
cb

)

= δq = 44.9o , (30)

J ≡ Im(VudVcbV
∗
ubV

∗
cs) = 1.45 × 10−5 , (31)

where δq is the CP phase in the standard parametriza-
tion. In terms of the Wolfenstein parameters, we have
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CG coefficients in non-Abelian discrete symmetries  
➪ relative strengths and phases in entries of Yukawa matrices 

➪ mixing angles and phases (and mass hierarchy)



 Group Theoretical Origin of CP Violation

• Scalar potential: if Z3 symmetric ⇒〈∆1〉= 〈∆2〉=〈∆3〉≡〈∆〉 real


• Complex effective mass matrix: phases determined by group theory 

(   L1          L2    ) ( R
1   R

2 )

C i j k : 
complex CG 
coefficients of 

G
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complex CGs ➪ G and physical CP transformations do not commute 
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physical CP 
transformations

u has to be a class-inverting,   
        involuntory automorphism of G 
➪ non-existence of such automorphism  
        in certain groups 
➪ explicit physical CP violation in  
        generic setting

M.-C.C, M. Fallbacher, K.T. Mahanthappa, 
M. Ratz, A. Trautner, NPB (2014)

unitary 
transformation U examples: T7, ∆(27), …..



Cosmological Connection 

27



• RH heavy neutrino decay:

• quantum interference of tree-level & one-loop diagrams ⇒ primordial lepton 

number asymmetry  
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Fig. 1.7. Diagrams in SM model with RH neutrinos that contribute to the lepton num-
ber asymmetry through the decay of the RH neutrinos. The asymmetry is generated
due to the interference of the tree-level diagram (a) and the one-loop vertex correction
(b) and self-energy (c) diagrams.

That is, the heavy neutrinos are not able to follow the rapid change of the
equilibrium particle distribution, once the temperature dropped below the
mass M1. Eventually, heavy neutrinos will decay, and a lepton asymmetry
is generated due to the CP asymmetry that arises through the interference
of the tree level and one-loop diagrams, as shown in Fig. 1.7,
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In Fig. 1.7, the diagram (b) is the one-lop vertex correction, which gives
the term, f(x), after carrying out the loop integration,

f(x) =
⌃

x

⇧
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. (1.85)

Diagram (c) is the one-loop self-energy. For |Mi �M1| ⇤ |�i � �1|, the
self-energy diagram gives the term

g(x) =
⌃

x
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in Eq. 1.84. For hierarchical RH neutrino masses, M1 ⇥ M2, M3, the
asymmetry is then given by,
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Fig. 1.7. Diagrams in SM with RH neutrinos that contribute to the lepton number
asymmetry through the decays of the RH neutrinos. The asymmetry is generated due
to the interference of the tree-level diagram (a) and the one-loop vertex correction (b)
and self-energy (c) diagrams.

is generated due to the CP asymmetry that arises through the interference
of the tree level and one-loop diagrams, as shown in Fig. 1.7,
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In Fig. 1.7, the diagram (b) is the one-lop vertex correction, which gives
the term, f(x), in Eq. 1.89 after carrying out the loop integration,
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Diagram (c) is the one-loop self-energy. For |Mi − M1| ≫ |Γi − Γ1|, the
self-energy diagram gives the term

g(x) =

√
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1 − x
, (1.91)

in Eq. 1.89. For hierarchical RH neutrino masses, M1 ≪ M2, M3, the
asymmetry is then given by,
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Note that when Nk and Nj in the self-energy diagram (c) have near degen-
erate masses, there can be resonant enhancement in the contributions from
the self-energy diagram to the asymmetry. Such resonant effect can allow

Leptonic CP violation ⇒ ∆L  ∝  

Leptogenesis

• RH heavy neutrino decay:
• quantum interference of tree-level & one-loop diagrams ⇒ primordial lepton number 

asymmetry  
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Fig. 1.7. Diagrams in SM model with RH neutrinos that contribute to the lepton num-
ber asymmetry through the decay of the RH neutrinos. The asymmetry is generated
due to the interference of the tree-level diagram (a) and the one-loop vertex correction
(b) and self-energy (c) diagrams.

That is, the heavy neutrinos are not able to follow the rapid change of the
equilibrium particle distribution, once the temperature dropped below the
mass M1. Eventually, heavy neutrinos will decay, and a lepton asymmetry
is generated due to the CP asymmetry that arises through the interference
of the tree level and one-loop diagrams, as shown in Fig. 1.7,
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is generated due to the CP asymmetry that arises through the interference
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Diagram (c) is the one-loop self-energy. For |Mi − M1| ≫ |Γi − Γ1|, the
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Note that when Nk and Nj in the self-energy diagram (c) have near degen-
erate masses, there can be resonant enhancement in the contributions from
the self-energy diagram to the asymmetry. Such resonant effect can allow

Leptonic CP violation ⇒

≠ 0

leptons antileptons

Fukugita, Yanagida, 1986
Standard Leptogenesis

Neutrino Yukawa 
coupling



Dirac Leptogenesis

• Leptogenesis possible even when neutrinos 
are Dirac particles (no ∆L = 2 violation)


• Characteristics of Sphaleron effects:

• only left-handed fields couple to 

sphalerons

• sphalerons change (B+L) but not (B-L)

• sphaleron effects in equilibrium                

for T > Tew


29

K. Dick, M. Lindner, M. Ratz, D. Wright, 2000; 
H. Murayama, A. Pierce, 2002
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Fig. 1.12. With sufficiently small Yukawa couplings, the left-right equilibration occurs
at a much later time, well below the electroweak phase transition temperature. It is
therefore possible to generate a non-zero baryon number even if B = L = 0 initially. For
the SM particles, as shown in the insert for comparison, the left-right equilibration takes
place completely before or during the sphaleron processes. Thus no net baryon number
can be generated if B − L = 0 initially. Figure taken from Ref [31].

Hence the left-right equilibration can occur at a much later time, T !

Teq ≪ TEW , provided,

λ2 !
Teq

MPl

≪
TEW

MPl

. (1.119)

With MPl ∼ 1019 GeV and TEW ∼ 102 GeV, this condition then translates
into

λ < 10−(8∼9) . (1.120)

Thus for neutrino Dirac masses mD < 10 keV, which is consistent with all
experimental observations, the left-right equilibration does not occur until
the temperature of the Universe drops to much below the temperature of
the electroweak phase transition, and the lepton number stored in the right-
handed neutrinos can then survive the wash-out due to the sphalerons [31].

Once we accept this, the Dirac leptogenesis then works as follows. Sup-
pose that some processes initially produce a negative lepton number (∆LL),
which is stored in the left-handed neutrinos, and a positive lepton number
(∆LR), which is stored in the right-handed neutrinos. Because sphalerons
only couple to the left-handed particles, part of the negative lepton number

Diagram from K. Dick, M. 
Lindner, M. Ratz, D. Wright, 
2000

late time LR equilibration of 
neutrinos making Dirac 

leptogenesis possible with 
primordial ∆L = 0



Synergy 

30

New questions for Nufact 15 

� What are the new developments and predictions from 
flavour models on neutrino oscillation parameters? What 
precision do we need to achieve to probe them? Which 
parameters (or combinations of them) are more powerful to 
test them? 

� Do the current bounds on new physics in the neutrino 
sector (NSI, non-unitarity, steriles…) allow for effects large 
enough to interfere with CPV searches? Which experimental 
setups can improve these bounds? 

� Explore the synergy between neutrino oscillations and other 
experiments (absolute mass searches, cosmological 
constraints, CLFV) to constrain new physics. 

Question from NuFact’14



Correlations among cLFV Processes 

for a given value of M1/2 as |A0/m0| increases. For the AB and GK models the experimental

branching ratio greatly limits the allowed ranges of A0/m0, while for the CM, CY, and DR models

the DM constraints limit the allowed ranges of A0/m0. In any case, the minimum predicted BR21

branching ratio occurs for A0 = 0.

One can also present similar scatter plots for the τ → µγ and τ → eγ decay modes. Since

all three decay modes are intimately related in each model through the corresponding logarithmic

terms such as that in Eq. (32), the same scatter points will appear with only the color-coding

changed (assuming one imposes the BR21 experimental limit for each plot).

Instead, we present two log-log plots for the BR32 and BR31 branching ratios against that for

BR21 in Figs. 8 and 9, where A0 = 0 has again been imposed. The thin line segments for each

model observe the soft parameters constraints imposed, while the heavier line segments observe

the more restrictive WMAP dark matter constraints. The vertical dashed line reflects the present

BR21 bound, while the horizontal dashed line refers to the present BR32 or BR31 experimental

limit, respectively [35]. It is clear from these two plots that the ongoing MEG experiment stands
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FIG. 8: Branching ratio predictions for τ → µ + γ vs. branching ratio predictions for µ → e + γ in the five

models considered. The soft SUSY breaking constraints imposed apply for the thin line segments, while the

more restrictive WMAP dark matter constraints apply for the thick line segments. The present experimental

constraints are indicated by the dashed lines.
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FIG. 9: Branching ratio predictions for τ → e + γ vs. branching ratio predictions for µ → e + γ in the five

models considered. The soft SUSY breaking constraints imposed apply for the thin line segments, while the

more restrictive WMAP dark matter constraints apply for the thick line segments.

the best chance of confirming the predictions for or eliminating the GK and AB models. Even with

a super-B factory [36], the present experimental bounds on the BR32 and BR31 branching ratios

can only be lowered by one or two orders of magnitude at most.

But recall that the line segments apply for the special case of A0 = 0. If one allows A0 to

depart from zero, the line segments will slide diagonally upward and toward the right along their

presently depicted positions by amounts that can be estimated from Figs. 3 - 7. Hence only the

lower limits on the branching ratios are robust in Figs. 8, 9 and 11.

In Table II we summarize the relevant findings from our study of the five models. The branching

ratio ranges apply for the A0 = 0 case and with the stricter WMAP dark matter constraints

imposed. It is clear that the five predictive SO(10) SUSY GUT models considered have very

representative right-handed neutrino mass spectra and predictions for sin2 θ13. The CM, DR, and

GK models have massive hierarchical spectra with M3 ranging from 1013 to 1015 GeV. The CY

model, on the other hand, has a degenerate spectrum with MR ∼ 3 × 1012 GeV, while the AB

model has degenerate M1 and M2 which can lead to resonant leptogenesis. The CM model has

a relatively large sin2 θ13 prediction which should be observable at the upcoming reactor neutrino

18

limit from 
BABAR

limit from 
BABAR

limit from 
MEGA

reach 
@ 

MEG

C.  Albright & M.-C.C, 2008

reach @ 
MEGII
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FIG. 11: Branching ratio predictions for µ − e conversion vs. branching ratio predictions for µ → e + γ in

the five models considered. The more restrictive WMAP dark matter constraints apply for the thick line

segments shown.

Zeff = 17.6 and the nuclear form factor is F (q2 ≃ −m2
µ) ≃ 0.54 [30]. In the case of the conversion

process, we have explicitly carried out the full evolution running from the GUT scale to the Z

scale. The µ − e conversion branching ratio is then obtained from the conversion rate above by

scaling it with the µ capture rate on T i, which is quoted in [38] as (2.590± 0.012)× 106 sec−1 with

the present experimental limit on the conversion branching ratio found to be R ≤ 4 × 10−12.

In Fig. 11. we show a plot of the µ − e conversion branching ratio vs. the µ → eγ branching

ratio for each of the five models considered. We have limited the line segments by applying the

WMAP dark matter constraints of Sect. III. It is clear that the GK and AB models would be

tested first, followed by the DR, CY and CM models. In fact, a first generation µ − e conversion

experiment may be able to reach a branching ratio of 10−17, while a second generation experiment

may lower the limit from the present value of 4 × 10−12 down to 10−18. If such proves to be the

case and no signal is seen, all five models will be eliminated. Hence the conversion experiment is

inherently more powerful than the MEG experiment looking for µ → eγ which is designed to reach

a level of 10−13−10−14, sufficient only to eliminate the GK and AB models. The caveat, of course,

is that MEG is now starting to take data, while no new conversion experiment has been approved.
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C. Albright & M.-C.C, arXiv: 0802.4228 (hep-ph)

reach at MEG experiment

sensitivity of proposed 
MECO-type exp

mu-e conversion could be 
powerful in testing 
different models

μ-e conversion could be 
powerful in distinguishing 

different models

sensitivity of Mu2e, 
COMET

reach at MEG

C.  Albright & M.-C.C, 2008

reach at MEGII



Neutrinoless Double Beta Decay
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Normal 3ν Ordering
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[Giunti, Laveder, Li, Long, 2014]
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Conclusions

• Fundamental origin of fermion mass hierarchy and flavor mixing still not 
known


• Neutrino masses: evidence of physics beyond the SM


• Symmetries: can provide an understanding of the pattern of fermion masses 
and mixing


• correlations, correlations, correlations:


• quark & lepton mixing parameters


• lepton flavor violating charged lepton decays 


• proton (nucleon) decay, neutron-antineutron oscillation 
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Dirac Majorana

GUTs

SUSY with 
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symmetries
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seesawType II, 
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generation

SUSY 
with RPVextra 

U(1)

proton 
decaycollider signatures cLFV∆B ≠ 0, ∆L = 4


