Neutrino Mass Models

Mu-Chun Chen, University of California, Irvine

NuFact 2015, CBPF, Rio de Janeiro, Brazil, August 10, 2015

Theoretical Challenges

(i) Absolute mass scale: Why $m_v \ll m_{u,d,e}$?

- seesaw mechanism: most appealing scenario ⇒ Majorana
 - GUT scale (type-I, II) vs TeV scale (type-III, double seesaw)
- TeV scale new physics (SUSY, extra dimension, U(1)) \Rightarrow Dirac or Majorana

(ii) Flavor Structure: Why neutrino mixing large while quark mixing small?

- <u>neutrino anarchy</u>: no parametrically small number
 - near degenerate spectrum, large mixing
 - still alive and kicking de Gouvea, Murayama (2012)
 - possible heterotic string connection
- family symmetry: there's a structure, expansion parameter (symmetry effect)
 - mixing result from dynamics of underlying symmetry
 - for leptons only (normal or inverted)
 - for quarks and leptons: quark-lepton connection ↔ GUT (normal)
- Alternative?
- In this talk: assume 3 generations, no LSND/MiniBoone/Reactor Anomaly

Hall, Murayama, Weiner (2000); de Gouvea, Murayama (2003)

Buchmüller, Hamaguchi, Lebedev, Ramos-Sánchez, Ratz (2007);

Feldstein, Klemm (2012)

Origin of Mass Hierarchy and Mixing

- In the SM: 22 physical quantities which seem unrelated
- Question arises whether these quantities can be related
- No fundamental reason can be found in the framework of SM
- less ambitious aim \Rightarrow reduce the # of parameters by imposing symmetries
 - Grand Unified Gauge Symmetry
 - seesaw mechanism naturally implemented
 - GUT relates quarks and leptons: quarks & leptons in same GUT multiplets
 - one set of Yukawa coupling for a given GUT multiplet \Rightarrow intra-family relations
 - Family Symmetry
 - relate Yukawa couplings of different families
 - inter-family relations \Rightarrow further reduce the number of parameters

⇒ Experimentally testable correlations among physical observables

Origin of Flavor Mixing and Mass Hierarchy

- · Several models have been constructed based on
 - GUT Symmetry [SU(5), SO(10)] ⊕ Family Symmetry G_F
- Family Symmetries G_F based on continuous groups:
 - U(1)
 - SU(2)
 - SU(3)
- Recently, models based on discrete family symmetry groups have been constructed
 - A₄ (tetrahedron)
 - T´ (double tetrahedron)
 - S₃ (equilateral triangle)
 - S₄ (octahedron, cube)
 - A₅ (icosahedron, dodecahedron)
 - Δ₂₇
 - Q4

 $\begin{array}{c|c} e & \mu & \tau \\ \hline \nu_e & \nu_\mu & \nu_\tau \end{array}$

family symmetry

(T', SU(2), ...)

h

u

d

С

Motivation: Tri-bimaximal (TBM) neutrino mixing The measurements of neutrino oscillation parameters have entered a precision era. The global current data from neutrino oscillation experiments give the following best fit parameters and 2σ The global fit to current data from neutrino oscillation experiments give the following best fit parameters [1], and the mixing parameters give the following best fit values and 2σ The global fit for the mixing parameters give the following best fit values and 2σ for the mixing parameters [1], and [1] the following best fit values and 2σ for the mixing parameters [1], and [1] the following best fit values and 2σ for the mixing parameters [1], and [1] the following best fit values and 2σ for the mixing parameters [1], and [1] the following best fit values [1] the following best [1] the following best

• Lateist² Global F10 (3025, sind 64) = 0.4370 674 =0.62610.3 Saporri Fogli, Lisi, Marrone, Montaning, Polazzo (2014) (1) e values for the mixing parameters are very close to the values arising from the so-called be values bim Tkinsel values into (TBM) mixing with the cors (0.129 very close to the values arising from the so-called

"tri-bimaximal" mixing (TBM) matrix [2],
$$\sqrt{3}$$
 $(0.0176 - 0.0295)$
 $U_{\text{TBM}} = \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0 \\ -\sqrt{1/6} & 1/\sqrt{2/3} - 1/\sqrt{2}/3 \end{pmatrix} U_{\text{TBM}} = \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0 \\ -\sqrt{1/6} & 1/\sqrt{3} & -(12)/\sqrt{2} \\ -\sqrt{1/6} & 1/\sqrt{3} & -(12)/\sqrt{2} \end{pmatrix},$

• Tri-bimaximal Mixing Patters
$$\sqrt{1/6}$$
 and $\sqrt{3}$ and

n predicts $\sin^2 \theta_{\text{atm}, \text{TBM}} = \frac{1}{3}$ hich since $\frac{1}{3}$ hich

SU(5) Compatibility \Rightarrow T' Family Symmetry

- Double Tetrahedral Group T´: double covering of A4
- Symmetries ⇒ 10 parameters in Yukawa sector ⇒ 22 physical observables
- neutrino mixing angles from group theory (CG coefficients)
- TBM: misalignment of symmetry breaking patterns
 - neutrino sector: $T' \rightarrow G_{TST2}$,
 - charged lepton sector: $T' \rightarrow G_T$
- GUT symmetry ⇒ contributions to mixing parameters from charged lepton sector
 - \Rightarrow deviation from TBM related to Cabibbo angle θ_c

$$\theta_{13} \simeq \theta_c/3\sqrt{2}$$
CG's of SU(5) & T'
 $\delta \simeq 227^{\circ}$

large θ₁₃ possible with one additional singlet flavon
 M.-C. C., J. Huang, K.T. Mahanthappa, A. Wijiangco (2013)

 $\tan^2 \theta_{\odot} \simeq \tan^2 \theta_{\odot,TBM} + \frac{1}{2} \theta_c \cos \delta$

"Large" Deviations from TBM in A4

- Generically: corrections on the order of $(\theta_c)^2$
 - from charged lepton sector:
 - through GUT relations
 - from neutrino sector:
 - higher order contributions in superpotential
- Modifying the Neutrino sector: Different symmetry breaking patterns
 - TBM: misalignment of M.-C.C, J. Huang, J. O'Bryan, A. Wijangco, F. Yu, (2012)
 - A4 \rightarrow G_{TST2} and A4 \rightarrow G_T
 - A4: group of order $12 \Rightarrow$ many subgroups
 - systematic study of breaking into other A4 subgroups

"Large" Deviations from TBM in A₄

M.-C.C, J. Huang, J. O'Bryan, A. Wijangco, F. Yu, (2012)

• Different A4 breaking patterns:

"Large" Deviations from TBM in A₄

M.-C.C, J. Huang, J. O'Bryan, A. Wijangco, F. Yu, (2012)

• Correlation between Dirac CP phase and θ_{13} :

Another Example: A₅

P. Ballett, S. Pascoli, J. Turner (2015)

Correlations among different mixing parameters

G_e	θ_{12}	θ_{23}	$\sin \alpha_{ji}$	δ
\mathbb{Z}_3	$35.27^{\circ} + 10.13^{\circ} r^2$	45°	0	90°
				270°
\mathbb{Z}_5	$31.72^{\circ} + 8.85^{\circ} r^2$	$45^{\circ} \pm 25.04^{\circ} r$	0	0°
				180°
		45°	0	90°
				270°
$\mathbb{Z}_2 imes \mathbb{Z}_2$	$36.00^{\circ} - 34.78^{\circ} r^2$	$31.72^{\circ} + 55.76^{\circ} r$	0	0°
				180°
		$58.28^{\circ} - 55.76^{\circ} r$	0	0°
				180°

TABLE I. Numerical predictions for the correlations found in this paper. The dimensionless parameter $r \equiv \sqrt{2} \sin \theta_{13}$ is constrained by global data to lie in the interval $0.19 \leq r \leq$ 0.22 at 3σ . The predictions for θ_{12} and θ_{23} shown here ne-

Corrections to Kinetic Terms

- Corrections to the kinetic terms induced by family symmetry breaking generically are
 present, should be properly included
 Leurer, Nir, Seiberg (1993); Dudas, Pokorski, Savoy (1995); Dreiner, Thomeier (2003)
 - · can be along different directions than RG corrections
 - dominate over RG corrections (no loop suppression, copious heavy states)
 - only subdominant for quark flavor models
 - sizable for neutrino mass models based on discrete family symmetries, e.g. A₄
 - Contributions from Flavon VEVs (1,0,0) and (1,1,1) M.-C.C, M. Fallbacher, M. Ratz, C. Staudt (2012)
 - five independent "basis" matrices

$$P_{\rm I} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad P_{\rm II} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad P_{\rm III} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad P_{\rm IV} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \quad P_{\rm V} = \begin{pmatrix} 0 & i & -i \\ -i & 0 & i \\ i & -i & 0 \end{pmatrix}$$

- RG correction: essentially along $P_{III} = diag(0,0,1)$ direction due to y_{τ} dominance
- kinetic term corrections can be along different directions than RG: $P_I P_V$
 - nontrivial flavor structure can be induced
 - non-zero CP phase can be induced

An Example: Enhanced θ_{13} in A₄

8 Corresponding Change in θ_{12} M.-C.C., M. Fallbacher, M. Ratz, C. Staudt (2012) -1.40.4 0.3 Correction to TBM $\Delta heta_{12}$ [°] prediction of $\theta_{12} = 35.3^{\circ}$ 0.2 0.1 $\kappa_{\rm V} v^2 / \Lambda^2 = (0.2)^2$ 0.0 0.06 0.02 0.04 0.08 0.10 0.00 $m_1 \, [eV]$

Origin of CP Violation

CP violation ⇔ complex mass matrices

 $\overline{U}_{R,i}(M_u)_{ij}Q_{L,j} + \overline{Q}_{L,j}(M_u^{\dagger})_{ji}U_{R,i} \xrightarrow{\mathfrak{CP}} \overline{Q}_{L,j}(M_u)_{ij}U_{R,i} + \overline{U}_{R,i}(M_u)_{ij}^*Q_{L,j}$

- Conventionally, CPV arises in two ways:
 - Explicit CP violation: complex Yukawa coupling constants Y
 - Spontaneous CP violation: complex scalar VEVs <h>
- Complex CG coefficients in certain discrete groups ⇒ explicit CP violation
 - CPV in quark and lepton sectors purely from complex CG coefficients

CG coefficients in non-Abelian discrete symmetries relative strengths and phases in entries of Yukawa matrices mixing angles and phases (and mass hierarchy)

Υ

 $\langle h \rangle$

 e_L

Group Theoretical Origin of CP Violation

M.-C.C., K.T. Mahanthappa Phys. Lett. B681, 444 (2009)

b

u has to be a class-inverting (involutory) automorphism of

Dirac Neutrinos and SUSY Breaking

- Simultaneous realization of these two scenarios can arise in MSSM with discrete R symmetries, Z^R_M
 M.-C. C., M. Ratz, C. Staudt, P. Vaudrevange (2012)
 - neutrinos are of the Dirac type, with naturally small masses
 - $\Delta L = 2$ operators forbidden to all orders \Rightarrow no neutrinoless double beta decay
 - New signature: lepton number violation ΔL = 4 operators, (v_R)⁴, allowed ⇒ new M.-C. C., M. Ratz, C. Staudt, P. Vaudrevange (2012)
 LNV processes, e.g.
 - neutrinoless quadruple beta decay Heeck, Rodejohann (2013)

- mu term is naturally small, simultaneously
- dangerous proton decay operators forbidden/suppressed
- may simultaneously explain the flavor structure with discrete generation dependent R symmetries (even with non-Abelian!) M.-C.C., M. Ratz, A. Trautner (2013)
- Dynamical generation of RPV operators with size predicted, different processes correlated M.-C.C., M. Ratz, V. Takhistov (2014)

Summary

- Fundamental origin of fermion mass hierarchy and flavor mixing still not known
- Neutrino masses: evidence of physics beyond the SM
- Symmetries: can provide an understanding of the pattern of fermion masses and mixing
 - Grand unified symmetry + discrete family symmetry \Rightarrow predictive power
 - Symmetries lead to testable predictions:
 - interesting leading order sum rules between quark & lepton mixing parameters
 - lepton flavor violating charged lepton decays
 - proton (nucleon) decay, neutron-antineutron oscillation
 - · corrections to kinetic terms need to be properly included
- Discrete Groups (of Type I) affords a Novel origin of CP violation:
 - Complex CGs \Rightarrow Group Theoretical Origin of CP Violation
 - as a R-symmetry: Dirac neutrino + solving problems in MSSM