

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Experimental Overview of Precision Muon Physics and EDMs

- Brendan Kiburg
- Fermi National Accelerator Laboratory
- NuFact 2015, Rio de Janeiro, Brazil
- August 12, 2015

TWIS

Precision Muon Physics: Why Muons?

We have studied the muon since its discovery 80 years ago

Exceptionally Useful Probe	
Heavy, 2 nd Generation Particle	$m_{\mu} pprox 207 \cdot m_e$
High Sensitivity to New Physics	$\propto (m_\mu/m_e)^2$
Produced and Decay via Weak Int	
V-A structure in pion decay	$\nu \leftrightarrow \pi^+ \leftrightarrow \mu^+$
Muon Decay	$\mu ightarrow e u u$
Can produce hydrogen-like atoms	$\mu^- p, \ \mu^+ e^-, \ \mu^- \mu^+$
Muon lifetime is "just right" 2.2 μ s	$10^{-9} s << \tau_{\mu} << 1 s$

Precision Muon Physics: Why Muons?

• We have studied the muon since its discovery 80 years ago

Exceptionally Useful Probe					
Heavy, 2 nd Generation Particle	$m_{\mu} pprox 207 \cdot m_e$				
High Sensitivity to New Physics	$\propto (m_\mu/m_e)^2$				
Produced and Decay via Weak Int					
V-A structure in pion decay	$\nu \longleftrightarrow \pi^+ \longleftrightarrow \mu^+$				
Muon Decay	$\mu ightarrow e u u$				
Can produce hydrogen-like atoms	$\mu^- p , \ \mu^+ e^- , \ \mu^- \mu^+$				
Muon lifetime is "just right" 2.2 μ s	$10^{-9} s << \tau_{\mu} << 1 s$				
Much easier to detect than $\boldsymbol{\nu}$	$P(\text{detection}) \approx 1$				

Global Precision Muon Physics Experiments

Precision Muon Physics to Establish the SM

- SM Electroweak Physics involves three parameters
 - Two gauge coupling constants: g, g'
 - Higgs vacuum expectation value: v
- Values fixed experimentally via precise determination of:
 - Fine structure constant α , known to 32 ppb
 - Z boson mass, known to 23 ppm
 - Fermi Coupling constant, G_F, known to 9 ppm (Giovanetti, 1984)

The Muon Lifetime: An Important Input to MuCap

1. Form Muonic Hydrogen Atom in an ultra-pure protium TPC

2. Use Similar Technique: Measure μ^{-} disappearance rate

3. Compare μ^- disappearance (via $\mu \rightarrow evv$) to μ^+ lifetime

4. Extract very different physics

MuCap: Extracting the proton's pseduoscalar coupling, g_P

1

$$\mu^- + p \rightarrow n + \nu_\mu$$

 $M_{fi} = \frac{G_F V_{ud}}{\sqrt{2}} L_\alpha J^\alpha$

$$L_{\alpha} = \bar{u}_{\nu} \gamma_{\alpha} \left(1 - \gamma_5 \right) u_{\mu}$$

$$\bar{u}_{n}\left(\underbrace{g_{V}\gamma^{\alpha} + \frac{ig_{M}}{2m_{N}}\sigma^{\alpha\nu}q_{\nu} + \frac{g_{S}}{m_{\mu}}q^{\alpha}}_{V^{\alpha}} - \underbrace{g_{A}\gamma^{\alpha}\gamma_{5} - \underbrace{g_{P}}_{m_{\mu}}q^{\alpha}\gamma_{5} - \frac{ig_{T}}{2m_{N}}\sigma^{\alpha\nu}q_{\nu}\gamma_{5}}_{A^{\alpha}}\right)u_{p}$$

g_P(Chiral Pert. theory) = 8.26 ± 0.23

g_P(MuCap) = 8.14 ± 0.55

Verified important ChPT prediction

Talk by BK, WG4 Wed AM

Sensitive to the nuclear environment

MuSun : Similar Technique, Different Physics Goal

Simplest process on compound nucleus

Clean channel to determine Low Energy Constant in Effective Field Theories

This LEC directly relates to astrophysical and neutrino scattering processes

Aug 12, 2015

🛟 Fermilab

MuSun : Similar Technique, Different Physics Goal

- Replace MuCap Protium TPC with MuSun Deuterium TPC
- Novel, compact Cryogenic TPC (30K) with ultra-pure Deuterium

Completed run at PSI Aug 2nd \rightarrow Most of production data in hand **\clubsuit Fermilab**

AlCap – Muon Capture on Aluminum

- Studies Particle emission in muon capture on Aluminum
 - Major source of single hit rate in trackers for mu2e and COMET

- Data Runs
 - 2013: Charged particle emission (CPE)
 - June 2015: Neutrals
 - Nov 2015: CPE w/ upgrades to DAQ, energy range

Preliminary estimate of $(3.5 \pm 0.2)\%$ CPE per muon capture

See updated results in AICap talk by B. Krikler, WG4 Wed AM

MUSEUM @ JPARC

13/29 Kiburg Fermilab NuFact 2015

Proton Radius Puzzle

Muonic Hydrogen $m_{\mu} \approx 207 \cdot m_e$ $r_{\mu} \approx 1/207 \cdot r_e$

 $\mu^{-1} (r_{\mu}/r_{e})^{3} \approx (1/207)^{3} \approx 10^{-7}$

Aug 12, 2015

🚰 Fermilab

- Muons probe the proton significantly deeper than $\rm r_{\rm e}$
- Improve precision of the proton charge radius

Muonic Hydrogen Lamb Shift Technique

- 1. Form Muonic Hydrogen
- 2. About 1% of muons cascade to meta-stable 2S state
- 3. Use laser to induce 2S-2P
- Measure 1.9 keV x-ray in 2P-1S transition

🛟 Fermilab

Muonic Hydrogen Lamb Shift Differs from Electronic Experiments

 $\begin{array}{ll} \mu {\rm p} & r_p = 0.8409(4) {\rm fm} \\ {\rm CODATA} & r_p = 0.8775(51) ~{\rm fm} \\ {\rm e-p ~scat} & r_p = 0.8790(80) ~{\rm fm} \end{array}$

7σ discrepency !

- Hard to build
- Easy to interpret
- µd Lamb shift confirms observation
- Next Steps
 - μp scattering (MUSE)
 - μHe Lamb shift
 - Repeat atomic hydrogen Spectroscopy

Hints and Big Questions

- Proton Radius Puzzle
 - A true puzzle since 2010 ; not predicted by models
 - Explanation: Error or something Profound
 - Perhaps a Question we haven't formed properly yet
- Big Questions
 - What are the properties of the yet-unseen particles?
 - Where does the baryon asymmetry come from?
- If LHC doesn't see New Physics, where do we look next?
 - CLFV See Next Talk
 - EDMs
 - Muon g-2
- If LHC sees New Physics, where do we look to understand the NP nature?

🚰 Fermilab

Aug 12, 2015

- Same: CLFV, EDMs, Muon g-2

Baryon Asymmetry of Universe

• Observed asymmetry:

$$\frac{n_B - n_{\bar{B}}}{n_\gamma} = 6 \times 10^{-10}$$

- Assuming asymmetry not present at the Big Bang, Existing CP-Violation insufficient to explain observation
 - CPV in kaon/B-meson systems in flavor-changing interactions
- Look in Neutrino Sector δ_{CP} , $P(\nu_{\mu} \rightarrow \nu_{e}) \neq P(\bar{\nu_{\mu}} \rightarrow \bar{\nu_{e}})$

EDM Basics

- Permanent Electric Dipole Moments are good candidates
 - T- & P-Violating \rightarrow CP-Violating (Assuming CPT)
 - Flavor-Conserving CPV
- Types of EDMs
 - Nucleon EDM (n,p)
 - Bare lepton (e, μ)
 - Paramagnetic Atoms/Molecules \rightarrow Electron EDM
 - Diamagnetic Atoms → Nuclear Shiff moment, nucleon edm, or nuclear-spin-dependent electron-nucleon interaction

Theory must interpret

🚰 Fermilab

- ANY detection of an EDM would be very significant
 - So far, experiments have set impressive limits

See talk by Paradisi, Thu AM Plenary

Ref: Theory: Engel, Musolf arXiv:1303.2371 Exp: Chupp, Musolf, arXiv:1407.1064

Aug 12, 2015

19/29 Kiburg Fermilab NuFact 2015

Typical EDM Technique

- 1. Set up constant magnetic field
- 2. Bring neutral particle into the field
- 3. Rotate particle so that it precesses about the B-field
- 4. Add Electric field Parallel to field (alternate aligned/anti-aligned)
- 5. A permanent intrinsic EDM will manifest as a difference in the Larmor precession frequencies

 $\omega(E\uparrow,E\downarrow)=2\mu B\pm 2dE$

 $\Delta \omega = 4dE$

🛟 Fermilab

6. Steps 6-100: Systematic variations of all of the knobs

Neutron EDM Efforts

nEDM @ PSI

- Started ~200 days neutron data to exceed ILL sensitivity 3x10⁻²⁶ e-cm in 2016
- Replacing/Upgrading key detector features for n2EDM
 - Mu-metal Shield
 - Double chamber setup (two E direction)
 - Magnetometers (improved ¹⁹⁹Hg, He-3)
- Start n2EDM data 2018-2019
- Goal: 3x10⁻²⁷ early 2020s
- Also: <u>SNS EDM</u> effort in critical component demonstration phase now, integration ~2018, data early 2020s as well

🛛 🛟 Fermilab

ThO electron EDM

ACME Experiment Gen 1

- Paramagnetic System
- Modest E_{applied}=10 V/cm
- Large E_{effective} = 80 GV/cm
- Experimental switches
 - N (ThO molecule dir.)
 - E applied
 - B applied
- Impressive new limit $|d_e| < 1 \times 10^{-28} \ e \cdot \mathrm{cm}$ (90 % CL)
- Models constrained

Atomic EDMs

First Radium 225 Measurement - ANL

- Octupole deformation → large Schiff moment
- Reports d_{Ra} < 4x10⁻²² e-cm
- Increase: Trap lifetime, E-field, radium production
- Goal: 4x10⁻²⁵ e-cm sensitivity

•Also: <u>199Hg</u> at Washington is the standard-bearer of atomic EDMs •Existing limit: $d_{\rm Hg} = 3.1 \times 10^{-29}$, $\tilde{d}_q = 6 \times 10^{-27}$ e-cm •Controlling Systematics \rightarrow x5 improvement in 2015

Aug 12, 2015

₹Fermilab

Experimental Summary of EDM bounds

24/29Kiburg Fermilab NuFact 2015

Muon g-2 : Motivation

25/29 Kiburg Fermilab NuFact 2015

G-2 + Muon EDM

Next-Generation Experiments

Fermilab (E989)

- High-rate 3.09 GeV/c muon beam
- Highly polarized (97%)
- 1.45 Tesla, 7-meter-radius storage ring

J-PARC (E34)

- Surface muon beam → muonium → 0.3 GeV/c muon beam
- Polarization ~ 50%
- 3 Tesla, 0.33-meter-radius storage ring

Talk by K. Lynch WG4 Tue AM

Talk by M. Otani WG4 Tue AM

Note: Also large Lattice QCD Effort to improve theory prediction for HVP, HLBL

Aug 12, 2015

🛠 Fermilab

Precise measurements of

- Precession frequency
- Magnetic Field

27/29 Kiburg Fermilab NuFact 2015

First Muon g-2 Field Maps

- First field measurements
- Shim Field to ~100 ppb
- We are starting now
- First results expected in 2017

Summary

Precision measurements using the well-established muon as a probe continue to validate critical Standard Model parameters and sometimes reveal Puzzles

A suite of EDM Searches and Precision Muon Physics will discover BSM Physics over the next decade or significantly constrain BSM models

Excellent Recent Reviews

- Precision Muon Physics
 - Kammel, Kubodera, *Precision Muon Capture*. Ann. Rev. Nucl. Part. Sci. 60 p.327-353 (2010).
 - Gorringe, Hertzog. *Precision Muon Physics.* Prog. Part. Nucl. Phys. 84 p.73-123 (2015).
- EDMs
 - Engel, Ramsey-Musolf, van Kolck, *Electric dipole moments of nucleons, nuclei, and atoms: The Standard Model and Beyond.* Prog. Part. Nucl. Phys. **71** p.21-74 (2013).
 - Chupp, Ramsey-Musolf, *Electric dipole moments: A global analysis.* Phys. Rev. C **91** 035502 (2015).

Additional Slides

31/29 Kiburg Fermilab NuFact 2015

Slide: P. Winter Jul 2013

Muon beams						
	Laboratory/ Beam line	Energy/ Power	Present Surface μ^+ rate (Hz)	Future estimated μ^+/μ^- rate (Hz)		
PAUL SCHERRER INSTITUT	PSI (CH) LEMS $\pi E5$ HiMB	(590 MeV, 1.3 MW, DC) (590 MeV, 1 MW, DC)	$4\cdot 10^8$ $1.6\cdot 10^8$	$4\cdot 10^{10}(\mu^+)$		
J-PARE	J-PARC (JP) MUSE D-line MUSE U-line COMET PRIME/PRISM	(3 GeV, 1 MW, Pulsed) currently 210 KW " (8 GeV, 56 kW, Pulsed) (8 GeV, 300 kW, Pulsed)	3 · 10 ⁷	$2 \cdot 10^8 (\mu^+) (2012) \ 10^{11} (\mu^-) (2019/20) \ 10^{11-12} (\mu^-) (> 2020)$		
Fermilab	FNAL (USA) Mu2e Project X Mu2e	(8 GeV, 25 kW, Pulsed) (3 GeV, 750 kW, Pulsed)		$5\cdot 10^{10}(\mu^-)~(2019/20)\ 2\cdot 10^{12}(\mu^-)~(>2022)$		
TRIUMF	TRIUMF (CA) M20	(500 MeV, 75 kW, DC)	$2 \cdot 10^6$			
	KEK (JP) Dai Omega	(500 MeV, 2.5 kW, Pulsed)	$4\cdot 10^5$			
	RAL -ISIS (UK) RIKEN-RAL	(800 MeV, 160 kW, Pulsed)	$1.5\cdot 10^6$			
Million Science Browaltyr Commission	RCNP Osaka Univ. (JP) MUSIC	(400 MeV, 400 W, Pulsed) currently max 4W		$10^8(\mu^+)$ (2012) means > 10 ¹¹ per MW		
	DUBNA (RU) Phasatron Ch:I-III	(660 MeV, 1.65 kW, Pulsed)	$3\cdot 10^4$			
				🕻 🛟 Fermilab		

Slide: P. Winter Jul 2013

Experiment	Beam	Momentum	Rates [1/ s]	Beamline
TWIST	μ^+	29.8 MeV/c	<5 * 10 ³	TRIUMF
Muon lamb shift	π⁻ μ⁻	100 MeV/c ~1 MeV/c	~10 ⁸ ~2.5 * 10 ²	πE5 @ PSI
MuLan	μ^+	29.8 MeV/c	8 * 10 ⁶	πE3 @ PSI
MuCap / MuSun	μ ⁻	34 MeV/c	1 * 10 ⁵	πE3 @ PSI
MEG	μ^+	29.8 MeV/c	3 * 10 ⁷	πE5 @ PSI
MEG upgrade	μ^+	29.8 MeV/c	7 * 10 ⁷	πE5 @ PSI
μ⁺ -> e⁺e⁻e⁺ (Ph. I)	μ^+	29.8 MeV/c	<1 * 10 ⁸	πE5 @ PSI
μ⁺ -> e⁺e⁻e⁺ (Ph. II)	μ+	29.8 MeV/c	2 * 10 ⁹	HIMB @ PSI
Mu2e	μ	~40 MeV/c	10 ¹⁰	FNAL

33

Aug 12, 2015

‡Fermilab

Muon g-2: The path forward Slide: B. Kiburg May 2015

		Uncertainty Source	Status 2015 [ppb]	Projected after E989 [ppb]	Goal for lattice QCD [ppb]
Muon precessior	י 🌙	ω_a	180	70	
Proton precessio	n >	ω_p	170	70	
v ≷ Hadron		Statistical	460	100	
loop		Total Exp.	540	140	
H Y Y		Had. Vac. Pol.	360	215 *	100**
ž		Had LBL	225	225	100
γş		Total Theory	420	310	140
γ ξ ξ ξ	* Projected err ** Several lattic	or anticipating ce QCD efforts	input fron underway	n e+/e- BES III, / for g-2 HVP, r	VEPP2000,etc. lovel approaches
μμ		J~···			🗕 🗲 Fermilal

Slide: S. Kanda Nov 2014

35/29 Kiburg Fermilab NuFact 2015

Slide: S. Kanda Nov 2014

Detectors for the MuSEUM

Downstream positron counter

- Spectrometer for HFS measurement
- Segmented scintillator+SiPM
- High rate capability is required

Online beam profile monitor

Offline beam profile monitor

 Fiber hodoscope for beam stability monitoring

10

 Pulse by pulse measurement of profile and intensity

Upstream positron counter

- Spectrometer for HFS measurement
- Additional counter for

2014.11.21 at J-PARC

asymmetry measurement

- IIF+CCD beam imager for muon stopping distribution
- Measurement for syst. uncertainty suppression

nilab

Kiburg Fermilab NuFact 2015

Aug 12, 2015

36/29

	Topic	2009	2012	2015 ★	2018 ★	2021 ★	2024	2027	
	MEG-I		\mathbf{X}	\star					
	MEG-II				$\mathbf{\mathbf{x}}$	\bigstar)
	Mu2e						☆ 💻		
	COMET-I				\mathbf{x}				
	COMET-II						☆ 📃		
	G-2 E989				\mathbf{x}	\bigstar			
	HVP e+/e-			\bigstar	\mathbf{x}				
	HLbL				$\overrightarrow{\mathbf{x}}$				
	SNS nEDM						$ \rightarrow $		
	nEDM PSI			\bigstar					
	e EDM ThO								
	EDM Ra,Hg			$\star \star$					
	Pienu		\bigstar	. ★					
	Na62			$\mathbf{\mathbf{x}}$	\mathbf{x}				
1	MuSun				\bigstar				
	³⁷ AlCap			📩 🕁					

Our group's program: An Evolution of Precision

Time

