Charged-Current Inclusive Cross Sections from MiniBooNE

M. Tzanov *Louisiana State University*

Nulnt Workshop, Rio De Janeiro, Brazil October 22-27, 2012

MiniBooNE v Cross Section Measurements

MiniBooNE v Cross Section Measurements

NC EL

Published measurements: ~95% CC - exclusive channels (CCQE, CCπ⁺, CCπ⁰) ~80% NC - exclusive (NCE, NCπ⁰)

PI PI

MiniBooNE Predicted Flux

- ~1,000,000 interactions in fiducial volume in v mode with small anti-v component.
- greater than 150k interactions in fiducial
 volume in anti-v mode with 30% v component.
- Largest sample neutrino and anti-neutrino interactions in the ~1GeV region to date.

A.A. Aguilar-Arevalo et al., PRD 79, 072002 (2009)

The MiniBooNE Detector

A. A. Aguilar-Arevalo et al., NIM A599, 28 (2009)

 541 meters downstream 3 meter overburden 12 meter diameter sphere (10 meter "fiducial" volu Filled with 800 t of pure mineral oil (CH (Fiducial volume: 450 t 1280 inner phototubes, 240 veto phototubes

CC Inclusive Events

It's important to have a full suite of cross section measurements from one experiment – same flux systematics.

Can't we just add CCQE, $CC\pi^+$ and $CC\pi^0$?

- Yes, we can add the cross sections, but we'll be adding the systematics as well.
- Complicated model dependent correlations each of the exclusive channels is a background for the others through FSI model.
- CC events like pion absorption in the oil are not included in any of these samples.

CC Inclusive Sample in MiniBooNE

Selection criteria:

- Events are tagged by at least one Michel electron,
- Veto and Containment Maximum of five VETO hits in all subevents,
- Minimum PMT hits in the first subevent to remove beam unrelated backgrounds.
- Fiducial Volume Reconstructed vertex within 5m radius.

Event rates at the generator level: CCQE - 52%; $CC\pi^+ - 34\%$; $CC\pi^0 - 5\%$; Other CC - 3%; NC - 3%; antineutrino - 1%.

FSI's change the fractions of different event topologies.

Data events after cuts 344k. 96% purity.

CC Inclusive Event Reconstruction

New event reconstruction for MiniBooNE

Muon kinematics from 2-track likelihood fit:

Second ring of the fit absorbs the bias due to second most prominent ring.

 Neutrino energy – MiniBooNE detector as calorimeter.

Small scintillation light component produces late hits in the event. The charge of the late hits is used as a measure of the neutrino energy.

Fully reconstruct the lepton vertex – no assumptions for the target!!!

Plots are from MC.

Event Reconstruction

- A particle is parametrized as a "track" in the oil.
 - Vertex: (x,y,z)
 - Time: (t)
 - Direction: (θ,φ)
 - Kinetic energy: (E)
- At each point of the track scintillation and Čerenkov light is produced. This depends on the type of particle.
- This light propagates through the mineral oil to the PMTs.

R.B. Patterson et al., Nucl. Instrum. Meth. A608, 206 (2009)

Muon Kinematics Reconstruction Performance

2-track fit improves significantly reconstruction of the T_{μ} muon kinetic energy compared to one track fit. Muon kinetic energy resolution is about 5%.

No significant improvement for the muon angle. Muon angle resolution is better than 1°.

CCQE

 $CC\pi+$

Plots are from MC.

Neutrino Energy Reconstruction Performance

Neutrino energy reconstruction is obtained from the late light charge which is linearly correlated with the true neutrino energy.

The parameters of the reconstruction come from a linear fit to both CCQE and $CC\pi^+$ enhanced samples. the slope parameter is the same in both cases while the Intercept is different.

Energy reconstruction resolution is about 18%.

CCQE

Plots are from MC.

Neutrino Energy– Data Calibration

- So far pure MC detector response was never tuned for this regime.
- Compare CC Inclusive reconstruction to CCQE and CCπ⁺ reconstructions (need to have the same underlying distribution) – reweight MC to the measured CCπ⁺ cross section.
- Event-by-event comparison between CC Inclusive and the other reconstructions.

 Compare the differences between the reconstructions in data and MC – a way to calibrate.

MiniBooNE CC Inclusive Cross Sections

- Data rate is higher than predicted as suggested by the exclusive channels.
- Largest neutrino sample in this region to date - 344000 CC inclusive interactions after cuts.
- 4π detector geometry full coverage of phase space.

MiniBooNE CC Inclusive Cross Sections

- Complete suite of CC inclusive cross sections.
- Full reconstruction of the lepton vertex without any assumptions for the target!!!
- No dependence on FSI*.
- MB will measure $\sigma(E_{\nu})$, $d\sigma/dT_{\mu}(E_{\nu})$, $d\sigma/dcos\theta_{\mu}(E_{\nu})$, $d\sigma/dQ^{2}(E_{\nu})$, flux integrated $d^{2}\sigma/dT_{\mu}dcos\theta_{\mu}$, $d^{2}\sigma/dT_{\mu}dcos\theta_{\mu}$ (E_{ν}).

Neutrino Cross Sections Extraction Technique

$$\sigma(E_{\nu})_{i} = \frac{\sum_{j}^{bins} U_{ij} \left(N_{j} - B_{j} \right)}{\varepsilon_{i} \Phi_{i} N_{targs}}$$

- σ_i cross section in energy bin *i*,
- E_{v} neutrino energy,
- U_{ij} unfolding matrix,
- N_i measured rate in energy bin *i*,
- B_{i} measured/predicted background rate in bin *i*,
- $\dot{\Phi}_i$ integrated flux in energy bin *i*,
- ε_i efficiency in energy bin *i*,
- N_{targs} number of targets.

Unfolding

Unfolding is used to correct for detector effects (smearing and mis-reconstruction).

 bin migration matrix inversion is unbiased, but it's unstable and it leads to a large statistical uncertainty.

Bayesian unfolding:

$$U_{ij} = P\left(t_i \mid r_j\right) = \frac{P\left(r_j \mid t_i\right) P\left(t_i\right)}{\Sigma P\left(r_j \mid t_n\right) P\left(t_n\right)}$$

- small statistical uncertainty,
- small bias is the price.

Observable Cross Sections

$$\sigma(E_{\nu})_{i} = \frac{\sum_{j}^{bins} U_{ij} \left(N_{j} - B_{j} \right)}{\varepsilon_{i} \Phi_{i} N_{targs}}$$

- nuclear target re-interactions in the nucleus.
- different primary neutrino interactions become indistinguishable experimentally.
- Final State Interactions (FSI) model is needed to extract nucleon cross section large uncertainties.
- MiniBooNE measures observable cross sections. $CC\pi^+$ observable signal include all events with a μ^- and a π^+ emerging from the nucleus.

MiniBooNE CC Inclusive Cross Sections In Muon Kinematics

- Top plot shows the flux integrated double differential cross section in muon kinematics d²σ/dT_udcosθ_u.
- Bottom plot shows the ratio with the model (NUANCE).

In the model: Fermi gas model (Smith-Moniz), $M_A^{QE} = 1.23 \text{ GeV},$ $\kappa=1.019,$ Rein-Seghal M_A^{res} .

 \bullet

Double Differential Teaser

- The goal is to obtain $d^2\sigma/dT_{\mu}dcos\theta_{\mu}$ (E_v).
- Reconstruction of the lepton vertex allows direct access to nuclear effects. (Similar to charged lepton scattering). Spectral function from neutrino scattering.
- CCQE and CCRes are separated
 from muon phase space. MEC in
 the "valley" between.

 Perhaps a new golden mode for neutrino oscillation experiments. (Not as easy as it sounds).

MiniBooNE CC Inclusive Total Cross Section In Neutrino Energy

- Error bars show diagonal errors.
- Bottom right plot shows fractional diagonal errors.
- Bottom left plot shows the bin-to-bin correlation matrix.

MiniBooNE CC Inclusive Total Cross Section In Neutrino Energy

SciBooNE CC Inclusive paper - Phys. Rev. D 83, 012005 (2011)

Summary and Future

New cross section results are coming soon!!!

Neutrino CC inclusive cross sections:

- the largest neutrino sample,
- the most comprehensive measurement,
- lepton vertex is completely reconstructed,
- 4π detector entire phase space.

More cross section results from MiniBooNE are on the way:

- antineutrino QE (Joe Grange) see Joe's talk,
- antineutrino NC elastic (Ranjan Dharmapalan) see Joe's talk,
- muon + proton (Athula Wickremasinghe).

Backups

Čerenkov radiation

- Speed of light in mineral oil is 20 cm/ns.
- Threshold is KE > 0.3 mass.
- The angle of the cone is related to the velocity.
- As the particle slows down, the angle gets narrower and the intensity reduces.

cos

Track Topologies in MiniBooNE Detector

In order to extract a cross section we need to reconstruct the final state particles.

Muon event

• long track, small scattering

Electron/photon event – fuzzy ring

- short track, large scattering
- γ converts and looks like electrons

 π^0 event – two fuzzy rings

 4π geometry – excellent π^0 detector

MiniBooNE Experiment – E898 at Fermilab

Test of LSND within the context of $v_{\mu} \rightarrow v_{e}$ appearance only is an essential first step:

- Keep the same L/E
- Higher energy and longer baseline E=0.5 1 GeV; L=500m
- Different beam
- Different oscillation signature $v_{\mu} \rightarrow v_{e}$
- Different systematics
- Antineutrino-capable beam

Flux - π^+ **Production from HARP**

HARP (CERN) measured the π^+ production cross section

- 5% λ Beryllium target
- 8.9 GeV proton beam momentum

 π^+ production cross section is parameterized from a fit to HARP π^+ production cross section, using the standard Sanford-Wang parameterization

Covers 80% of the pion phase space relevant for MB. Pion production uncertainty is 7%.

Makes cross section measurements possible.

M. Catanesi et al., Eur. Phys. J. C52, 29 (2007)

Neutrino Energy Reconstruction Performance CCQE CCπ+

Neutrino energy reconstruction is obtained from the late light charge which is linearly correlated with the true neutrino energy.

The parameters of the reconstruction come from a linear fit to both CCQE and $CC\pi^+$ enhanced samples. the slope parameter is the same in both cases while the Intercept is different.

Energy reconstruction resolution is about 18%.

Plots are from MC.