Charged Current Pion Production Results From T2K

(For the T2K Collaboration) NuInt 2012 24/10/12

Overview

- Models and ND280
- Motivation
- **Current** π -production selection
- Selection performance and MC results
- Future plans and next steps

π -Production Models

- Use NEUT and GENIE neutrino interaction generators
 - Rein-Seghal model
 - Relativistic Fermi Gas
- Cross-section parameters
 - Axial Mass, Vector Mass
- Final state interactions
 - NEUT cascade model
 - ► GENIE INTRNUKE/hA

Generator parameters from fit to MiniBooNE data

Parameter	E _, Range	Nominal	Error
M_A^QE	all	1.21 GeV/c ²	0.45
M_A^RES	all	1.16 GeV/c ²	0.11
$CC1\pi$ Norm	0 <ev<2.5< td=""><td>1.63</td><td>0.43</td></ev<2.5<>	1.63	0.43

T2K

- Long baseline neutrino oscillation experiment
- Near detector ND280
 - Good potential for crosssection measurement
 - High final state resolution
- Narrow peaked flux
 - Maximum ~600 MeV
 - Large high energy tail
- Well known flux

ND280

Monte Carlo

Why Measure π -Production at ND280

- Background to CCQE measurements
 - $\triangleright \pi$ absorption
- Selection needed for oscillation analysis
 - Dominant background around oscillation maxima
 - Energy misreconstruction
- Also background to other cross-section measurements

Why Measure π -Production at ND280

σ(E_) (cm²)

TPC

FGD

TPC

Measure pion production cross-sections

Carbon (FGD1 target)

- Oxygen 'subtraction' measurement ('FGD2 – FDG1' target)
- Similar peak energy as MiniBooNE

Compare results

Unprecedented final state resolution
Sensitive to all final state particles

tracks

TPC

FGD

CC-Inclusive Selection

- Already have Charged Current (CC)-Inclusive Cross-Section Measurement
- Highest momentum negative track
 - Assume it is μ if TPC dE/dx consistent with μ
 - Must start in FGD & be forward going
 - Vertex taken as track start point
 - Any other tracks must not start more than 150mm upstream of vertex (TPC1 veto)

More details:

- See A. Weber's talk on 22nd CC-Inclusive
- See D. Ruterbories' talk on 25^{th–} CCQE and NCQE

CCQE and CCnQE

CCQE (quasi elastic) subset

Only 1 FGD-TPC track

No Michel electron signature in FGD1

CCnQE (non quasi elastic) sub set

All else

	Efficiency	Purity
CCQE	40%	72%
CCnQE	50%	88%

Effect of CC-Inclusive Measurement

- Fit to QE and nQE samples to tune parameters
 - Vary parameters, fit response in p_{μ} and θ_{μ}
 - Reduction in oscillation errors
- ► Introduce $CC1\pi$ sample
 - Potential to increase performance
 - \blacktriangleright M_A^{RES}, CC1 π norm, etc

Parameters used for oscillation fit

Preliminary	Prior Value and Uncertainty	Fitted Value and Uncertainty
M _A ^{QE} (GeV)	1.21 ± 0.45	1.19 ± 0.19
M _A ^{RES} (GeV)	1.162 ± 0.110	1.137 ± 0.095
CCQE Norm. 0-1.5 GeV	1.000 ± 0.110	0.941 ± 0.087
CC1π Norm. 0-2.5 GeV	1.63 ± 0.43	1.67 ± 0.28
NC1π⁰ Norm.	1.19 ± 0.43	1.22 ± 0.40

Prior value and uncertainty from fit to MiniBooNE single pion samples

Dividing the Non-QE Selection

- Pion production events currently in the CCnQE selection
- Implement additional cuts to select pions in nQE
 - 1π[±] selection (both charges)
 - \triangleright N π^{\pm} selection
- ► ~4000 nQE data events
 - From 2.65x10²⁰ protons on target

π Selection

- Negative muon track & other tracks. FGD1
- Identify π^{\pm} 's
 - TPC dE/dx consistent with π hypothesis
- On going study
 - Use ECal to identify side going π
 - Track-like, & dE/dx

TPC dE/dx - positive particles

MC Study Results

Efficiency and purity being finalised

The Future: Short Term

- First analysis limited kinematic space accepted
- Working to extend accepted phase space
 - Main focus- low momentum & high angle
- Developing and validating improved reconstruction tools

- Michel Tagging, dE/dx
- Short range π
- Further investigation into ECal tools high angle region

Conclusions & Plans

▶ Progress towards $CC1\pi$ cross-section measurement at T2K

- Complement to MiniBooNE data at ~1GeV
- Measure exclusive final states
- First analysis near completion
 - First results coming soon
- Extract cross-section on carbon
 - Confront models with data
 - Compare to predictions
- Cross-section on oxygen (water target)
 - In development

Backup

mmurdoch@hep.ph.liv.ac.uk

NEUT Nuclear Cascade Model

Propagate π classically through nucleus in steps

- Probabilities for each interaction are calculated at each step
- Interaction type at step calculated using random number
- Nuclear density taken as Woods-Saxon potential
- Cascade ends when pion exits nucleus
 - Taken to be 2.5 nuclear radii (N_R)
 - Step size used = $N_R/100$

FSI Cross Sections

Comparison of Fluxes

Beam Monte Carlo Predicted v_{μ} Fluxes

MiniBooNE flux

Comparison to MiniBooNE

Pion Kinetic Energy (MeV)

Michel Electron Signature

Delayed energy deposit out of time with beam

ECal Track-Shower Discriminator

Track identifcation variable for e

Track identifcation variable for μ