Exclusive 1 μ+Np Topologies in ArgoNeuT

Kinga Partyka Yale University

Outline

- LArTPC technique
- Argon Neutrino Test (ArgoNeuT)
- Topological Analysis 1μ +Np

(rates only, cross-section calculations are in progress)

- Energy Reconstruction
- Conclusions

Pulse Height (ADC)

Event Display

Bubble chamber quality!

Pixel size of
 (4.0 x 0.3) mm²

4mm wire pitch

198 ns sampling time

ArgoNeuT Introduction

- NSF/DOE R&D project at Fermilab
- LArTPC (Liquid Argon Time Projection Chamber)
- 175L active volume
- 480 channels (240 wires/plane
- ~ Max 50cm drift-distance
- $\sim 500 \text{ V/cm E field}$
- two wire planes at 60⁰ to each other
- T₀ from beam information

"The ArgoNeuT detector in the NuMI low- energy beamline at Fermilab" JINST 7 P10019 (2012)

ArgoNeuT

- Located underground on NuMI Beamline between MINOS ND and MINERvA
- MINOS helps with reconstruction of muons

ArgoNeuT's Physics Run

- ArgoNeuT completed its phase I physics run (9/14/2009-2/22/2010)
- Collected events in the 0.1 to 10 GeV range, ArgoNeuT produced the first ever data for low energy neutrino interactions within a LArTPC.
- Stable, shift-free operation
- Goals:
- Multiple neutrino cross sections
- demonstration of dE/dx particle separation capabilities
- Developing automated reconstruction techniques for all future LArTPCs

POT with MINOS present: anti-nu mode 1.20e20 nu-mode: 8.5e18

Outline

- LArTPC technique
- Argon Neutrino Test (ArgoNeuT)
- Topological Analysis 1μ +Np

(rates only, cross-section calculations are in progress)

- Energy Reconstruction
- Conclusions

Philosophy

LAr

don't have to be restricted to measuring "QE", "CC π^+ ", ... cross sections

• initial state σ 's (corrected back to initial state)

• final state σ 's (do not correct out FSI)

Instead: Topological Analysis • 1μ +Np where N=0,1,2... • 1μ + π +Np • etc.

Neutrino channel definitions are largely ill defined given the effects of FSI We want to report what our detector actually sees!

How is it done?

Automatic reconstruction+visual scanning

- Particle Identification
- Proton threshold
- Matching with MINOS Near Detector
- final scanned sample includes events with contained protons in fiducial volume

© Efficiency and Purity for different proton multiplicities evaluated using a full MC simulation (GENIE/Geant4/Larsoft)

- take proton containment into account

Sensitive Energy reconstruction with muon kinematics.

(Analysis including proton kinematics in progress)

$$E_{\nu} = \frac{2M_{N}E_{\mu} - m_{\mu}^{2}}{2(M_{N} - E_{\mu} + p_{\mu}\cos\theta_{\mu})}$$

Topology appearance

Example of Low energy proton reconstruction

proton threshold is 21 MeV of Kinetic Energy

Calorimetry Example

Muon Reconstruction

muon kinematics: ArgoNeuT 3D, ArgoNeuT calorimetric reconstruction + MINOS ND measurement (momentum and sign)

Data Analysis still in progress Preliminary Results!

Note: Flux in anti-neutrino needs to be studied (no uncertainties included) MC used for comparison with data: GENIE v3665 Analysis has been focused on lower multiplicity proton events! (No optimization for higher multiplicities at the moment) More in depth studies of background effects are ongoing and will be finalized soon

ν_{μ} - neutrino mode run

Multiplicity	Genie Expectation *	Genie % of Total	DATA**	DATA % of Total	No of expected 1mu+np events in FV
0p+1mu	28±4	16%	15±3	14%	\$10 80 1 All flavors/interactions 70 NC/WS
1p+1mu	80±7	47%	51±10	48%	$60 - \frac{\nabla_{\mu} CCQE}{\nabla_{\mu} CCRES}$
2p+1mu	23±4	13.4%	28±6	26%	40
3p+1mu	14±3	8.3%	13±3	12%	
4p+1mu	8±2	4.5%	0	0	
TOTAL (including >4p)	172±10	-	107±12	-	# of protons

Data 38% lower

$\overline{ u}_{\mu}$ - an	ti-neu	trino m	ode		μ ⁻ /μ ⁺ (DATA)=0.36 μ ⁻ /μ ⁺ (MC)=0.36
Multiplicity	Genie	Genie % of Total	DATA	DATA % of Total	
0p+1mu	553±11	60%	422±42	58%	
1p+1mu	160±6	17%	266±53	37%	
2p+1mu	68±4	7%	30±6	4%	data 21% lower
3p+1mu	50±3	5%	3±1	0.4%	
4p+1mu	32±3	19/	3±1	0.4%	
TOTAL (including >4p)	925±15	-	727±68	-	
$ u_{\mu}$ - an	ti-neu	trino m	ode ru	In	
Multiplicity	Comio	Genie % of		DATA % of	

Multiplicity	Genie	Genie % of Total	DATA	DATA % of Total	
0p+1mu	46±3	14%	60±12	23%	
1p+1mu	163±6	48%	154±31	59%	
2p+1mu	46±3	13.6%	33±7	13%	data 23% lower
3p+1mu	23±2	7%	9±2	3.5%	
4p+1mu	16±2	5%	4±1	1.5%	
TOTAL (including >4p)	337±9	-	260±34	-	

$\overline{ u}_{\mu}$ - an	ti-neu	trino m	μ ⁻ /μ ⁺ (DAIA)=0.36 μ ⁻ /μ ⁺ (MC)=0.36		
Multiplicity	Genie	Genie % of Total	DATA	DATA % of Total	
0p+1mu	553±11	60%	422±42	58%	\leftarrow this is closest to MINERvA \overline{v} QE selection
1p+1mu	160±6	17%	266±53	37%	(μ^+ and no vertex activity)
2p+1mu	68±4	7%	30±6	4%	
3p+1mu	50±3	5%	3±1	0.4%	
4p+1mu	32±3	4%	3±1	0.4%	
TOTAL (including >4p)	925±15	-	727±68	-	this is closest to MiniBooNE selection (muon and any # nucleons)
$ u_{\mu}$ - an	ti-neu ⁻	trino m	ode ru	in	
Multiplicity	Genie	Genie % of Total	DATA	DATA % of Total	
0p+1mu	46±3	14%	60±12	23%	this is closest to NOMAD
1p+1mu	163±6	48%	154±31	59%	and SciBooNE selection
2p+1mu	46±3	13.6%	33±7	13%	(1+2 track QE)
3p+1mu	23±2	7%	9±2	3.5%	
4p+1mu	16±2	5%	4±1	1.5%	
TOTAL	227+0		2(0) 24		this is closest to MiniBooNE selection

 260 ± 34

337±9

(including >4p)

-

(muon and any # nucleons)

$\overline{\nu}_{\mu}$ - anti-neutrino mode

Multiplicity Genie		Genie % of Total	DATA	DATA % of Total
0p+1mu	553±11	60%	422±42	58%
1p+1mu	160±6	17%	266±53	37%
2p+1mu	68±4	7%	30±6	4%
3p+1mu	50±3	5%	3±1	0.4%
4p+1mu	32±3	4%	3±1	^{0.4%} FC
TOTAL (including >4p)	925±15	_	727±68	-

For more discussion see O.Palamara's talk

v_{μ} - anti-neutrino mode run

Multiplicity	Genie	Genie % of Total	DATA	DATA % of Total
0p+1mu	46±3	14%	60±12	23%
1p+1mu	163±6	48%	154±31	59%
2p+1mu	46±3	13.6%	33±7	13%
3p+1mu	23±2	7%	9±2	3.5%
4p+1mu	16±2	5%	4±1	1.5%
TOTAL (including >4p)	337±9	_	260±34	_

Muon Momentum and Q^2

Neutrino Energy $\overline{\nu}_{\mu}$ - anti-neutrino mode run

$$E_{\nu} = \frac{2M_N E_{\mu} - m_{\mu}^2}{2(M_N - E_{\mu} + p_{\mu}\cos\theta_{\mu})}$$

Proton Multiplicities in Anti-nu mode:

Besides absolute normalization the shape is better reproduced for neutrinos

Neutrino Energy Reconstruction

$$E_{\nu} = \frac{2M_N E_{\mu} - m_{\mu}^2}{2(M_N - E_{\mu} + p_{\mu}\cos\theta_{\mu})}$$
$$p_h = \sqrt{(E_{\nu} - p_{\mu}\cos\theta_{\mu})^2 + p_{\mu}^2 \sin^2\theta_{\mu}}$$
$$\cos\theta_h = (E_{\nu} - p_{\mu}\cos\theta_{\mu})/p_h$$

$$\mu$$
 kinematics

automatic reconstruction

assumes QE events!

$$E_{\nu} = p_{\mu} \cos \theta_{\mu} + p_h \cos \theta_h$$

We can compare the two methods!

$$\mu$$
 + p kinematics

semi-automatic reconstruction

Reconstruction of $1\mu 1p$ events

Neutrino event reconstructed in 3D space

$\mu + p$ kinematicsReconstructed Neutrino Energy= 3.1 GeV μ kinematicsReconstructed Neutrino Energy= 3.0 GeV

Proton (ArgoNeuT reconstruction): track length= 10.88 cm, T=118 MeV, p=0.485 GeV/c

Conclusions and Next Steps

Solution ArgoNeuT collected first ever data for low energy neutrino interactions with a LArTPC.

Solution Performed preliminary topological analysis of 1μ +Np in terms of rates. Cross section calculations are in progress.

We need to be careful about what we call "QE" and how we compare these samples with other experiments.

Solution Section Secti

ArgoNeuT Collaboration

F. Cavanna

University of L'Aquila

A. Ereditato, S. Haug, B. Rossi, M. Weber

University of Bern

B. Baller, H. Greenlee, C. James, S. Pordes, G. Rameika, B. Rebel, T. Yang, G. Zeller

Fermi National Accelerator Laboratory

M. Antonello, O. Palamara

Gran Sasso National Laboratory

T. Bolton, S. Farooq, G. Horton-Smith, D. McKee

Kansas State University

C. Bromberg, D. Edmunds, P. Laurens, B. Page

Michigan State University

M. Soderberg*

Syracuse University

K. Lang, R. Mehdiyev

The University of Texas at Austin

E. Church, B. Fleming, R. Guenette, A. Patch, K. Partyka, J.Spitz, A. Szelc

Yale University

