Neutrino Oscillation Above a Black Hole Accretion Disk

Annie Malkus with Jim P. Kneller, Gail McLaughlin and Rebecca Surman Malkus et al, arxiv:1207.6648

Accretion Disks

- Produce many neutrinos
- Play a role in . . .
- Stellar Collapse
* Mergers
- Gamma Ray Bursts
- Nucleosynthesis (r-Process?)

Accretion Disks

- Produce many neutrinos
- Play a role in . . .
- Stellar Collapse
- Mergers
- Gamma Ray Bursts
- Nucleosynthesis (r-Process?)

Neutrinos

- Oscillate
- Vacuum oscillations
- Enhancement with matter (MSW)
* Enhancement with other neutrinos

Neutrinos

- Oscillate
- Vacuum oscillations
- Enhancement with matter (MSW)
- Enhancement with other neutrinos

$$
\begin{aligned}
i \frac{d}{d t} S & =H S \\
& =\left(\begin{array}{cc}
V_{e}-V_{v a c} \cos 2 \theta_{12}+V_{\nu \nu}^{e e} & V_{v a c} \sin 2 \theta_{12}+V_{\nu \nu}^{e \tau} \\
V_{v a c} \sin 2 \theta_{12}+V_{\nu \nu}^{\tau e} & V_{v a c} \cos 2 \theta_{12}-V_{e}+V_{\nu \nu}^{\tau \tau}
\end{array}\right) S
\end{aligned}
$$

Neutrinos

- Oscillate

- Vacuum oscillations

Enhancement with matter (MSW)

- Enhancement with other neutrinos

$$
\begin{aligned}
i \frac{d}{d t} S & =H S \\
& =\left(\begin{array}{cc}
V_{e}-V_{v a c} \cos 2 \theta_{12} \\
V_{v a c} \sin 20_{12}+V_{\nu \nu}^{\tau e} & V_{\nu \nu}^{e e} \\
V_{v a c} \cos 2 \theta_{12}-V_{e}+V_{\nu \nu}^{\tau \tau}
\end{array}\right) S
\end{aligned}
$$

Neutrinos

- Oscillate

- Vacuum oscillations
- Enhancement with matter (MSW)

Enhancement with other neutrinos

$$
\begin{aligned}
i \frac{d}{d t} S & =H S \\
& =\left(\begin{array}{cc}
V_{e}-V_{v a c} \cos 2 \theta_{12}+V_{\nu \nu}^{e e} & V_{v a c} \sin 2 \theta_{12}+V_{\nu \nu}^{e \tau} \\
V_{v a c} \sin 20_{12}+V_{\nu \nu}^{\tau \nu} & V_{v a c} \cos 2 \theta_{12}-V_{e}+V_{\nu \nu}^{\tau \tau}
\end{array}\right) S
\end{aligned}
$$

Neutrinos

- Oscillate

- Vacuum oscillations
- Enhancement with matter (MSW)

Enhancement with other neutrinos

$$
\begin{aligned}
i \frac{d}{d t} S & =H S \\
& =\left(V_{v a c}^{V_{v a c} \cos 2 \theta_{12}+V_{\nu \nu}^{e e}} \begin{array}{c}
V_{v a c} \sin 2 \theta_{12}+V_{\nu \nu}^{e \tau} \\
V_{v a c} \cos 2 \theta_{12}-V_{e}+V_{\nu \nu}^{\tau \tau}
\end{array}\right) S
\end{aligned}
$$

Neutrinos

- Oscillate
- Vacuum oscillations
- Enhancement with matter (MSW)
* Enhancement with other neutrinos
- May be detectable
- Change nucleosynthesis
- Capture of neutrinos and antineutrinos changes neutron fraction

Neutrinos

- Oscillate
- Vacuum oscillations
- Enhancement with matter (MSW)
* Enhancement with other neutrinos
- May be detectable
- Change nucleosynthesis
- Capture of neutrinos and antineutrinos changes neutron fraction

A Neutrino

Emitting Disk

$$
\begin{gathered}
\text { Caballero et al., } \\
\text { Phys.Rev.D80:I23004,2009 }
\end{gathered}
$$

FIG. 3: (Color on line) Electron antineutrino surface seen at some inclination angle (see the x, y, z axis on the lower left corner). The height corresponds to h_{ν} as in Eq. 2. The color scale corresponds to the neutrino temperatures, also shown in Fig. 2. The black area in the center represents the boundary with the $\mathrm{BH}, r=2 r_{s}$.

Model A:
Neutrinos Dominate

Model B:
First Antineutrinos Dominate

Models Relevant to Stellar Collapse

Model A:
Neutrinos Dominate

Model B:
First Antineutrinos Dominate

Models Relevant to Stellar Collapse

Model A:
Neutrinos Dominate

Model B:
First Antineutrinos Dominate

Models Relevant to Stellar Collapse

Model A:
Neutrinos Dominate

Model B:
First Antineutrinos Dominate

Models Relevant to Stellar Collapse

Realizing the

 Qualitative Picture capturing the important features- Single Temperature

Realizing the

 Qualitative Picture capturing the important features- Single Temperature
- Different Parameters
for Neutrinos and
Antineutrinos

Realizing the

Qualitative Picture
Dasgupta et al., Phys.Rev. D78 (2008) 033014 capturing the important features

- Single Temperature
- Different Parameters
for Neutrinos and
Antineutrinos
- Geometrically Flat

Realizing the

Qualitative Picture
capturing the important features

- Single Temperature
- Different Parameters
for Neutrinos and
Antineutrinos
- Geometrically Flat
- Hole in the Center

Realizing the

Qualitative Picture
capturing the important features

- Single Temperature
- Different Parameters
for Neutrinos and
Antineutrinos
- Geometrically Flat
- Hole in the Center
- Fermi-Dirac

Realizing the

Qualitative Picture
capturing the important features

- Single Angle
- One Trajectory
- Both Hierarchies
- Three Flavor

Realizing the

 Qualitative Picture capturing the important features
(I) MSW

Normal Hierarchy (II) Bipolar Model A

Normal Hierarchy (II) Bipolar Model A

(I) MSW

Inverted Hierarchy ${ }^{\text {(II) }) \text { Bipolar }}$ Model A

Inverted Hierarchy ${ }^{\text {(II) }{ }^{\text {(II }} \text { MS } \text { Biplar }}$ Model A

(I) MSW

Normal Hierarchy Model B
(II) Bipolar
(III) Neutrino-Matter

Normal Hierarchy Model B
(I) MSW
(II) Bipolar
(III) Neutrino-Matter

Normal Hierarchy (III) Bipolar Model B

(I) MSW

Inverted Hierarchy ${ }_{\text {(III) Bipolar }}^{\text {(III) Neutrin }}$
(III) Neutrino-Matter Model B

Inverted Hierarchy
(III) Neutrino-Matter Model B
(I) MSW

Nucleosynthesis Along the Trajectory

 where are the neutrons?

Nucleosynthesis Along the Trajectory

 where are the neutrons?
- alphas form

omany neutrons, some protons

Nucleosynthesis Along the Trajectory where are the neutrons?

- neutrons capture on alphas

 - alphas form
Z

UNLESS neutrinos change neutrons to protons

- neutrons capture on alphas - alphas form
o many neutrons, some protons

Nucleosynthesis Along the Trajectory

 where are the neutrons?

Conclusions and Comments

- Unique geometry of disks lends itself to varied neutrino oscillations
- Includes a new type of oscillation occurring when neutrino self-interactions cancel the matter term.
- The neutrino oscillations can have an impact on r-process

Decoupling Surface Heights

