Neutrino Oscillation Above a Black Hole Accretion Disk

Annie Malkus with Jim P. Kneller, Gail McLaughlin and Rebecca Surman Malkus et al, arxiv:1207.6648

Accretion Disks

Produce many neutrinos

Play a role in . . .

Stellar Collapse

Mergers

Gamma Ray Bursts

Mucleosynthesis (r-Process?)

Accretion Disks

Produce many neutrinos

Play a role in . . .

Stellar Collapse

Mergers

Gamma Ray Bursts

«Nucleosynthesis (r-Process?)

- Oscillate
 - Vacuum oscillations
 - Inhancement with matter (MSW)
 - Inhancement with other neutrinos

- Oscillate
 - Wacuum oscillations
 - Inhancement with matter (MSW)
 - Inhancement with other neutrinos

$$i\frac{d}{dt}S = HS$$

$$= \begin{pmatrix} V_e - V_{vac}\cos 2\theta_{12} + V_{\nu\nu}^{ee} & V_{vac}\sin 2\theta_{12} + V_{\nu\nu}^{e\tau} \\ V_{vac}\sin 2\theta_{12} + V_{\nu\nu}^{\tau e} & V_{vac}\cos 2\theta_{12} - V_e + V_{\nu\nu}^{\tau\tau} \end{pmatrix} S$$

- Wacuum oscillations
- Inhancement with matter (MSW)

Enhancement with other neutrinos

$$i\frac{d}{dt}S = HS$$
$$= \left(\begin{array}{cc} V_e - V_{vac}\cos 2\theta_{12} + V_{\nu\nu}^{ee} \\ V_{vac}\sin 2\theta_{12} + V_{\nu\nu}^{\tau e} \end{array} \right)$$

$$\frac{V_{vac}\sin 2\theta_{12} + V_{\nu\nu}^{e\tau}}{V_{vac}\cos 2\theta_{12} - V_e + V_{\nu\nu}^{\tau\tau}} \right) S$$

- Wacuum oscillations
- Inhancement with matter (MSW)

Enhancement with other neutrinos

$$i\frac{d}{dt}S = HS$$

$$= \left(\begin{array}{c} V_e + V_{vac}\cos 2\theta_{12} + V_{\nu\nu}^{ee} \\ V_{vac}\sin 2\theta_{12} + V_{\nu\nu}^{\tau e} \end{array} \right) V_{vac}$$

$$\frac{V_{vac}\sin 2\theta_{12} + V_{\nu\nu}^{e\tau}}{V_{vac}\cos 2\theta_{12} - V_e + V_{\nu\nu}^{\tau\tau}} \right) S$$

- Wacuum oscillations
- Enhancement with matter (MSW)
- Inhancement with other neutrinos
- May be detectable
- Change nucleosynthesis
 - Capture of neutrinos and antineutrinos changes neutron fraction

- Wacuum oscillations
- Inhancement with matter (MSW)
- Inhancement with other neutrinos
- May be detectable
- Change nucleosynthesis
 - Capture of neutrinos and antineutrinos changes neutron fraction

A Neutrino Emitting Disk

Caballero et al., Phys.Rev.D80:123004,2009

FIG. 3: (Color on line) Electron antineutrino surface seen at some inclination angle (see the x, y, z axis on the lower left corner). The height corresponds to h_{ν} as in Eq. 2. The color scale corresponds to the neutrino temperatures, also shown in Fig. 2. The black area in the center represents the boundary with the BH, $r = 2r_s$.

Z

Model A: Neutrinos Dominate

Z

Models Relevant to Stellar Collapse

Z

Z

Models Relevant to Stellar Collapse

Model A: Neutrinos Dominate

Z

Models Relevant to Stellar Collapse

Z

Model A: Neutrinos Dominate

Z

Models Relevant to Stellar Collapse

Realizing the Qualitative Picture capturing the important features

Realizing the Qualitative Picture capturing the important features

Realizing the Qualitative Picture capturing the important features

Dasgupta et al., Phys.Rev. D78 (2008) 033014

• Hole in the Center

- Hole in the Center
- Fermi-Dirac

(I) MSW (II) Bipolar Model A

Normal Hierarchy (I) MSW (II) Bipolar Model A

(I) MSW Inverted Hierarchy^(II) Bipolar Model A

(I) MSW Inverted Hierarchy^(II) Bipolar Model A

Normal Hierarchy (I) MSW (II) Bipolar (III) Neutrino-Matter

Normal Hierarchy(I) MSWModel B(II) MSW(II) Neutrino-Matter

(I) MSW (II) Bipolar (III) Neutrino-Matter

(I) MSW Inverted Hierarchy (II) Bipolar (III) Neutrino-Matter Model B

(I) MSW Inverted Hierarchy (II) Bipolar (III) Neutrino-Matter Model B

No Oscillation Normal Hierarchy Oscillation Neutrino Interactions Switched Off

r-Process

Conclusions and Comments

 Unique geometry of disks lends itself to varied neutrino oscillations

Includes a new type of oscillation occurring when neutrino self-interactions cancel the matter term.

The neutrino oscillations can have an impact on r-process

