CC and NC elastic scattering experimental introduction

Kendall Mahn TRIUMF

Lets review recent experimental measurements of CC and NC elastic scattering, through the lens of NuInt conferences

What have we called CCQE?

- 1. "μ+p"
- Simple dipole axial FF as free parameter

Relativistic Fermi gas
representation of nucleon
bound in nucleus

- 2. "np+nh"or "2p2h"- "multinucleon" processwith correlated pairs ofnucleons
- Not included, historically

- 3. "QE-like" topology- CC1π backgrounds
- Complicated by choice of internuclear (FSI) model

Experiments may have different definitions of "CCQE"

- What model does the measurement correspond to? Is it background subtracted ("true CCQE") or inclusive ("QE-like")
- What is the observable used to select CCQE? (muon, with or without proton, rejection of pions)

Disclaimer

Most experiments have used the measurement of simple dipole axial FF (M_A^{eff}) with RFG to define agreement (or disagreement) in cross section

- Recognized this is an effective parameter, won't necessarily correspond to true value for single nucleon, M_A
- Easiest way to compare between experiments
- Recent movement towards differential distributions instead

Experimentalists also hope to improve the models in the generator, too

MiniBooNE CCQE measurement

800 ton, spherical mineral oil Cherenkov detector (E_v ~1 GeV, carbon target)

- Muon identified with decay electron, no direct selection on proton
 - Purity: 75.8%, efficiency: 26.5%
- CC1 π background are constrained based on CC1 π selected event sample
- **NUANCE** generator

MINOS CCQE measurement

Scintillator-steel sandwich detector ($E_v \sim 2.5$ GeV, iron target)

- Select muon candidate and uses hadronic shower energy to reject DIS, RES
 - Purity: 61%, efficiency: 53%
- Flux tuned from data in different beam configurations
- NEUGEN generator

"Data wants more low Q² suppression and a flatter spectrum at higher Q²."

$$M_{A}^{eff} = 1.26 + 0.12 + 0.08 + 0.08 - 0.12 \text{ GeV}$$

Common approach to fit Q²>0.2 Reduces (some) dependence on

background prediction

nuclear model

NOMAD CCQE measurement

Drift chambers with hadronic calorimeters and muon detectors situated in magnetic field ($E_v \sim 24$ GeV, carbon target)

- "1 track" (muon only, ~10k) and "2 track" (muon, proton,~3.5k) samples
 - Purity: 50.3%, efficiency:34.6%
- Flux normalized based on inverse muon decay (~400 events)
- Smith-Moniz MC with intra-nuclear cascade model (DPMJET based)

SciBooNE CCQE measurement

Scintillator sandwich detector with electron calorimeter, muon range detectors

- ($E_v \sim 1$ GeV, carbon target)
- "1 track" (muon only, ~13.5k) and "2 track" (muon, proton, ~3k events) used
 - Purity: 66.2% (1 track), 68.5% (2 track)
 - "2 track" (mu+π, ~1.5k) also included to constrain backgrounds
- NEUT generator

Consistent with higher value of M_A^{eff} and MiniBooNE's energy dependence of cross section

Antineutrino CCQE measurements

MiniBooNE antineutrino data has similar Q² shape as MiniBooNE neutrino data

- Purity: 64%
- Backgrounds from neutrino interactions ("wrong sign") constrained with dedicated data samples (e.g. CC1π+)
- Normalization difference larger than neutrino mode but within errors

Minerva event deficit is flat with Q^2 , not with E_v

- Scintillator sandwich detector with electron calorimeters, MINOS muon range detector
- $E_v \sim 2.5$ GeV, multiple targets (CH shown)
- GENIE generator

NOMAD antineutrino data is consistent with the neutrino data:

 $\textit{M}_{\textit{A}} = \left[1.06 \pm 0.07(\textit{stat}) \pm 0.10(\textit{syst})\right] \; \text{GeV}$

MiniBooNE NCEL measurement

800 ton, spherical mineral oil Cherenkov detector (E_v ~1 GeV, carbon target)

- Signature: 0 μ, 0 π selection + N nucleons (from scintillation light)
 - Purity: 65%, efficiency: 35%
- Two main backgrounds: irreducible NCπ (pion absorbed) and events from interactions outside the detector; constrained with a enhanced sample at high radius
- NUANCE generator

Additional HE proton selection used to determine ratio of NCE/CCQE and measurement of $\Delta s = 0.08 \pm 0.26$ • Nucleon is proton with

KE>350MeV

 Future NCEL measurements may have different observable signatures

MIniBooNE NCEL antineutrino measurement

MiniBooNE antineutrino data is consistent with neutrino data

- Purity: 57%, efficiency: 33%
- Neutrino backgrounds constrained from same samples as CCQE antineutrino analysis
- External, irreducible backgrounds treated like neutrino-mode analysis

"Monte Carlo with values of MA 1.23 GeV and 1.35 GeV gives a better fit to the data, than 1.02 GeV, especially at low energies."

Summary

The last three years have produced a wealth of experimental results:

- MiniBooNE, NOMAD, SciBooNE, Minerva, and MINOS
- CC and NC, neutrinos and antineutrinos

The experimental picture is far from clear but is evolving rapidly:

- Disagreement in CCQE cross section at LE (Sci/MiniBooNE) and HE (Minerva, NOMAD)
- Agreement in MiniBooNE NC, NOMAD CC between neutrinos and antineutrinos
- Possible tension between NOMAD/Minerva and MiniBooNE antineutrino data?

What will we learn this week, experimentally?

- MiniBooNE, Minerva updated results!
- T2K's potential contributions and current activities
- ArgoNEUT: Ar target and FSI information

What I'll be thinking about in the session

Next generation of experiments can and should make more complex comparisons beyond M_A^{eff} which are as model independent as possible:

- Differential cross sections in kinematic variables $(p_{\mu}, \theta_{\mu}, p_{p}, \theta_{p})$
- Different selections (muon only, muon+proton, muon+!pion... and muon+pion)
- Calorimetric quantities (e.g. vertex activity)

This conference is useful for establishing common language and conventions

- How does each experiment define QE?
- How does each experiment treat background processes and inter-nuclear processes like FSI?

How do we best compare between experiments? When is a comparison with the same generator/MC more valuable than a comparison of differential cross sections?

- MiniBooNE and T2K (lower energy fluxes)
- Minerva and MINOS (shared flux)
- MiniBooNE-Minerva-NOMAD (antineutrino data)
- What can we learn from ArgoNEUT which is applicable to lighter targets?

Backup slides