Inclusive Electron Scattering from Nuclei and Scaling Donal Day

University of Virginia

NUINT12

October 22 - October 27 , 2012 Rio de Janeiro, Brazil

Outline

- ✴ Inclusive Electron Scattering from Nuclei
	- $*$ General features
- $*$ Scaling
	- $*$ In QES region in terms of nucleons
	- $*$ In DIS region in terms of partons
- ✴ 2N Short Range Correlations
	- ✴ Connection to the EMC effect
- $*$ Finish

General Features of the Inclusive Spectrum

These dominant processes share the same initial state but have very different \mathbb{Q}^2 dependencies

 $d^2\sigma$ dQ*dv* α $\sqrt{2}$ $d\vec{k}$ \int $dE\sigma_{ei}$ $S_i(k,E)$ *Spectral function* **QES in IA** $\frac{a}{10} \alpha$ α $d\vec{k}$ $dE\sigma_{ei} S_i(k,E)$, $\delta()$ $d^2\sigma$ dQ*dv* α \int $d\vec{k}$ \int *dE W*(*p,n*) $\frac{1}{1,2}$ $\frac{S_i(k,E)}{s}$ DIS

The limits on the integrals are determined by the kinematics. Specific
$$
(x, Q^2)
$$
 select specific pieces of the spectral function.

$$
n(k) = \int dE \; S(k, E)
$$

 σ_{ei} « elastic (form factor)² W_{1,2} scale with <u>In Q²</u> dependence in DIS region, resonances fall quickly with Q2

Charge-changing neutrino reaction cross sections for the nucleons in the nucleus for example CCQES

 $\sigma_{ei} \rightarrow \sigma_{vi}$ weak charged current interaction with a nucleon

Spectral function

Early 1970's Quasielastic Data

500 MeV, 60 degrees $\vec{q} \simeq 500$ MeV/c

Fermi gas model Moniz, ...

What role FSI?

In (e,e'p) flux of outgoing protons strongly suppressed: 20-40% in C, 50-70% in Au

In (e,e') the failure of IA calculations to explain do at small energy loss

Some of this could be resolved by a rearrangement of strength in SE

Old problem: real/complex optical potential.

Real part generates a shift, imaginary part a folding of cs, reduction of qep.

Can FSI ever be neglected? - scaling suggests they can.

O.Benhar, with CGA for FSI

Issues about CGA FSI

- Extreme sensitivity to hole size
- On-shell cross sections: nucleon is off-shell by in E by $\hbar/\Delta t$ = \hbar W: modification of NN interaction
- total cross section?
- Unitarity? Folding function is normalized to one.
- Role of momentum dependent folding function (Petraki et al, PRC 67 014605, 2003) has lead to a quenching of the tails.

•Comparison to data with this new model for a range of A and \mathbb{Q}^2 be very useful

 "The discrepancy with the measured cross sections increases as q increases, while the suppression of FSI's due to the momentum dependence of the folding function appears to be larger at lower momentum transfer.

 A different mechanism, leading to a quenching of FSI's and exhibiting the opposite momentum-transfer dependence still seems to be needed to reconcile theory and data." Petraki et al, PRC 67 014605

Scaling

- Scaling refers to the dependence of a cross section (a structure function), in certain kinematic regions, on a single variable.
- \bullet At moderate \mathbb{Q}^2 inclusive data from nuclei has been well described in terms y-scaling, one that arises from the assumption that the electron scatters from moving, quasi-free nucleons.

Assumptions & Potential Scale Breaking Mechanisms

- No FSI
- No internal excitation of $(A-1)$
- Full strength of spectral function can be integrated over at finite q
- No inelastic processes
- No medium modifications

Direct access to the momentum distribution

$$
F(y) = \frac{\sigma^{exp}}{(Z \cdot \sigma_{ep} + N \cdot \sigma_{en})} \cdot K \qquad n(k) = -\frac{1}{2\pi y} \frac{dF(y)}{dy}
$$

y is the momentum of the struck nucleon parallel to the q-vector: $y \approx -q/2 + mv/q$

Derived in straightforward way in the PWIA (next two slides)

y-scaling in PWIA
\n
$$
\frac{d^2\sigma}{dEdQ_{e'}} = \sum_{i=1}^{A} \int d\vec{k} \int dE_{s} \sigma_{ei} S_{i}(E_{s},k)
$$
\n
$$
\times \delta(\omega - E_{s} + M_{A} - (M^{2} + \vec{k}^{2})^{1/2} - (M_{A-1}^{2} + \vec{k}^{2})^{1/2}),
$$
\n
$$
\frac{d^2\sigma}{dEdQ_{e'}} = 2\pi \sum_{i=1}^{A} \int_{E_{min}}^{E_{max}} dE_{s} \int_{k_{min}}^{k_{max}} dk k \overline{\sigma}_{ei} S_{i}(E_{s},k) k \left(\left| \frac{\partial \omega}{\partial \cos \theta_{kq}} \right| \right)^{-1}
$$
\n
$$
\sigma_{ei} = f(q, \omega, \vec{k}, E_{s}) = \overline{\sigma}_{ei}(q, \omega, y, E_{min})
$$
\n
$$
E_{min} = M_{A-1} + M - M_{A}, E_{max} = M_{A}^{*} - M_{A} \qquad K = q/(M^{2} + (\vec{k} + \vec{q})^{2})^{1/2}
$$
\n
$$
M_{A}^{*} = [(\omega + M_{A})^{2} - q^{2}]^{1/2}
$$
\n
$$
k_{min} \text{ and } k_{max} \text{ are determined from } \cos \theta = \pm 1, \text{ in}
$$
\n
$$
y = k_{min}
$$

"

 $M_{\rm 2}$, $M_{\rm 2}$, $M_{\rm 2}$ and $M_{\rm 2}$ ground state the A $_{1}$ ground state then B is the A $_{1}$

energy conserving δ function:

 $\omega - E_s + M_A = (M^2 + q^2 + k^2 \pm 2kq)^{1/2} + (M_{A-1}^2 + k^2)^{1/2}$

y-scaling in PWIA

- lower limit becomes $y = y(q,\omega)$
- upper limits grows with q and because momentum distributions are steeply peaked, can be replaced with ∞
- Assume $S(E_s, k)$ is isospin independent and neglect E_s dependence of σ_{ei} and kinematic factor K and pull outside
- At very large q and ω , we can let $E_{max} = \infty$, and integral over E_s can be done $n(k) =$ \int $S(E_s, k)$ dE_s

Now we can write

 $d^2\sigma$ dEdΩe! $= (Z\overline{\sigma}_{ep}^{\prime} + N\overline{\sigma}_{en}^{\prime})K^{\prime}F(y)$

where

$$
F(y) = 2\pi \int_{|y|}^{\infty} n(k)k dk
$$

Scaling (independent of Q^2) of QES provides direct access to momentum distribution

Spectral function integration regions grows with q

As q increases, more and more of the spectral function S(k,E) is integrated, convergence from below.

Is the energy distribution as calculated (scaling occurs at much lower q)? Do other processes play a role? FSI or/and DIS - what role

Nonetheless, inclusive data in the quasi-elastic region display scaling - \mathbb{Q}^2 independence: $-$ scaling of the 1s^t kind. Can be used to accurately estimate cross sections. A independence and Q^2 independence: superscaling

Friday, October 26, 12

 $-$

Convergence of F(y,q)

Convergence from above, not below suggests that FSI, known to contribute, die out with increasing momentum transfers

Questions:

- How to account for the fact the binding (the distribution of strength in S(k,E)) in a y-scaling analysis
- Account for the change in the energy balance when scattering from a nucleon in a SRC

ycw : Like y but accounting for excitation energy of residual system $F(\mathcal{y}_{cw}) =$ σ^{exp} $(Z\widetilde{\sigma}_{p} + N\widetilde{\sigma}_{n})$ \cdot K Single nucleon knock-out, $E \neq E_{min}$, A-1 system excited $(A-1)^*$ $(A-1)^*$ y-scaling indicates very high-momenta: model incomplete strength is spread out in E $F(y_{CW}) = 2\pi$ \int^{∞} $|y$ cw $|$ pdpn(p) $\nu + M_A =$ $\sqrt{M^2 + (p+q)^2} + M_{A-1} + \frac{p^2}{2M}$ 2M $+$ $b_A - c_A$ | p | \overline{a} CM motion $< E_{gr} >$ $d^2\sigma$ dΩdν α ! dp ! $dE\sigma_{ei}$ $S_i(p,E)$ \overline{y} Spectral function $\delta()$

Faralli, Ciofi degli Atti & West, Trieste 1999

Many body calculations at high momenta indicate that nuclear momentum distributions are rescaled versions of the deuteron

 $n_A(p) \approx C_A n_D(p)$

 $F_A(q, y_{CW}) \approx C_A F_D(q, y_{CW})$

Inelastic contribution increases with Q2

 x and ξ scaling $\nu W_2^A = \nu \cdot$ σ^{exp} *M* Γ $1 + 2 \tan^2(\theta/2)$ $(1 + \nu^2/Q^2)$ 1 + *R* 1^{-1}

Evidently the inelastic and quasielastic contributions cooperate to produce ξ scaling. Is this duality?

Super-fast quarks

Structure functions: only divide through by σ_{Mott}, not σ_{en}

 $\xi = 2x/$ $\sqrt{ }$ $1 +$ $\sqrt{ }$ $1 +$ $4m^2x^2$ $\overline{Q^2}$ \bigwedge $\nu W_2^A = \nu \cdot$ σ^{exp} *M* Γ $1 + 2 \tan^2(\theta/2)$. $(1 + \nu^2/Q^2)$ 1 + *R* 1^{-1}

The Nachtmann variable has been shown to be the variable in which logarithmic violations of scaling in DIS should be studied. Takes care of $1/Q^2$ corrections

Current data at highest Q^2 (JLab E02-019) already show partoniclike scaling behavior at x>1

N. Fomin et al, PRL 105, 212502 (2010)

Correlations and Inclusive Electron Scattering

Czyz and Gottfried (1963) suggest electron scattering might reveal presence of correlations between nucleons

$$
\omega_c = \frac{(k+q)^2}{2m} + \frac{q^2}{2m} \qquad \omega'_c = \frac{q^2}{2m} - \frac{qk_f}{2m}
$$

Czyz and Gottfried proposed to replace the Fermi n(k) with that of an actual nucleus. (a) hard core gas; (b) finite system of noninteracting fermions; (c) actual large nucleus.

butions throughout the Periodic Table while making sig-Short range correlations. Occ θ neutron distributions are much more distributions are much more different to θ do exist!

Central density is saturated - nucleons $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ can be packed only so close together: P_{ch} * (A/Z) = constant is a set of neutron distributions is $\frac{1}{2}$ and $\frac{1}{2}$

Occupation numbers scaled down by a factor ∼0.65.

Theory suggests a common feature for all nuclei

What many calculations indicate is that the tail of n(k) for different nuclei has a similar shape - reflecting that the NN interaction, common to all nuclei, is the source of these dynamical correlations. The must be accounted for.

arXiv:nucl-th/0611096v2 26 Jun 2007

This strength must be accounted for when trying to predict the cross sections

Access to SRC via CS Ratios
In the region where correlations should $\sigma(x, Q^2)$

In the region where correlations should dominate, large x (at low energy loss side of qep),

 $a_j(A)$ are proportional to finding a nucleon in a j–nucleon correlation. It should fall rapidly with j as nuclei are dilute. .

$$
\sigma_2(x, Q^2) = \sigma_{eD}(x, Q^2) \text{ and } \sigma_j(x, Q^2) = 0 \text{ for } x > j.
$$

$$
\Rightarrow \frac{2 \sigma_A(x, Q^2)}{A \sigma_D(x, Q^2)} = a_2(A) \Big|_{1 < x \le 2}
$$
\n
$$
\frac{3 \sigma_A(x, Q^2)}{A \sigma_{A=3}(x, Q^2)} = a_3(A) \Big|_{2 < x \le 3}
$$

Assumption is that in the ratios, off-shell effects and FSI largely cancel.

. .

"Evidence for Short Range Correlations from high Q2 (e,e') reactions", L. Frankfurt, M. Strikman, D.B. Day, and M. Sargsian, Phys. Rev. C48 2451 (1993)

Selection by kinematics

Appearance of plateaus is A dependent.

Kinematics: heavier recoil systems do not require as much energy to balance momentum of struck nucleon - hence p_{min} for a given x and Q^2 is smaller.

Dynamics: mean field part in heavy nuclei persist to larger values in x

Have to go to higher x or Q^2 to insure scattering is not from mean-field nucleon

Should be similar for ν QES

SRC evidence: A/D ratios QE

Ratio of cross section (per nucleon) shows plateau above $x \approx 1.4$, as expected if high-momentum tails dominated by 2N-SRCs

EMC Effect

 \in

Nucleus is not simply an incoherent sum of protons and neutrons

Measurements of F₂^A /F₂^D (EMC, SLAC, BCDMS,...) have shown definitively that quark distributions are modified in nuclei.

Nucleus is not simply an incoherent \overline{a} in Eq. (10) sum of protons and neutrons

Conventional" nuclear physics based explanations (convolution calculations)

Medium Modifications on quark distributions, clusters etc

E03-103 at JLAB Measured EMC ratios for light nuclei. Established new definition of 'size' of EMC effect : Slope of line fit from x=0.35 to 0.7

EMC Effect and Local Nuclear Density

Short Range Correlations and the EMC Effect

 $4₁$

Finish

- Inclusive electron scattering in the QES region is a rich source of information about the gs properties of nuclei; significant data set already exists and easily accessible.
- Different Q^2 dependences allow the QES and DIS regimes to be, in principal, separated.
- Scaling in terms of scattering from nucleons and partons is demonstrated
- SRC are a significant element in the gs they appear to scale with local ρ^A and, surprisingly, are correlated with the EMC effect and <SE> is indicated.
- Did not mention: extrapolation to NM, separation of responses, other forms of scaling, medium modifications, duality, SF \mathbb{Q}^2 dependence (from DIS)
- Continued collaboration between electron scattering and neutrino communities should prove productive

[&]quot;Inclusive quasi-elastic electron-nucleus scattering'', O. Benhar, D. Day and I. Sick, Rev. Mod. Phys. 80, 189-224, 2008, arXiv:nuclex/0603029