Measurements of time-integrated CP and other asymmetries

Marco Gersabeck hester) Marco of Manchester) The University of Manchester

on behalf of the LHCb collaboration

CHARM 2015, 015 Detroit, 19 May 2015

Outline

Measured asymmetries

• Measure $A_{raw}(D \rightarrow f) = \frac{N(D \rightarrow f) - N(\overline{D} \rightarrow f)}{N(D \rightarrow f) + N(\overline{D} \rightarrow \overline{f})}$

particle tagging D and D

• Get to first order

 $A_{raw}(D \rightarrow f) = A_{CP}(D \rightarrow f) + A_{prod}(D) + A_{det}(f) + A_{det}(tag)$

- Need to constrain
 - Production asymmetry
 - Detection asymmetry (final state and flavour tag)
- General idea
 - → Use similar Cabibbo-allowed processes and assume $A_{CP}(D \rightarrow f) = 0$

MANCHESTER 1824 The University of Manchester Production asymmetries

- Particular to pp collider
 - "Replaces" forward-backward asymmetry at e⁺e⁻ and pp
- Valence quarks favour the production of matter baryons

Favours antimatter mesons

- Production asymmetry can depend on kinematics
 - Accounted through binning / re-weighting

MANCHESTER The University of Manchester Detection asymmetries

- Material interaction can be asymmetric
 - Strange quark can produce hyperons
- Detector can be asymmetric
 - Causes asymmetry through different bending of positive and negative tracks

Regularly revert dipole polarity

Results Two-body decays

First example

• Measurement

$$\mathcal{A}_{\text{meas}}^{D_{(s)}^{\pm} \to K_{\text{S}}^{0}h^{\pm}} = \frac{N_{\text{sig}}^{D_{(s)}^{+} \to K_{\text{S}}^{0}h^{+}} - N_{\text{sig}}^{D_{(s)}^{-} \to K_{\text{S}}^{0}h^{-}}}{N_{\text{sig}}^{D_{(s)}^{+} \to K_{\text{S}}^{0}h^{+}} + N_{\text{sig}}^{D_{(s)}^{-} \to K_{\text{S}}^{0}h^{-}}},$$

$$\mathcal{A}_{ ext{meas}}^{D^{\pm}_{(s)} o K^{0}_{ ext{S}}h^{\pm}} pprox \mathcal{A}_{CP}^{D^{\pm}_{(s)} o K^{0}_{ ext{S}}h^{\pm}} + \mathcal{A}_{ ext{prod}}^{D^{\pm}_{(s)}} + \mathcal{A}_{ ext{det}}^{h^{\pm}} + \mathcal{A}_{K^{0}/\overline{K}^{0}},$$

• Extract CP asymmetries using control modes

$$\mathcal{A}_{CP}^{D_s^{\pm} \to K_{\mathrm{S}}^0 \pi^{\pm}} = \mathcal{A}_{\mathrm{meas}}^{D_s^{\pm} \to K_{\mathrm{S}}^0 \pi^{\pm}} - \mathcal{A}_{\mathrm{meas}}^{D_s^{\pm} \to \phi \pi^{\pm}} - \mathcal{A}_{K^0}.$$

$$\mathcal{A}_{CP}^{D^{\pm} \to K_{\mathrm{S}}^0 K^{\pm}} = \left[\mathcal{A}_{\mathrm{meas}}^{D^{\pm} \to K_{\mathrm{S}}^0 K^{\pm}} - \mathcal{A}_{\mathrm{meas}}^{D_s^{\pm} \to K_{\mathrm{S}}^0 K^{\pm}} \right] - \left[\mathcal{A}_{\mathrm{meas}}^{D^{\pm} \to K_{\mathrm{S}}^0 \pi^{\pm}} - \mathcal{A}_{\mathrm{meas}}^{D_s^{\pm} \to \phi \pi^{\pm}} \right] - \mathcal{A}_{K^0}$$

JHEP 10 (2014) 025

Results for Ksh

8

- Charged D two-body modes are challenging due to neutral particles involved
- Measurement based on 3 fb⁻¹
- Uses weighted control mode kinematics and average of dipole magnet polarities
- All approximately zero

 $\mathcal{A}_{CP}^{D^{\pm} \to K_{S}^{0}K^{\pm}} = (+0.03 \pm 0.17 \pm 0.14)\%$

 $\mathcal{A}_{CP}^{D_s^{\pm} \to K_S^0 \pi^{\pm}} = (+0.38 \pm 0.46 \pm 0.17)\%,$

• What is
$$\Delta a_{CP}$$
?

$$\Delta a_{CP} \equiv a_{CP}(K^-K^+) - a_{CP}(\pi^-\pi^+) = a_{raw}(K^-K^+) - a_{raw}(\pi^-\pi^+).$$

Interplay of direct and indirect CP violation

$$\Delta a_{CP} = \Delta a_{CP}^{\text{dir}} \left(1 + y_{CP} \frac{\overline{\langle t \rangle}}{\tau} \right) + \overline{A}_{\Gamma} \frac{\Delta \langle t \rangle}{\tau},$$

 Individual asymmetries are expected to have opposite sign due to CKM structure

 $A(\overline{D}{}^{0} \to \pi^{+}\pi^{-}, K^{+}K^{-}) = \mp \frac{1}{2} \left(V_{cs} V_{us}^{*} - V_{cd} V_{ud}^{*} \right) \left(T \pm \delta S \right) - V_{cb} V_{ub}^{*} \left(P \mp \frac{1}{2} \delta P \right),$

^{*}after A. Lenz @ CHARM 2013, arXiv:1311.6447 9

EPJC 73 (2013) 2373

Latest results

D*-tagged (I fb⁻¹, preliminary)

 $\Delta A_{CP} = (-0.34 \pm 0.15 \,(\text{stat.}) \pm 0.10 \,(\text{syst.}))\%.$

B.

LHCb-CONF-2013-003

muon-tagged (3 fb⁻¹)

 $\Delta A_{CP} = (+0.14 \pm 0.16 \,(\text{stat}) \pm 0.08 \,(\text{syst}))\%,$

JHEP 07 (2014) 041

a	vera	ıge		
$A_D(K^-\pi^+)$	=	(-1.17)	± 0.12)%

average $A_D(K^-\pi^+) = (-1.17 \pm 0.12)\%$

average $A_D(K^-\pi^+) = (-1.17 \pm 0.12)\%$

average $A_D(K^-\pi^+) = (-1.17 \pm 0.12)\%$

 $(\Delta)_{acp}$ results

• Ignoring contribution from indirect CPV

 $A_{CP}(K^-K^+) = (-0.06 \pm 0.15 \,(\text{stat}) \pm 0.10 \,(\text{syst}))\%,$

JHEP 07 (2014) 041

On Dalitz plots

- Many ways to reach multi-body final states through intermediate resonances
- Resonances interfere and can carry different strong phases
 - Superb playground for CP violation
- Look for local asymmetries
 - Model-dependent:
 Fit all contributions to phase-space and look for differences in fit parameters
 - Model-independent:
 Look for asymmetries in regions of phase space by "counting"

Courtesy of S. Reichert

$D^+ \rightarrow 3\pi$

- Model-independent searches for CP violation
 - ➡ Over 3M D⁺ & D⁻ decays in 1 fb⁻¹
 - Search for asymmetry significances in bins of phase space
 - Search for local asymmetries through unbinned comparison with nearest neighbours

p-values for no-CPV hypothesis
> 50% for different binnings

^{*}reduced sensitivity due to inclusion of few neighbours

Why not un-binned?

- Need to compare each event with every other
 - Computationally challenging for O(IM) events
 - Use GPUs to exploit massive parallelisation
 - Applied to $D^0 \rightarrow \pi^+ \pi^- \pi^0$ decays
- Energy test (M.Williams, PRD 84 (2011) 054015)
 - Test statistic (T) comparing pairwise weighted distances in phase space

➡ Expect T~0 (no CPV) or T>0 (CPV)

All π⁰s

- Reconstructing merged and resolved π s
- Merged photon clusters
 - High energy, small opening angle, small m($\pi^{'}\pi^{'}$)
- Resolved photon clusters (includes conversions)
 - Small energy, large opening angle, large m($\pi'\pi'$)
- Complementary phase-space coverage

Results

- 8×larger sample than BaBar PRD 78 (2008) 051102
 - → 420k resolved π^0 , 250k merged π^0
 - Similar or better sensitivity
- Using permutations with randomly assigned flavour tags to obtain no-CPV sample
 - Reference T distribution
- Result based on 1000 permutations
 - P-value as fraction above nominal T value
 - ➡ (2.6±0.5)%

PLB 740 (2015) 158

CP violation in decay

- Range of new measurements with increasing precision in several decay modes
 - ⇒ 2-body (K_sh, hh)
 - \rightarrow Multi-body (model-independent, including π°)
- Route forward:
 - Measurements in related modes (two-body, resonances) to identify potential sources of CP violation
 - Model-independent measurements are discovery strategies
 - Need model-dependent measurements for quantitative interpretation
- Future expectations
 - See Chris's talk on Friday

