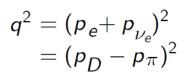
$D^{0} \rightarrow \pi e^{+} \nu B F o - \pi actor and$

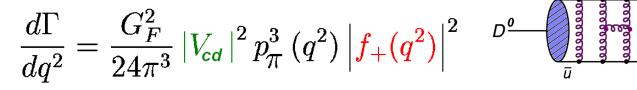
CHARM 2015 Detroit, May 18th-22nd

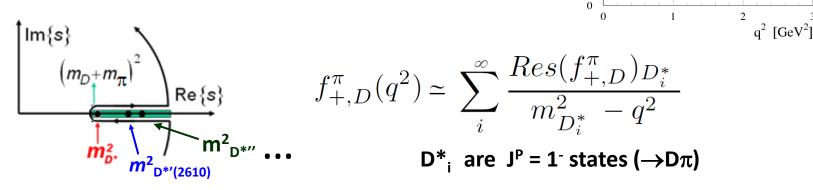

Arantza Oyanguren (IFIC – Valencia) On behalf of the BaBar Collaboration

Outline

Motivation

- Analysis of $D^0 \rightarrow \pi^- e^+ v$ events at BaBar
- Measurement of the branching fraction
- Form factor interpretation
- Application: V_{ub} extraction
- Conclusions

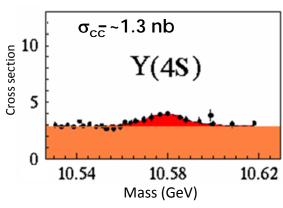

Motivation

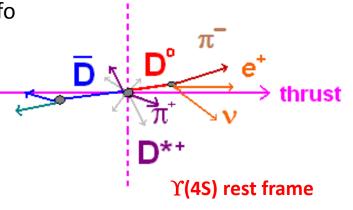

 $V_{cd} W^+$

2

• The $D^0 \rightarrow \pi^- e^+ v$ decay channel:

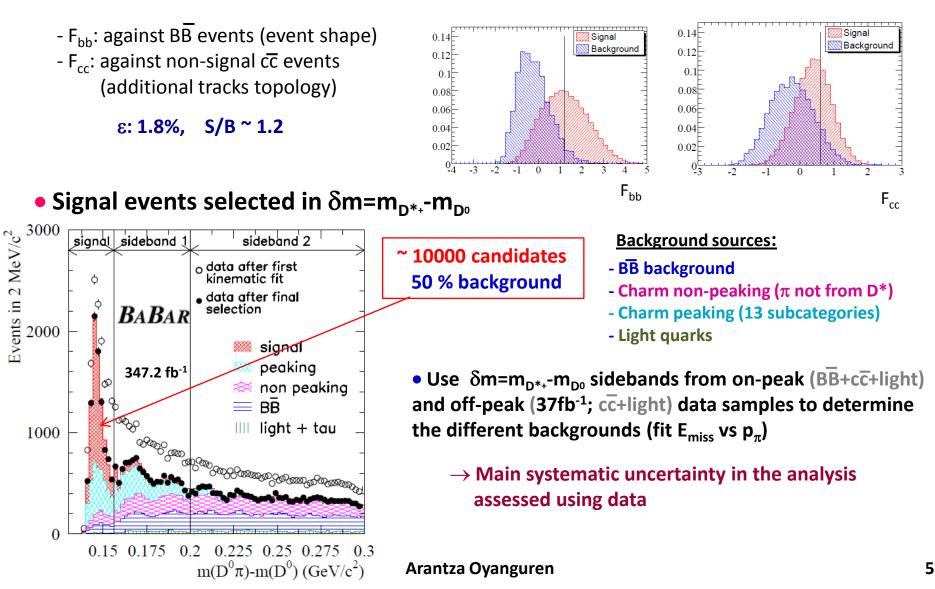
• Only one form factor: $f_+(q^2)$ (m_e ~ 0)

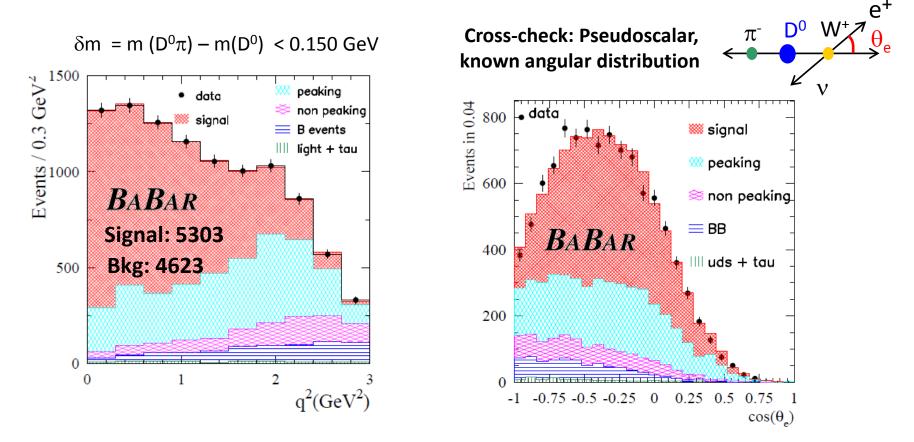

- Partially known: contributions from the D* and D*' poles
- Can be related to the $B \rightarrow \pi$ form factor at the same $E_{\pi} \rightarrow V_{ub}$


Analysis method

• Based on similar techniques as in other BaBar analyses

 $D^0 \rightarrow K^-e^+\nu$ (PRD 76 (07) 052005), $D_s \rightarrow K^+K^-e^+\nu$ (PRD78 (08) 051101 (RC)) , $D^+ \rightarrow K^-\pi^+e^+\nu$ (PRD 83 (11) 072001)


- $D^0 \rightarrow \pi^- e^+ v$: Cabibbo suppressed (BR~0.3%); large backgrounds from π 's
- From 347.2 fb⁻¹ of e⁺e⁻ \rightarrow cc̄ events at the Y(4S) recontruct D^{*+} \rightarrow D⁰ π ⁺, D⁰ \rightarrow π ⁻e⁺ ν :
 - \rightarrow Partially reconstructed: π^+ , π^- and e^+ in the same hemisphere
 - \rightarrow Require tight PID signal pions and veto against kaons
 - → Reconstruct $p_{D^0} = p_{\pi} + p_{e^+} + p_{\nu}$ using E_{miss} and info of the rest of the event
 - $\rightarrow\,$ Constraints using $m_{_{D^0}}$ and $m_{_{D^{*_+}}}$
- Control channel from data: $D^0 \rightarrow K^-\pi^+$


Analysis method

• The background is reduced using Fisher discriminant variables

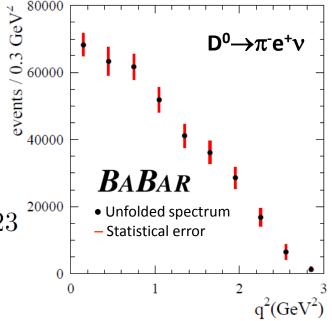
Analysis method

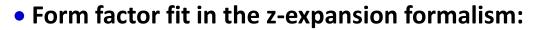
• The $q^2 = (p_{D_0} - p_{\pi})^2 = (p_{e^+} + p_{\nu})^2$ distribution is measured in 10 bins:

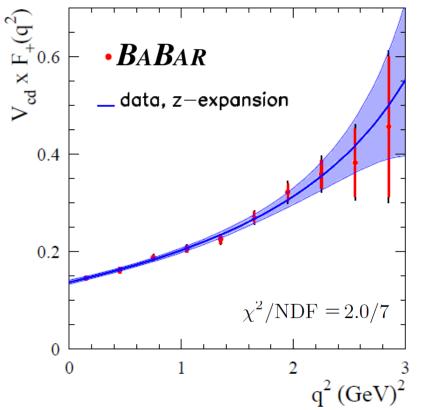
→ Resolution $\sigma(q^2) \sim 0.085 \text{ GeV}^2$ (50%) and 0.311 GeV² (50%)

Measurement of the Branching Fraction

- Normalization: relative to the $D^0 \rightarrow K^-\pi^+$ decay channel
- ► Try to have a selection as similar as possible for the $D^0 \rightarrow \pi^- e^+ v$ and $D^0 \rightarrow K^- \pi^+$ channels
- ► Measure B(D⁰ $\rightarrow \pi^- e^+ v$)/B(D⁰ $\rightarrow K^- \pi^+$) in data and in MC
- From the unfolded number of signal events:


$$R_D = \frac{\mathcal{B}(D^0 \to \pi^- e^+ \nu_e)_{data}}{\mathcal{B}(D^0 \to K^- \pi^+)_{data}} = 0.0702 \pm 0.0017 \pm 0.0023$$


Using the world average for BR($D^0 \rightarrow K^-\pi^+$):


$$\mathcal{B}(D^0 \to \pi^- e^+ \nu_e) = (2.770 \pm 0.068 \pm 0.092 \pm 0.037) \times 10^{-3}$$

PDG 2014 : BR($D^0 \rightarrow \pi^- e^+ \nu$) = (2.89 ± 0.08) x 10⁻³

z-expansion

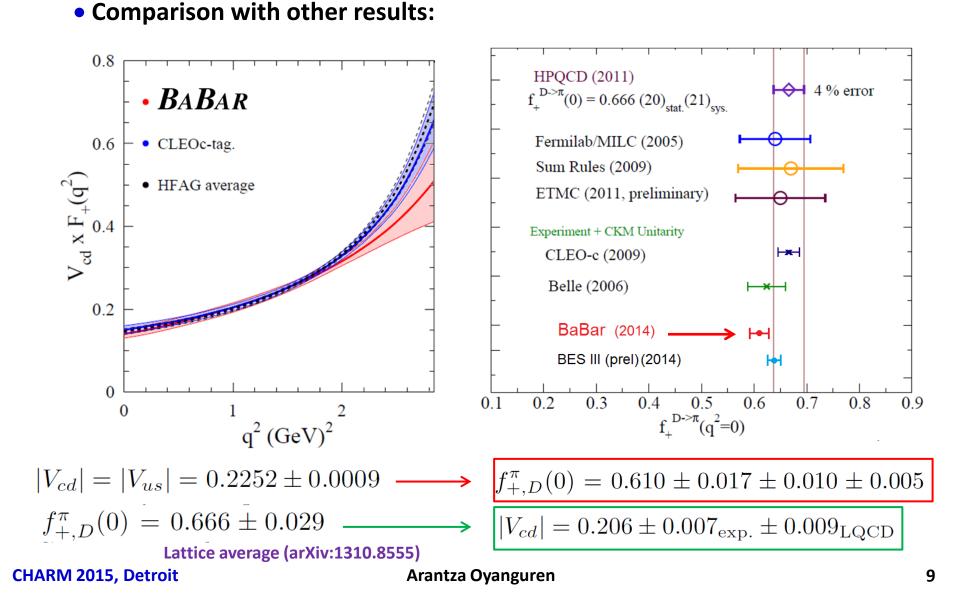
$$F(t) = \frac{1}{P(t)\phi(t,t_0)} \sum_{k=0}^{\infty} \frac{a_k(t_0)z(t,t_0)^k}{|z| < 1}$$

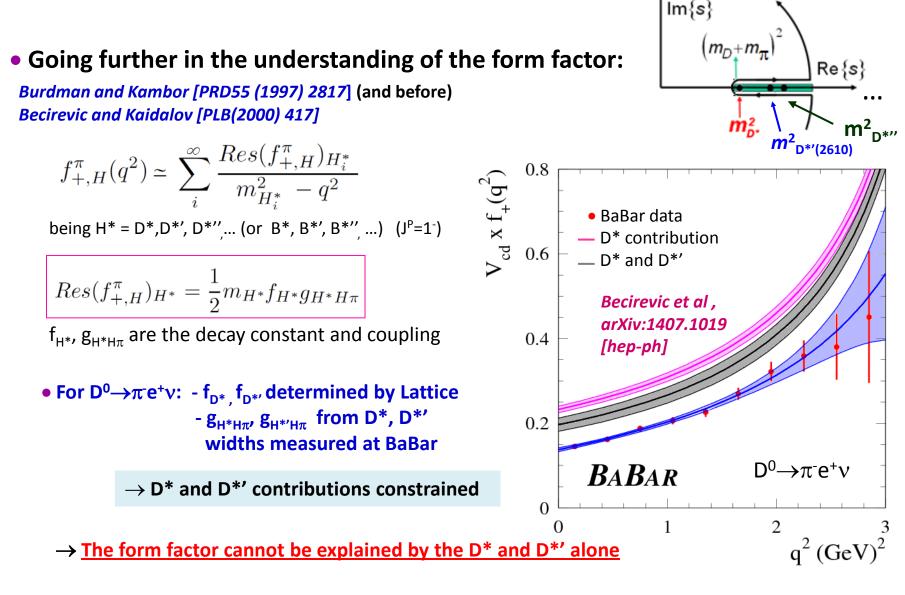
$$t \equiv q^2 \qquad |z| << 1$$

$$z(t,t_0) = \frac{\sqrt{t_+ - t} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - t} + \sqrt{t_+ - t_0}} \qquad t_0 = t_+(1 - \sqrt{1 - t_-/t_+})$$

$$t_{\pm} = (m_{D^0} \pm m_{\pi^+})^2$$

$$\sum_{k=0}^{\infty} a_k^2(t_0) \le 1 \qquad P(t) = 1 \text{ for } D \rightarrow \pi ev$$

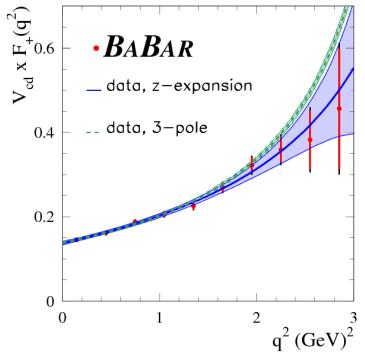

 \rightarrow Model independent, based on QCD properties $\rightarrow a_{K}$ parameters (fiitted) have no physics interpretation


Fitted parameters:

$$r_{k}=a_{k}/a_{0}$$
 $r_{1}=-1.31\pm0.70\pm0.43$
 $r_{2}=-4.2\pm4.0\pm1.9$

Normalization:

 $|V_{cd}| f^{\pi}_{+,D}(0) = 0.1374 \pm 0.0038_{\text{stat.}} \pm 0.0022_{\text{syst.}} \pm 0.0009_{\text{ext.}}$



<u>"Three" poles ansatz (multipole)</u> Becirevic et al (arXiv:1407.1019 [hep-ph])

$$f_{+,D}^{\pi}(q^2) = \frac{f_{+,D}^{\pi}(0)}{1 - \mathbf{c}_2 - \mathbf{c}_3} \left(\frac{1}{1 - \frac{q^2}{m_{D^*}^2}} - \sum_{i=2}^3 \frac{\mathbf{c}_i}{1 - \frac{q^2}{m_{D_i^*}^2}} \right)$$

c_i given by the residues of the poles (relative to D*) in terms of decay constants and couplings

Data is well described by this ansatz if one fits a 3rd pole effective with the condition (*superconvergence*):

$$\frac{\sum_{i} \operatorname{Res}(f_{+,D}^{\pi})_{D_{i}^{*}(')} \simeq 0}{m_{pole3} = (3.6 \pm 0.3) \operatorname{GeV/c^{2}}}$$

 \rightarrow larger than the predicted third J^P=1⁻ state by quark models ~3.1GeV, (as expected since it is effective)

 \rightarrow a unique 3rd contribution from m_{D*"}=3.1 GeV is excluded by data

CHARM 2015, Detroit

Arantza Oyanguren

• Having measured $d\Gamma_{D\to\pi e\nu}/dq^2$ we can extract V_{ub} from the relation between the $D\to\pi\ell\nu$ and $B\to\pi\ell\nu$ channels:

Using
$$W_{B,D} = v_{B,D} \cdot v_{\pi} = E_{\pi}^{*}/m_{\pi}$$
 instead of q²

$$W_{B,D} = \frac{M_{B,D}^{2} + m_{\pi}^{2} - q^{2}}{2M_{B,D}m_{\pi}}$$
At $w_{B} = w_{D}$:

$$\frac{d\Gamma(B \rightarrow \pi \ell \nu) / dw_{B}}{d\Gamma(D \rightarrow \pi \ell \nu) / dw_{D}} = V_{cd}^{2} \left(\frac{M_{B}}{M_{D}}\right) \left(f_{+}^{B \rightarrow \pi}\right)^{2}$$
1) From Lattice

$$\frac{F_{+}}{f_{+}}$$
2) From a phenomenological model

$$\frac{F_{+}}{f_{+}}$$
2) From a phenomenological model

$$\frac{F_{+}}{f_{+}}$$
4) From Lattice

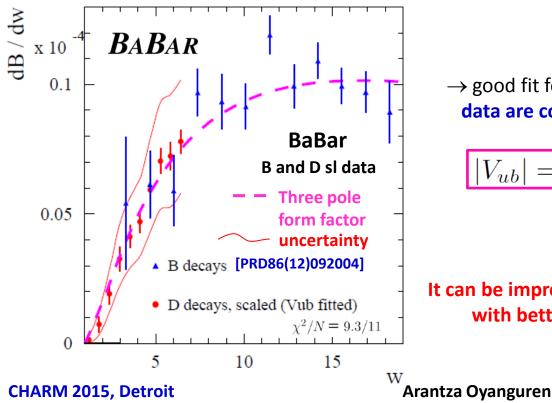
$$\frac{F_{+}}{f_{+}}$$
4) From Lattice

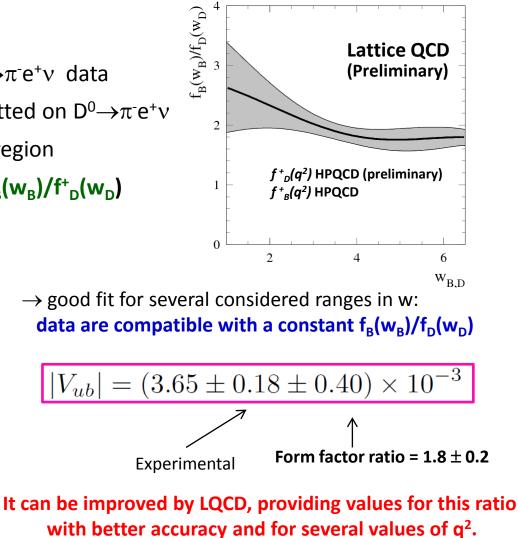
$$\frac{F_{+}}{f_{+}}$$
4) From Lattice

$$\frac{F_{+}}{f_{+}}$$
4) From a phenomenological model

$$\frac{F_{+}}{f_{+}}$$
4) From Lattice

$$\frac{$$

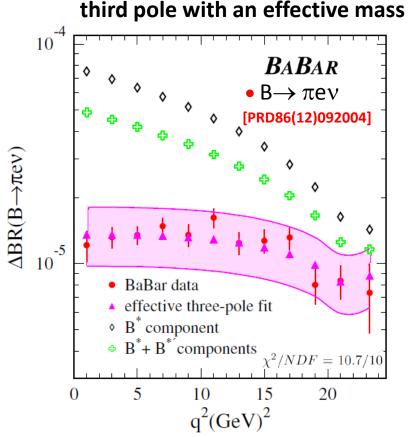

 \rightarrow Aim to extract V_{ub} with a different approach, different uncertanties


Arantza Oyanguren

• 1) <u>V_{ub} extraction</u> (from Lattice):

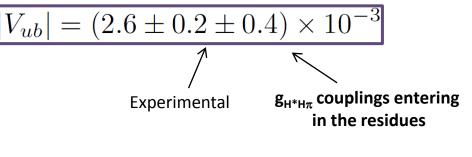
- \rightarrow Using BaBar D⁰ $\rightarrow \pi^- e^+ v$ and B⁰ $\rightarrow \pi^- e^+ v$ data
- \rightarrow the **"three" poles** form factor fitted on D⁰ $\rightarrow \pi^-e^+\nu$
- \rightarrow extrapolated to the unphysical region

 \rightarrow assuming a constant ratio of $f_B^+(w_B)/f_D^+(w_D)$



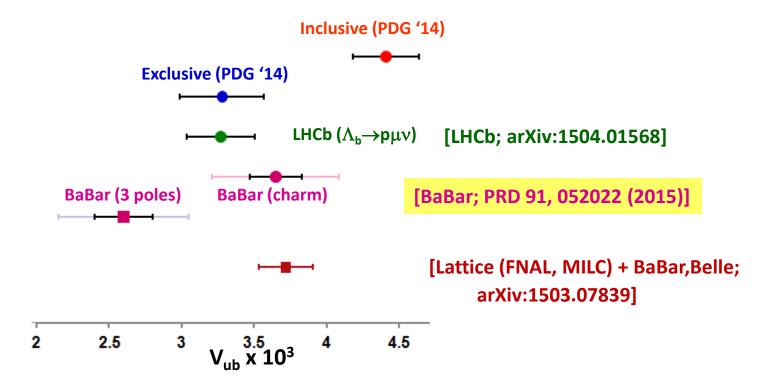
• 2) <u>V_{ub} extraction</u> (from the "three" poles model):

[Becirevic et al , arXiv:1407.1019]


- \rightarrow Having tested the "three" poles model in D⁰ $\rightarrow \pi^- e^+ \nu$
- \rightarrow We can use it for fitting only $B^0 \rightarrow \pi^- e^+ v$ data
- \rightarrow Constraints from the residues of the first two poles (B*, B*') and fitting the

$$f_{+,B}^{\pi}(q^2) \simeq \sum_{i} \frac{Res(f_{+,B}^{\pi})_{B_i^*}}{m_{B_i^*}^2 - q^2}$$

Result on the third pole (effective):


$$m_{B^{*''}} = (7.4 \pm 0.4) \, GeV/c^2$$

It can can be improved by Lattice QCD

CHARM 2015, Detroit

• Comparison with other V_{ub} determinations:

- BaBar systematics of different origin, expected to be reduced by Lattice calculations:

 \rightarrow • f_B(q²)/f_D (q²) form factor ratio as function of E_{π} (or w)

 \rightarrow **g**_{H*H π} couplings

Conclusions

• Measurement of the $D^0 \rightarrow \pi^- e^+ v$ form factor and branching fraction at BaBar, competitive and in agreement with CLEO-c, BELLE, and preliminary results from BES III. [Phys. Rev. D 91, 052022 (2015)]

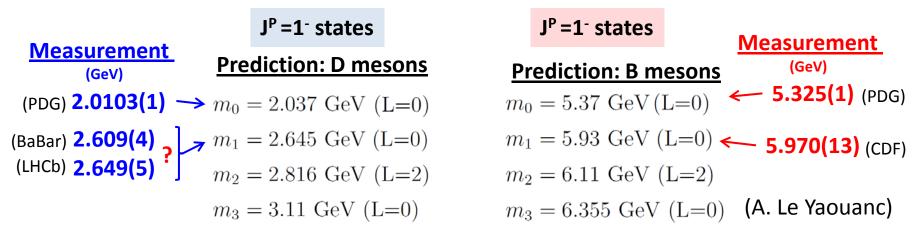
 $|V_{cd}| f^{\pi}_{+,D}(0) = 0.1374 \pm 0.0038_{\text{stat.}} \pm 0.0022_{\text{syst.}} \pm 0.0009_{\text{ext.}}$

 $\mathcal{B}(D^0 \to \pi^- e^+ \nu_e) = (2.770 \pm 0.068 \pm 0.092 \pm 0.037) \times 10^{-3}$

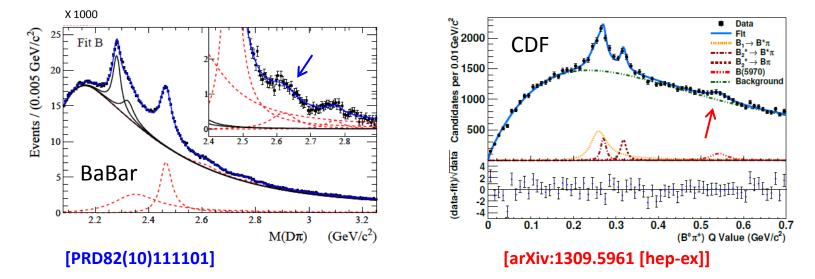
 \rightarrow Experimental results more accurate than Lattice calculations

- Physics interpretation of the form factor: [Becirevic et al, arXiv:1407.1019 [hep-ph]]
 - The form factor cannot be explained by the D* and D*' contributions.
 - The description in terms of an effective third-pole ansatz agrees well with data.

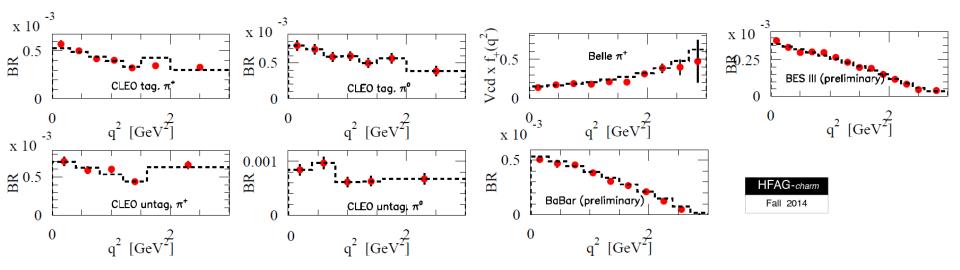
• V_{ub} can be extracted using charm semileptonic data, using alternative approaches:


- \rightarrow Using a constant form factor ratio from Lattice.
- \rightarrow Using the "three" poles model

competitive when new lattice QCD calculations become available


Thank you!

B and **D** spectroscopy


• From Godfrey and Isgur [PRD32 (85)189]

- \rightarrow Lowing lying state: D*, B*
- \rightarrow Radially excited states: observed by BaBar and LHCb (D*'), and CDF (B*')

<u>"Three" poles ansatz (multipole)</u> Becirevic et al (arXiv:1407.1019 [hep-ph])

It works well for all experimental data.