

Experimental Summary: step-by-step towards new physics

CHARM 2015:

The 7th International Workshop on Charm Physics

Wayne State University, USA May 22nd, 2015

- Production
- X/Y/Z Quarkonium
- Hadronic decays
- Semileptonic/ leptonic decays
- Rare/forbidden/radiative decays
- T violation
- Mixing + CP violation

blue = plenary
black = parallel

Quarkonium/Exotics

Wang - Belle Korner - BESIII Palano – LHC Presad - BESIII Ping - BESIII Bian - BESIII Anulli - BaBar Whitehead - LHCb

Production

Sokoloff - BaBar Yi - CMS Yabsley - ATLAS Frawley Dainese Vogt - LHC LaPointe - ALICE Feng - STAR Lebedev - PHENIX Branchin - ALICE Yu - PHENIX

Rare/radiative BSM searches

GobelPrasadZhao - BESIIINachtman CMSVacca - LHCb $t \rightarrow D\gamma$ CMSNanut - Belle $H \rightarrow \gamma\gamma$ CMS

Semileptonic/Leptonic

Eidelman - Belle Ma - BESIII An – BESIII Oyanguren – BaBar

CPV/Mixing

Leo - CDF
Naik - LHCb
Pilloni - Belle/BaBar
Gersabeck - LHCb
Libby - CLEOc
Malde - CLEOc
Onur - BESIII
Reichert - LHCb
Martinelli - I HCb

Dalitz/Hadronic

Muramatsu – BESIII Palano - BaBar Weidenkaff – BESIII

Baryons/B+ τ decays/other

Ogilvy – LHCb Lyu – LHCb Harrison – LHCb Vinokurova – Belle Bhardwaj – Belle Purohit – BaBar Wang - ATLAS

1. Production

Heavy flavor production in AA/pA

Dainese

Nuclear modification factor:

$$dN_{AA} / dp_T$$
 $\langle N_{coll} \rangle dN_{pp} / dp_T$

$$R_{AA}(p_T) = \frac{1}{\left\langle N_{coll} \right\rangle} \frac{dN_{AA} / dp_T}{dN_{pp} / dp_T} < 1$$

Parton Energy Loss predicted to depend on:

- Color charge C_R (larger for gluons)
- Mass *m* (larger for heavy quarks)

$$\Delta E(\varepsilon_{medium}; C_R, m)$$

pred:
$$\Delta E_g > \Delta E_{c \approx q} > \Delta E_b$$

$$\Rightarrow R_{AA}^{\pi} \leq R_{AA}^{D} < R_{AA}^{B}$$

Au-Au high-pT suppression:

suppression vanishes in peripheral collisions:

Heavy flavor production in AA/pA

Dainese

Pb-Pb collisions. reconstruct vertices. $D^0 \rightarrow K^- \pi^* \text{ signal:}$

Pb-Pb collisions. $B \rightarrow e^{-}X$

p-Pb, no suppression

Pb-Pb. significant suppression

◆ First clear indication of: R_{AA}^B > R_{AA}^D

2. XYZ Quarkonium

BESIII Results for X/Y/Z

Kornicer, Lyu

 $Z_c(3900)^+$

 $m = 3899.0 \pm 3.6 \pm 4.9$

 $m = 3884.3 \pm 1.2 \pm 1.5$

 $Z_c(3900)^0$

 $m = 3894.8 \pm 2.3 \pm 2.7$

B€SIII

soon ...

 $m = 4022.9 \pm 0.8 \pm 2.7$

 $e^+e^- \rightarrow \pi^-(D^*\bar{D}^*)^+$

 $m = 4026.3 \pm 2.6 \pm 3.7$

 $Z_{c}(4020)^{0}$

 $m = 4023.9 \pm 2.2 \pm 3.8$

 $e^+e^- \rightarrow \pi^0\pi^0h_c$

 $e^+e^- \rightarrow \pi^0 \, (D^*\overline{D^*})^0$

 $m = 4025.5^{+2.0}_{-4.7} \pm 3.1$

BESIII Results for X/Y/Z

$e^+e^- \rightarrow \gamma \pi^+\pi^- J/\psi$ reconstructed at E_{CM} = 4.2-4.6 GeV

 $X(3872) \rightarrow \pi\pi J/\psi$

$$M = 3871.9 \pm 0.7 \pm 0.2 \text{ MeV/c}^2$$

Suggestive of $Y(4260) \to \gamma X(3872)$

$$\frac{B(Y(4260) \to \gamma X(3872))}{B(Y(4260) \to \pi^+\pi^-J/\psi)} \approx 0.1$$

BESIII Results for X/Y/Z

 $e^+e^- \rightarrow \gamma \pi^+\pi \chi_c$ reconstructed at E_{CM} = 4.2-4.6 GeV

Reconstruct $\chi_c \rightarrow \gamma J/\psi \rightarrow \gamma I^+I^$ look for $\pi\pi$ recoil

 $M = 3821.7 \pm 1.3 \pm 0.7$ MeV, significance 6.7σ $\Gamma < 16$ MeV at 90% C.L.

X(3823) candidate consistent with $\psi(1^3D_2) \rightarrow \gamma \chi_c$

 $e^+e^- \rightarrow \pi^+\pi^- X(3823) \rightarrow \pi^+\pi^- \gamma \chi_c$

Line shape consistent with both Y(4260) & Y4360

Search for $X, Z \rightarrow \eta_c \pi(\pi)$ decays \Rightarrow nothing seen

Upper limits of $\mathcal{B}(B^\pm \to K^\pm X(\to \eta_c h))~(\times 10^{-5})$

	Decay mode	Yield	UL
X ₁ (3872)	$\eta_c\pi^+\pi^-$	17.9 ± 16.5	3.0
	$\eta_c \omega$	6.0 ± 12.5	6.9
X(3730)	$\eta_{ extsf{c}}\eta(\gamma\gamma)$	13.8 ± 9.9	4.6
	$\eta_c \eta(\pi^+\pi^-\pi^0)$	1.4 ± 1.0	
X(3730)	$\eta_c\pi^0$	-25.6 ± 10.4	5.7
X(4014)	$\eta_{c}\eta(\gamma\gamma)$	8.9 ± 11.0	3.9
	$\eta_c \eta(\pi^+\pi^-\pi^0)$	1.3 ± 1.6	
X(4014)	$\eta_c\pi^0$	-8.1 ± 13.2	1.2

Upper limits of branching fractions at 90% C.L.

Resonance	Decay mode	$\mathcal{B}(B o K + R)$
$Z^0(3900)$	$\eta_{c}\pi^{+}\pi^{-}$	4.7×10^{-5}
$Z^0(4020)$	I I I I I I I I I I I I I I I I I I I	1.6×10^{-5}
X(3915)	$\eta_{ extsf{c}}\eta$	3.3×10^{-5}
	$\eta_c\pi^0$	1.8×10^{-5}

Unbinned simultaneous maximum likelihood fit for Y(4360) and Y(4660): $Amp = BW_1 + e^{i\phi} \cdot BW_2$.

Parameters	Solution I	Solution II	
$M_{Y(4360)} ({ m MeV}/c^2)$	$4347\pm 6\pm 3$		
$M_{Y(4360)} ({ m MeV}/c^2) \ \Gamma_{Y(4360)} ({ m MeV})$	$103\pm9\pm5$		
$\mathcal{B}\cdot\Gamma_{Y(4360)}^{e^+e^-}$ (eV)	$9.2 \pm 0.6 \pm 0.6$	$10.9 \pm 0.6 \pm 0.7$	
$M_{Y(4660)} ({ m MeV}/c^2)$	4652 \pm 10 \pm 11		
$M_{Y(4660)} (\text{MeV}/c^2) \ \Gamma_{Y(4660)} (\text{MeV})$	68 ±	11 \pm 5	
$\mathcal{B}\cdot\Gamma_{Y(4660)}^{e^+e^-}$ (eV)	$2.0 \pm 0.3 \pm 0.2$	$8.1 \pm 1.1 \pm 1.0$	
$\dot{\phi}$ (°)	32 \pm 18 \pm 20	$272\pm8\pm7$	
$\chi^2/ndf = 18.7/21$.			

- Consistent with previous measurement
- No obvious signal above Y(4660).
- Some events accumulate at Y(4260), especially the $\pi^+\pi^-J/\psi$ mode.

including Y(4260) in the fit gives 4 solutions, changes Y(4360), Y(4660) masses/widths by 8-20 MeV

 $e^+e^- o \pi^+\pi^-\psi$ (2S) cross section is calculated with

$$\sigma_i = \frac{n_i^{ ext{obs}} - n_i^{ ext{bkg}}}{\mathcal{L}_i \sum_{j=1}^2 \varepsilon_{ij} \mathcal{B}_j},$$

where *i* indicates the mass bin and *j* indicates the $\psi(2S)$ decay mode.

Other cross sections from ISR:

100

The $\sigma(e^+e^- \to \pi^+\pi^- J/\psi)$ at Y(4260), $\sigma(e^+e^- \to \pi^+\pi^- \psi(2S))$ at Y(4360) and $\sigma(e^+e^- \to \eta J/\psi)$ at $\psi(4040)$ are almost the same!!!

Search for structure in $Y(4360) \rightarrow \psi(2S)\pi^{+}\pi^{-}$ decays $\Rightarrow Z_{c}(4050)$?

An unbinned maximum-likelihood fit is performed on the distribution of $M_{\text{max}}(\pi^{\pm}\psi(2S))$, the maximum of $M(\pi^{+}\psi(2S))$ and $M(\pi^{-}\psi(2S))$, simultaneously with both modes.

- $M = (4054 \pm 3(\text{stat.}) \pm 1(\text{syst.})) \text{ MeV}/c^2$
- $\Gamma = (45 \pm 11(\text{stat.}) \pm 6(\text{syst.})) \text{ MeV}$
- The significance is 3.5σ .

No structure seen in Y(4660) $\rightarrow \psi(2S)\pi^+\pi^-$ decays

Wang, Bhardwaj

Quarkonia Studies at ATLAS

Production cross-sections:

J/ψ differential, prompt & non-prompt	NPB 850, 387 (2011)
$\Upsilon(1S)$ fiducial	PLB 705, 9 (2011)
$\Upsilon(nS)$ differential	PRD 87, 052004 (2013)
$\chi_{c1,c2}$ differential, prompt & non-prompt	JHEP 07 (2014) 154
$\psi(2S)$ differential, prompt & non-prompt	JHEP 09 (2014) 079

Spectroscopy:

$\chi_{bJ}(nP)$; $\chi_{bJ}(3P)$ first observation	PRL 108, 152001 (2012)
$X_b o \pi^+\pi^-\Upsilon(1S)$ search	PLB 740, 199 (2015)

Associated production:

prompt J/ψ in association with W^\pm	JHEP 04 (2014) 172
prompt J/ψ in association with Z^0	$\mathtt{arXiv:} 1412.6428 \rightarrow EPJC$

Quarkonia Studies (X_b) at ATLAS

Combine Y with $\pi\pi$, plot mass spectrum in $2 \times 2 \times 2 \text{ bins of } (|y|, p_T, \cos \theta^*)$:

- excludes $R = \sigma \mathcal{B}/(\sigma \mathcal{B})_{\Upsilon(2S)} = 6.56\%$ throughout search range
 - cf. $\pi\pi\psi$ [CMS, JHEP **04** (2013) 154]: $(\sigma\mathcal{B})_{X(3872)}/(\sigma\mathcal{B})_{\psi(2S)}=6.56\%$
 - if X_b exists, relative production σ/σ_{2S} or branching $\mathcal{B}/\mathcal{B}_{2S}$, or both, are weaker than for X(3872)
- an X_b is not in general a carbon copy of the X(3872):
 - X(3872) is within sub-MeV resolution of $D^0\overline{D}^{*0}$ threshold
 - ullet even a molecular X_{b} is bound by tens of MeV

3. Hadronic Decays

Dalitz Plots Analyses @ BaBar

- $\eta_{\rm c} \rightarrow K_S K^+ \pi$
- $\begin{array}{ccc}
 \bullet & \eta_{c} \rightarrow K^{+}K^{-}\pi^{0} \\
 \bullet & J/\psi \rightarrow \pi^{+}\pi\pi^{0}
 \end{array}$
- $J/\psi \rightarrow K^+K^-\pi^0$

Model-independent Dalitz plot analysis: fit independent magnitudes and phases in 30 bins of mass

⇒ good agreement between samples, clear K*0(1430) resonance

...but very different behavior than that measured with other data:

Dalitz Plots Analyses @ LHCb

Palano

•
$$B^- \rightarrow D^+ K^- \pi^-$$

•
$$B^0 \rightarrow D^0 \pi^+ \pi^-$$

•
$$B^0 \rightarrow D^0 K^+ \pi$$

•
$$B_s \rightarrow D^0 K^- \pi^+$$

 $\square D^+\pi^-$ fit projection (arXiv:1503.02995).

Resonance	Fit fraction
$D_0^*(2400)^0$	$8.3 \pm 2.6 \pm 0.6 \pm 1.9$
$D_2^*(2460)^0$	$31.8 \pm 1.5 \pm 0.9 \pm 1.4$
$D_1^*(2760)^0$	$4.9 \pm 1.2 \pm 0.3 \pm 0.9$
S-wave nonresonant	$38.0 \pm 7.4 \pm 1.5 \pm 10.8$
P-wave nonresonant	$23.8 \pm 5.6 \pm 2.1 \pm 3.7$
$D_v^*(2007)^0$	$7.6 \pm 2.3 \pm 1.3 \pm 1.5$
B_v^*	$3.6 \pm 1.9 \pm 0.9 \pm 1.6$

 $B^+ \rightarrow X(3872) \ K^+, \ X(3872) \rightarrow J/\psi \ \rho^0$ 1011 events distrubution for different spin-parity assignments $\Rightarrow J^{PC} = 1^{++}$

1011 events, 80% purity, fit decay $\Rightarrow J^{PC} = 1^{++}$

Experimental Summary

CHARM 2015 Workshop

Other Hadronic Decays

SCS decays:

Wiedenkaff Muramatsu

Decay mode	This work	PDG value
$D^+ \to \omega \pi^+$	$(2.74 \pm 0.58 \pm 0.17) \times 10^{-4}$	$< 3.4 \times 10^{-4}$ at 90% C.L.
$D^0 \to \omega \pi^0$	$(1.05 \pm 0.41 \pm 0.09) \times 10^{-4}$	$<2.6\times10^{-4}$ at 90% C.L.
$D^+ \to \eta \pi^+$	$(3.13 \pm 0.22 \pm 0.19) \times 10^{-3}$	$(3.53 \pm 0.21) \times 10^{-3}$
$D^0 \to \eta \pi^0$	$(0.67 \pm 0.10 \pm 0.05) \times 10^{-3}$	$(0.68 \pm 0.07) \times 10^{-3}$

-BF(D_S⁺
$$\rightarrow$$
 η' X) = (8.8±1.8±0.5)%, consistent with PDG = (11.7±1.7±0.7)% within ~1 σ .

-BF(D_S⁺ \rightarrow $\eta' \rho^+$)/BF(D_S⁺ \rightarrow K⁺K τ +) = 1.04±0.25±0.07 or BF(D_S⁺ \rightarrow $\eta' \rho^+$) = (5.8±1.4±0.4)% PDG = (12.5±2.2)% from PDG,

 $BF_{data}(D^0 \rightarrow K_S^0 K^+ K^-) = (4.622 \pm 0.045 \text{ (stat.)} \pm 0.181 \text{ (sys.)})$

Sokoloff

Fully reconstructed B tag, plot p of recoil K:

see
$$B^- \rightarrow D^{**0}(2680) K^-$$

but no $B^0 \rightarrow D^{**+}(2680)K^-$

B- sample:

*B*⁰ sample:

4. Semileptonic/leptonic decays

Semileptonic Decays

- In the study of $D^+ \rightarrow K^- \pi^+ e^+ v_e$:
 - Branching fractions are measured:

$$Br(D^+ \to K^- \pi^+ e^+ \nu_e) = (3.71 \pm 0.03 \pm 0.09)\%$$

 $Br(D^+ \to K^- \pi^+ e^+ \nu_e)_{[0.8,1]} = (3.33 \pm 0.03 \pm 0.08)\%$

- Amplitude analysis is applied:
 - Fractions of the $K\pi$ components are analyzed. S-wave contribution is observed to be $(6.05 \pm 0.22 \pm 0.18)\%$.

- Branching fractions or upper limits are provided:

Br(
$$D^+ \to \omega e^+ \nu_e$$
) = (1.63 ± 0.11 ± 0.08) × 10⁻³
Br($D^+ \to \phi e^+ \nu_e$) < 1.3 × 10⁻⁵ (@90% C. L.)

- Form factor parameters in $D^+ \rightarrow \omega e^+ \nu_e$ are first measured:

$$r_V = V(0)/A_1(0) = 1.24 \pm 0.09 \pm 0.06; \quad r_2 = A_2(0)/A_1(0) = 1.06 \pm 0.15 \pm 0.05$$

- Branching fractions and CP assymetry are measured:

$$\bar{B}(D^+ \to K_L e^+ \nu_e) = (4.482 \pm 0.027 \pm 0.103)\%$$
 $A_{CP}^{D^+ \to K_L e^+ \nu_e} = (-0.59 \pm 0.60 \pm 1.50)$

Form factor related parameters are also measured:

$$f_+^K(0)|V_{cs}| = 0.728 \pm 0.006 \pm 0.011$$
 , $r_1 \equiv a_1/a_0 = 1.91 \pm 0.33 \pm 0.24$

$$\begin{split} U &= E_{miss} - |\vec{p}_{miss}|, \ E_{miss} = E_{beam} - E_{\omega(\phi)} - E_e \\ \vec{P}_{miss} &= -\overrightarrow{P'}_{tag} - \vec{P}_{\omega(\phi)} - \vec{P}_e \ , \qquad \overrightarrow{P'}_{tag} = \vec{P}_{tag} \sqrt{E_{beam}^2 - m_D^2} \end{split}$$

II distribution for the $D^+ \to \omega(\phi)e^+v_e$ decay:

Semileptonic Decays

Signal events selected in δm=m_{D*},-m_{D0}

~ 10000 candidates 50 % background

$$R_D = \frac{\mathcal{B}(D^0 \to \pi^- e^+ \nu_e)_{data}}{\mathcal{B}(D^0 \to K^- \pi^+)_{data}} = 0.0702 \pm 0.0017 \pm 0.0023$$

Using the world average for BR(D⁰ \rightarrow K⁻ π ⁺):

$$\mathcal{B}(D^0 \to \pi^- e^+ \nu_e) = (2.770 \pm 0.068 \pm 0.092 \pm 0.037) \times 10^{-3}$$

PDG 2014 : BR(D⁰ $\rightarrow \pi^{-}e^{+}v$) = (2.89 \pm 0.08) x 10⁻³

from z expansion normalization:

$$|V_{cd}|f_{+,D}^{\pi}(0) = 0.1374 \pm 0.0038_{\text{stat.}} \pm 0.0022_{\text{syst.}} \pm 0.0009_{\text{ext.}}$$

$$|V_{cd}| = |V_{us}| = 0.2252 \pm 0.0009$$
 $f_{+,D}^{\pi}(0) = 0.666 \pm 0.029$ $f_{+,D}^{\pi}(0) = 0.666 \pm 0.029$ $|V_{cd}| = 0.206 \pm 0.007_{\rm exp.} \pm 0.009_{\rm LQCD}$ Lattice average (arXiv:1310.8555)

Leptonic Decays

http://www.slac.stanford.edu/xorg/hfag/charm/index.html:

5. Rare/forbidden/radiative decays

LHCb Rare/forbidden Decays

Gobel, Vacca

 $D^0 \rightarrow \mu^+ \mu^ \mathcal{B} < 6.2 \times 10^{-9} \ (90\% \ CL)$ [~100x above SM]

$$D^{+}_{(s)} \rightarrow \pi^{+} \mu^{+} \mu^{-}$$
[~10x > NP]

 $D^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^ \mathcal{B} < 5.5 \times 10^{-7}$ (90% CL) [~100x above SM]

A. J. Schwartz

Experimental Summary

CHARM 2015 Workshop

26

BESIII Rare/forbidden Decays

Zhao 3€5Ⅲ

$$D^+ \rightarrow K^+ e^+ e^ D^+ \rightarrow K^- e^+ e^+$$

 $D^+ \rightarrow \pi^+ e^+ e^ D^+ \rightarrow \pi^- e^+ e^+$

$M_{ m BC}~[{ m GeV}/c^2]$	$D^{+} \rightarrow K^{+}e^{+}e^{-}$ 1.88 1.86 1.80 0.05 0.10	$D^{+} \rightarrow \pi^{+}e^{+}e^{-}$ 1.88 1.86 C
<u>_</u>		

$\mathcal{B}(D^+ \to) \setminus [\times 10^-]$	$^{-6}] K^+ e^+ e^-$	$K^-e^+e^+$	$\pi^+e^+e^-$	$\pi^-e^+e^+$
CLEO	3.0	3.5	5.9	1.1
Babar	1.0	0.9	1.1	1.9
PDG	1.0	0.9	1.1	1.1
This work	1.2	0.6	0.3	1.2

world's best

 $\Delta E \ [GeV]$

 $D^0 \rightarrow \gamma \gamma$ (2.9 fb⁻¹) \mathcal{B} < 3.8 x 10⁻⁶ (90% CL)

world's best by BaBar (2012): \mathcal{B} < 2.2 x 10⁻⁶ (90% CL)

Belle result this summer

6. T Violation

T Violation @ LHCb

Martinelli

(see also Bevan)

$$D^{0} \to K^{+}K^{-}\pi^{+}\pi^{-} \qquad C_{T} = \rho_{K_{+}}^{*} (\rho_{\pi_{+}} \times \rho_{\pi_{-}})$$

$$\overline{D}^{0} \to K^{+}K^{-}\pi^{+}\pi^{-} \qquad \overline{C}_{T} = \rho_{K_{-}}^{*} (\rho_{\pi_{-}} \times \rho_{\pi_{+}})$$

$$A_T = \frac{\Gamma(C_T > 0) - \Gamma(C_T < 0)}{\Gamma}$$
$$\bar{A}_T = \frac{\bar{\Gamma}(-\overline{C}_T > 0) - \bar{\Gamma}(-\overline{C}_T < 0)}{\bar{\Gamma}}$$

http://www.slac.stanford.edu/xorg/ hfag/charm/index.html

T-violating asymmetry:

$$a_{CP}^{T-\text{odd}} = \frac{1}{2}(A_T - \bar{A}_T)$$

T-violating asymmetries in D0 decay-rates

Year	Experiment	T-violating Asymmetry in the decay mode D0 to K+K- π + π -	$A_{\text{T viol.}} = (A_{\text{T}} - \overline{A}_{\text{T}})/2$
2014	LHCb	R. Aaij et al. (LHCb Collab.), arXiv:1408.1299.	+0.0018 ± 0.0029 ± 0.0004
2010	BABAR	P. del Amo Sanchez et al. (BABAR Collab.), Phys. Rev. D81, 111103 (2010).	+0.0010 ± 0.0051 ± 0.0044
2005	FOCUS	J.M. Link et al. (FOCUS Collab.), Phys. Lett. B 622, 239 (2005).	+0.010 ± 0.057 ± 0.037
		COMBOS average	+0.0017 ± 0.0027

T-violating asymmetries in D+ decay-rates

Year	Experiment	T-violating Asymmetry in the decay mode D+ to K0sK+ π + π -	$A_{\text{T viol.}} = (A_{\text{T}} - \overline{A}_{\text{T}})/2$
2011	BABAR	J.P. Lees et al. (BABAR Collab.), Phys. Rev. D 84, 031103 (2011).	$-0.0120 \pm 0.0100 \pm 0.0046$
2005	FOCUS	J.M. Link et al. (FOCUS Collab.), Phys. Lett. B 622, 239 (2005).	+0.023 ± 0.062 ± 0.022
		COMBOS average	-0.0110 ± 0.0109

T-violating asymmetries in Ds+ decay-rates

Year	Experiment	T-violating Asymmetry in the decay mode Ds+ to K0sK+π+π-	$A_{\text{T viol.}} = (A_{\text{T}} - \overline{A}_{\text{T}})/2$
2011	BABAR	J.P. Lees et al. (BABAR Collab.), Phys. Rev. D 84, 031103 (2011).	$-0.0136 \pm 0.0077 \pm 0.0034$
2005	FOCUS	J.M. Link et al. (FOCUS Collab.), Phys. Lett. B 622, 239 (2005).	-0.036 ± 0.067 ± 0.023
		COMBOS average	-0.0139 ± 0.0084

T Violation @ LHCb

Three Measurements @ LHCb:

1. Integrated

$$a_{CP}^{T-\text{odd}}(D^0) = (1.8 \pm 2.9(\text{stat}) \pm 0.4(\text{syst})) \times 10^{-3}$$

2. Bins of phase-space

No significant deviation from 0 observed *CP* conservation tested with $P(\chi^2)=74\%$

3. Bins of D^0 decay time

No significant deviation from 0 observed *CP* conservation tested with $P(\chi^2)=83\%$

T Violation @ LHCb

Note that A_T does not vanish:

$$A_T(D^0) = (-71.8 \pm 4.1(\text{stat}) \pm 1.3(\text{syst})) \times 10^{-3}$$
 $\bar{A}_T(D^0) = (-75.5 \pm 4.1(\text{stat}) \pm 1.2(\text{syst})) \times 10^{-3}$
 $C_T = \rho_{K_+}^* (\rho_{\pi_+} \times \rho_{\pi_-})$

Local asymmetries up to 30%

But we wouldn't expect it to due to substructure:

7. Mixing and CP Violation

Charm Mixing + CP Violation

3+1 new measurements:

- BESIII y_{CP}
- $CDFA_{\Gamma}$
- LHCb \hat{A}_{Γ}
- CLEOc $D^0 \rightarrow \pi^+ \pi^- \pi^0$ is CP even (Libby)

$$egin{aligned} y_{CP} &= rac{ au(K^-\pi^+)}{ au(K^+K^-)} - 1 &= \left(|q/p| + |p/q|
ight) y \cos \phi \, - \, \left(|q/p| - |p/q|
ight) x \sin \phi \ A_\Gamma &= rac{ au(\overline{D}{}^{\,0} \!
ightarrow K^+K^-) - au(D^0 \!
ightarrow K^+K^-)}{ au(\overline{D}{}^{\,0} \!
ightarrow K^+K^-) + au(D^0 \!
ightarrow K^+K^-)} &= \left(|q/p| - |p/q|
ight) y \cos \phi \, - \, \left(|q/p| + |p/q|
ight) x \sin \phi \ \end{array}$$

Albayrak **B€**5**Ⅲ**

$$\Gamma_{CP\pm} = \Gamma(1 \pm y_{CP})$$

Branching fraction of a semileptonic decay

$$\mathcal{B}_{D_{CP+} \to l} \approx \mathcal{B}_{D \to l} (1 \mp y_{CP})$$

$$\longrightarrow y_{CP} \approx \frac{1}{4} \left(\frac{\mathcal{B}_{D_{CP-} \to l}}{\mathcal{B}_{D_{CP+} \to l}} - \frac{\mathcal{B}_{D_{CP+} \to l}}{\mathcal{B}_{D_{CP-} \to l}} \right)$$

Decays used in the analysis

CP+
$$K^+K^-, \pi^+\pi^-, K_S^0\pi^0\pi^0$$

CP- $K_S^0\pi^0, K_S^0\omega, K_S^0\eta$
Semileptonic $K^\mp e^\pm \nu, K^\mp \mu^\pm \nu$

$$y_{CP} = (-2.0 \pm 1.3 \pm 0.7)\%$$

Charm Mixing + CP Violation

Fit for signal yield in 30 bins of decay time:

$$A_{CP}(t) = \frac{N(t)_{D^{0}} - N(t)_{D^{0}}}{N(t)_{D^{0}} + N(t)_{D^{0}}} \approx A(0) - \frac{t}{\tau} A_{\Gamma}$$

 A_{Γ} ($\pi\pi$)= (-0.1±1.8(stat.)±0.3(syst.))×10⁻³ A_{Γ} (KK)= (-1.9±1.5(stat.)±0.4(syst.))×10⁻³ $< A_{\Gamma} > = (-1.2\pm1.2)\times10^{-3}$

Reichert, Naik

$$A_{\Gamma}(K^{+}K^{-}) = (-0.134 \pm 0.077^{+0.026}_{-0.034})\%$$
$$A_{\Gamma}(\pi^{+}\pi^{-}) = (-0.092 \pm 0.145^{+0.025}_{-0.033})\%$$

HFAG Global Fit

Input these results into HFAG fitter. Other results since CHARM 2013:

- Belle 976 fb⁻¹ $D^0 \rightarrow K^+ \pi$
- Belle 921 fb⁻¹ $D^0 \to K_S \pi^+ \pi^-$
- LHCb 3 fb⁻¹ $A_{CP}(KK) A_{CP}(\pi\pi)$ with $B^0 \rightarrow D^0 \mu^{-}X$ tagging

Results:

(http://www.slac.stanford.edu/xorg/hfag/charm/index.html):

HFAG Global Fit

http://www.slac.stanford.edu/xorg/hfag/charm/index.html

Results (fit 41 observables for 9 or 10 parameters::

Parameter	No CPV	No direct CPV	CPV-allowed	95% CL Interval
		in DCS decays		
x (%)	$0.49^{+0.14}_{-0.15}$	$0.44^{+0.14}_{-0.15}$	0.37 ± 0.16	[0.06, 0.67]
y~(%)	0.61 ± 0.08	0.60 ± 0.07	$0.66 ^{+0.07}_{-0.10}$	[0.46, 0.79]
$\delta_{K\pi}$ (°)	$6.9^{+9.7}_{-11.2}$	_	$11.8^{+9.5}_{-14.7}$	[-21.1, 29.3]
$R_D~(\%)$	0.349 ± 0.004	_	0.349 ± 0.004	[0.342,0.357]
A_D (%)	_	_	$-0.39^{+1.01}_{-1.05}$	[-2.4, 1.5]
q/p	_	1.001 ± 0.014	$0.91^{+0.12}_{-0.08}$	[0.77,1.14]
φ (°)	_	-0.07 ± 0.6	$-9.4^{+11.9}_{-9.8}$	[-28.3, 12.9]
$\delta_{K\pi\pi}$ (°)	$18.1^{+23.3}_{-23.8}$	_	$27.3^{+24.4}_{-25.4}$	[-23.3, 74.8]
A_{π}	_	0.10 ± 0.14	0.10 ± 0.15	[-0.19, 0.38]
A_K	_	-0.14 ± 0.13	-0.15 ± 0.14	[-0.42, 0.12]
$x_{12} \ (\%)$	_	$0.44^{+0.14}_{-0.15}$		[0.13, 0.69]
$y_{12}~(\%)$	_	0.60 ± 0.07		[0.45, 0.74]
$\phi_{12}(^{\circ})$	_	0.2 ± 1.7		[-4.1, 4.6]

HFAG World Averages

New world averages (http://www.slac.stanford.edu/xorg/hfag/charm/index.html):

Summary of the Summary talk

- Lots of interesting results, but no "smoking gun" of new physics yet
- Now seeing many new results from LHCb, including Dalitz plot analyses
- Now seeing a wide range of results from BESIII
- Results still coming in from Belle with full data-set (~950 fb⁻¹)
- HFAG mixing averages now have only small incremental changes several new ideas on how to improve this, i.e., make a significant change (e.g., use CP-even $D^0 \rightarrow \pi^+\pi^-\pi^0$)
- By CHARM 2016, should have many 3(+) fb⁻¹ results from LHCb, more results from ATLAS/CMS, last results from Belle/BaBar, hopefully first signals from Belle II. See you in Italy!

3 colleagues searching for new physics