THEORY SUMMARY

Luca Silvestrini

INFN, Rome

- Impossible (due to my limitations) to do justice to the >20 theory talks presented at this conference
- Will give a personal view, so forgive me if I under/misrepresent your work

INTRODUCTION

- Spectacular exp. progress is leading us into the precision charm physics era, calling for substantial theoretical advances
- Charm physics at the forefront of NP searches, ample room for exp and th improvements
- Complementarity between K and D physics allows to fully exploit the constraining power of flavour physics
- Charm properties
- production
- spectroscopy
- mass, Y, decay constant, form factors
- NP-sensitive, th. clean observables
- CPV in mixing
- few rare decays
- Potentially NP-sensitive but requiring significant th. improvements
- CPV in nonleptonic decays
- more rare decays

CHARM PROPERTIES

SPECTROSCOPY

$c \bar{c}$ spectrum 12 years after $X(3872)$ discovery

A. Esposito, A. Guerrieri, F.P., A. Pilloni, A. Polosa, IJMPA30 (2014) 04n05, 1530002

- All $c \bar{c}$ states below open c threshold identified
- All $J^{P C}=1^{--} c \bar{c}$ states filled
- New neutral and charged particles above threshold
- Some may be charmonia, others not (exotica, X, Y, Z), in particular the charged ones (the neutral ones have quantum numbers compatible with charmonia)
- Exotics as loosely bound charmed meson molecules:
- economic description of several exotic states very close to threshold
- challenged by prompt production at LHC
- Exotics as compact tetraquarks:
- many predictions of additional states, dep. on diquark interactions (type I \& II)
- supported by observ. of new charged states
- diquark dynamics rich and very interesting
R. Lebed
- Decays in specific channels could discriminate between models
A. Esposito

Charmonia well below DD: recent precision results

CHARMONIA ABOVE D-D

- Maiani-Testa no-go theorem: correlation functions on the lattice always dominated by state with lowest energy, prevents study of interacting multi-meson states
- Finite volume effects allow to overcome this difficulty for two-meson states.
- Three-particle case being explored, but still need substantial progress

$X(3872)$ as bound state from DD* scattering, ${ }^{P C}=\underline{1}^{++}, \mathrm{I}=0$

$$
\mathcal{O}: \bar{c} c, D \bar{D}^{*}
$$

- ground state: $\mathrm{X}_{\mathrm{c} 1}(1 \mathrm{P})$
- DD^{*} scattering matrix near th. determined
- A pole of

$$
T \propto \frac{1}{\cot \delta-i}=\infty
$$ found just below th. (violet star)

- The pole attributed to $X(3872)$, which is a shallow bound state in both simulations
- Position of DD^{*} threshold depends on $\mathrm{m}_{\mathrm{L} / \mathrm{d},}$ and may be affected by discretization effects related to charm quark

Lattice evidence for X(3872):

$X(3872)$	$m-\left(m_{\mathrm{Do}}+\mathrm{m}_{\mathrm{Do}}{ }^{\circ}\right)$
lat $\left(\mathrm{m}_{\pi}=310 \mathrm{MeV}\right)$	$-13 \pm 6 \quad \mathrm{MeV}$
lat $\left(m_{\pi}=266 \mathrm{MeV}\right)$	$-13 \pm 6 \quad \mathrm{MeV}$
\exp	$-0.14 \pm 0.22 \mathrm{MeV}$

- $\mathrm{m}_{\pi} \approx 266 \mathrm{MeV}, \mathrm{a}=1.24 \mathrm{fm}, \mathrm{L}=2 \mathrm{fm}$
[S.P. and Leskovec: 1307.5172, PRL 2013]
- $\mathrm{m}_{\mathrm{r}} \approx 310 \mathrm{MeV}, \mathrm{a}=.15 \mathrm{fm}, \mathrm{L}=2.4 \mathrm{fm}$, HISQ
[Lee, DeTar, Na, Mohler, update of proc 1411.1389]

Which Fock components are essential for $\times(3872)$ with $\mathrm{I}=0$?

Tetraquarks with the HALQCD method: Results

$$
\text { Ikeda et al. PLB } 729 \text { 85-90 (2014) }
$$

- Repulsive interaction in all $I=1$ channels considered
- Attractive interaction in all $I=0$ channels considered

- No bound states or resonances at simulated m_{π}
- Attraction becomes more prominent at light pion masses
- Authors have some indication that $B B^{*}$ with $I J^{P}=01^{+}$is bound

Search for doubly charmed tetraquarks (preliminary)

```
Guerrieri et al. arXiv:1411.2247
```

- 2 flavor simulation with $a=0.075 \mathrm{fm}$ and $m_{\pi}=490 \mathrm{MeV}$ and lighter than physical $m_{\text {charm }}$
- Considers $[c c][\bar{u} \bar{d}]$ tetraquarks with $I J^{P}=01^{+}, 11^{+}$
- Basis of tetraquark and meson-meson interpolators (also smeared)
- No additional low-lying energy level observed (just meson-meson states)

Low lying singly charm baryons

* Ground states more or less in agreement between all lattice results and experiments.
\& Improving control over the systematic and statistical uncertainties.
\& The excited state determination : challenging!
↔ Systematic spin identification : Even more challenging!!

Quarkonium Production

- At high- p_{T}, expect factorization in vexp. ${ }^{\text {G. }}$ $\sigma \approx\left(\sigma_{Q Q} \times p d f\right) \times(Q Q \rightarrow$ quarkonium $)$
- Proven only at NLO
- predictions depend on LD matrix elements
- Combine w. L $\left(1 / p_{T}^{4}\right)$ and NL $\left(m_{Q}{ }^{2} / p_{T}{ }^{6}\right)$ fragm. to get dominant effects at large P_{T}
- J/ ψ hadroproduction well described, problems with photoprod. and w. η_{c} hadropr.

Quarkonium production in matter

J. Qiu
\square Heavy quarkonium production has been a powerful tool to test and challenge our understanding of strong interaction and QCD

Both initial-state and final-state multiple scattering are relevant for nuclear dependence of Quarkonium production - could redistribute both the p_{T} and y dependence
[Final-state multiple scattering could be an effective source of J / ψ suppression because of the sharp threshold behavior

Heavy quarkonium production in hot medium is still an open problem/challenge - a lot of effort are underway See M. Nahrgang for open HF prod. in matter and W.K. Lai for prod.
See also talks by Vogt, Yu, Zhao in paralleymmetry in vacuum

m_{c} comparison plot

$$
\begin{aligned}
& \text { HPQCD HISQ } n_{f}=3 \quad[1004.4285] \\
& \text { HPQCD HISQ } n_{f}=4 \quad[1408.4169] \\
& \chi \text { ETMC } n_{f}=4 \quad[1403.4504]
\end{aligned}
$$

Charm mass determinations

From QCD sum rules

[Dehnadi, Hoang, \& VM ‘I5]
V. Mateu

HPQCD [1004.4285]

$$
\begin{array}{lr}
m_{b} / m_{c}=4.49(4) & \text { HPQCD }[1004.4285] \\
m_{b} / m_{c}=4.40(8) & \text { ETMC }[1411.0484]
\end{array}
$$

A. Lytle
$23 / 25$

2. Leptonic D decays

FNAL/MILC $N_{f}=2+1+1$

$$
f_{D^{+}}=212.6_{-1.2}^{+1.1} \mathrm{MeV} \quad f_{D_{s}}=249.0_{-1.5}^{+1.3} \mathrm{MeV}
$$

E. Gamiz

2. Leptonic D decays

Experiment: Average from G. Rong, CKM2014, 1411.3868 and unitarity values $\left|V_{c s}\right|=0.97343 \pm 0.00015,\left|V_{c d}\right|=0.22522 \pm 0.00061$ from PDG2014:

$$
f_{D_{s}} /\left.f_{D^{+}}\right|_{\text {exp. }}=1.270 \pm 0.036
$$

2.7σ larger than $N_{f}=2+1+1$ FNAL/MILC result and 2.3σ larger than $N_{f}=2+1$ FLAG-2 average

3. Semileptonic D decays: $q^{2}=0$

Important reduction of errors in the lattice determination of the form factors $f_{+}^{D \pi(K)}(0)$ by the HPQCD Collaboration, Phys.Rev.D82:114506(2010), due mainly to

* Use a relativistic action, HISQ, to describe light and charm quarks.
* Absolutely normalized current

HPQCD, 1008.4562, 1109.1501

$$
\begin{aligned}
& f_{+}^{D \pi}(0)=0.666(29) \\
& f_{+}^{D K}(0)=0.747(19)
\end{aligned}
$$

\# Work in progress: $N_{f}=2+1+1$ FNAL/MILC, 1411.1651 with physical quark masses.

E. Gamiz

4. $\left|V_{c d}\right|,\left|V_{c s}\right|$: CKM unitarity in the second row

* $\left|V_{c d}\right|$: Pretty good agreement between different determinations, but some tension $N_{f}=2+1+1$ FNAL/MILC leptonic-unitarity.
* $\left|V_{c s}\right|$: Slight tensions leptonic-semileptonic $(D \rightarrow K l \nu)$ and leptonic-unitarity.

E. Gamiz

Charm coupling to the Higgs

-Access this coupling using $\mathrm{H} \rightarrow \mathrm{J} / \Psi+\gamma$! Bodwin, FP, Stoynev, Velasco I306.5770 J / ψ

Direct production, which is sensitive to Hcc coupling, is small (W.-Y. Keung, 1983)

- Larger indirect mechanism drags up the direct one; provides sensitivity to the Hcc coupling - Theoretically very clean; few-percent uncertainties: Bodwin, Chung, Ee, Lee, FP 1407.6695 - Interference gives unique information on the phase of the Hcc coupling

Theory prediction for J/ Ψ

- Partial width for general Hcc coupling (Bodwin, FP, Stoynev, Velasco I306.5770):

$$
\Gamma(H \rightarrow J / \psi+\gamma)=\mid(11.9 \pm 0.2)-\left(1.04 \pm 0.14 \bigcap_{\pi} \kappa_{c}^{2^{2}} \times 10^{-10} \mathrm{GHcCl}\right.
$$

Dominant uncertainty on indirect amplitude: leptonic width of J/ Ψ

Dominant uncertainty on direct amplitude: uncalculated v^{4} corrections in NRQCD

- Branching ratio in the SM:

$$
\mathcal{B}_{\mathrm{SM}}(H \rightarrow J / \psi+\gamma)=2.79_{-0.15}^{+0.16} \times 10^{-6}
$$

This is a $3 \mathrm{ab}^{-1}$ measurement! Only possible with a high luminosity $\mathrm{LHC} ; \mathrm{O}(100) \mathrm{I}^{+1} \gamma$ events in the SM after acceptance×efficiency

NP-sensitive, th. clean

CPV IN MIXING AND NP

- CP violation in $\Delta \mathrm{F}=2$
 sensitive probe of NP, reaching scales of $O\left(10^{5}\right) \mathrm{TeV}$
- CPV in D mixing gives best bound after ε_{k}

- How far can we push it?

D MIXING

- D mixing is described by:
- Dispersive $D \rightarrow \bar{D}$ amplitude M_{12}
- SM: long-distance dominated, not calculable
- NP: short distance, calculable w. lattice
- Absorptive $D \rightarrow \bar{D}$ amplitude Γ_{12}
- SM: long-distance, not calculable See F.S. Yu
- NP: negligible
- Observables: $\left|M_{12}\right|,\left|\Gamma_{12}\right|, \Phi_{12}=\arg \left(\Gamma_{12} / M_{12}\right)$

$G I M \Leftrightarrow S U(3)(U-$ spin $)$

- Use CKM unitarity
$\mathrm{V}_{\mathrm{cd}} \mathrm{V}_{\mathrm{ud}}{ }^{*}+\mathrm{V}_{\mathrm{cs}} \mathrm{V}_{\mathrm{us}}{ }^{*}+\mathrm{V}_{\mathrm{cb}} \mathrm{V}_{\mathrm{ub}}{ }^{*}=\lambda_{\mathrm{d}}+\lambda_{\mathrm{s}}+\lambda_{\mathrm{b}}=0$
- eliminate λ_{d} and take λ_{s} real (all physical results convention independent)
- imaginary parts suppr. by $r=\operatorname{Im} \lambda_{b} / \lambda_{s}=6.510^{-4}$
- M_{12}, Γ_{12} have the following structure:

$$
\lambda_{s}^{2}\left(f_{d d}+f_{s s}-2 f_{d s}\right)+2 \lambda_{s} \lambda_{b}\left(f_{d d}-f_{d s}-f_{d b}+f_{s b}\right)+O\left(\lambda_{b}{ }^{2}\right)
$$

$G I M \Leftrightarrow S U(3)(U-$ spin $)$

- Write long-distance contributions to M_{12} and Γ_{12} in terms of U-spin quantum numbers:
$\lambda_{s}{ }^{2}(\Delta \mathrm{U}=2)+\lambda_{s} \lambda_{\mathrm{b}}(\Delta \mathrm{U}=2+\Delta \mathrm{U}=1)+O\left(\lambda_{\mathrm{b}}{ }^{2}\right)$ $\sim \lambda_{s}{ }^{2} \varepsilon^{2}+\lambda_{s} \lambda_{b} \varepsilon$
- CPV effects at the level of $r / \varepsilon \sim 210^{-3} \sim 1 / 8^{\circ}$ for "nominal" SU(3) breaking $\varepsilon \sim 30 \%$
- Given present experimental errors, it is perfectly adequate to assume that SM contributions to both M_{12} and Γ_{12} are real
- all decay amplitudes relevant for the mixing analysis can also be taken real
- NP could generate a nonvanishing phase for M_{12}
- Fit all data with universal parameters x, y, $|q / p|$ and $\phi \sim \arctan ((1-|q / p|) x / y)$.

CPV IN MIXING TODAY

- Summer14 UTfit average:

See next talk for updated HFAG averages

$$
\begin{aligned}
& x=(3.5 \pm 1.5) 10^{-3}, y=(5.8 \pm 0.6) 10^{-3}, \\
& |q / p|-1=(1.5 \pm 1.9) 10^{-2}, \\
& \phi=\arg (q / p)=(-0.44 \pm 0.59)^{\circ}
\end{aligned}
$$

$\phi\left[{ }^{\circ}\right]$

CPV IN MIXING TODAY II

- The corresponding results on fundamental parameters are

$$
\begin{aligned}
& \left|M_{12}\right|=(4 \pm 2) / f s,\left|\Gamma_{12}\right|=(14 \pm 1) / f s \\
& \text { and } \Phi_{12}=(2 \pm 3)^{\circ}
\end{aligned}
$$

BEYOND THE "REAL SM"

- CPV contributions to $\phi_{\Gamma 12}$ are enhanced by $1 / \varepsilon$, while this is not the case for $\delta \phi_{f}$
- can go beyond the "real SM" approximation by adding one universal phase $\phi_{\Gamma 12}$ and fitting
for ϕ_{12} and $\phi_{\Gamma 12}$ or, equivalently, for $\phi_{M 12}$ and $\phi_{\Gamma 12}$

See A. Kagan's talk for details

CHARM CPV @ LHCb UPGRADE

- Expected errors w. LHCb upgrade:

$$
\begin{aligned}
& -\delta x=1.510^{-4}, \delta y=10^{-4}, \delta|q / p|=10^{-2}, \delta \phi=3^{\circ} \text { (from } \\
& \left.K_{s} \pi \pi\right) ; \delta y_{C p}=\delta A_{\mathrm{r}}=410^{-5} \text { (from } K^{+} K^{-} \text {) }
\end{aligned}
$$

- Allows to experimentally determine $\phi_{\Gamma 12}$ with a reach on CPV @ the degree level:

$$
\begin{aligned}
& -\delta \phi_{M 12}= \pm 1^{\circ}(17 \mathrm{mrad}) \text { and } \\
& \delta \phi_{\Gamma 12}= \pm 2^{\circ}(34 \mathrm{mrad}) @ 95 \% \text { prob. } \\
& -\Lambda>10^{5} \mathrm{TeV}
\end{aligned}
$$

CHARM CPV @ HI-LUMI

- XFX: "Extreme" flavour experiment (LHCb upgrade $L \times 100$) see e.g. takk by G. Punzi © 1st Future Hadron Collider Workshop
- Naïve extrapolation, scaling LHCb upgrade estimates:

$$
\begin{aligned}
&- \delta x=1.510^{-5}, \delta y=10^{-5}, \delta|q / p|=10^{-3}, \delta \phi=.3^{\circ} \text { (from } \\
&\left.K_{S} \pi \pi\right) ; \delta y_{C P}=\delta A_{\Gamma}=410^{-6}\left(\text { from } K^{+} K^{-}\right) \\
&- \delta \phi_{M 12}= \pm 0.1^{\circ}(1.7 \mathrm{mrad}) \text { and } \delta \phi_{\Gamma 12}= \pm 0.2^{\circ} \\
&(3.4 \mathrm{mrad}) @ 95 \% \text { prob. } \\
&-\Lambda>310^{5} \mathrm{TeV}, \text { close to the bound from } \varepsilon_{K}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{B}\left(D^{+} \rightarrow \pi^{-} \mu^{+} \mu^{+}\right)<2.2(2.5) \vee 10^{-8} \\
& \mathcal{B}\left(D_{s}^{+} \rightarrow \pi^{-} \mu^{+} \mu^{+}\right)<1.2(1.4) \times 10^{-7}
\end{aligned}
$$

R. Aaij et al. (the LHCb collaboration), PLB 724 (2013) 203.

Search for Majorana v 's in LNV D decays

Improved by 2-3 orders of magnitude

$$
\mathrm{D} \rightarrow \mu^{+} \mu^{-}
$$

R. Aaij et al. (the LHCb collaboration), $B R\left(D \rightarrow \mu^{+} \mu^{-}\right)<6.2(7.6) \times 10^{-9}$ PLB 725 (2013) 15.

$$
\mathrm{BR}_{\mathrm{SM}}^{\mathrm{SD}}\left(\mathrm{D}^{0} \rightarrow \mu^{+} \mu^{-}\right) \sim 6 \times 10^{-19}
$$

LD dominant!

$$
\mathrm{BR}_{\mathrm{SM}}^{\mathrm{LD}}\left(D^{0} \rightarrow \mu^{+} \mu^{-}\right)=2.7 \times 10^{-5} \times \mathrm{BR}\left(D^{0} \rightarrow \gamma \gamma\right) \simeq 2.7-8 \times 10^{-13}
$$

A. Paul et al, PRD 82 (2012) 094006,
G. Burdman et al., PRD 66 (2002) 014009,
E. Golowich, J. Hewett, S. Pakvasa, A. Petrov, Phys.Rev. D79 (2009) 114030

NP-sensitive, th. challenging

Decays with hadrons in the f.s.

- Evaluation of (nonlocal) matrix elements problematic:
- Not heavy enough to apply QCDF
- Extremely difficult on the lattice
- Aim for order-of-magnitude NP that could emerge on hadronic uncertainties or
- Use some symmetry argument to get rid of hadronic matrix elements

Matrix elements at $\mu \sim m_{c}$:

- Relate $\left\langle Q_{1-6,8}\right\rangle \sim\left\langle Q_{7,9,10}\right\rangle$ perturbatively.
- Factorize leptonic and hadronic currents.
- Parametrize hadronic $\left\langle Q_{7,9,10}\right\rangle$ via form factors.
- Relate form factors within heavy quark effective theory.
- Parametrize form factor $\left(f_{+}\right)$via z-expansion (parameters fitted via $D \rightarrow \pi \ell \nu_{\ell}$).

These operators induce nonperturbative LD contributions

$$
\mathrm{D}^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}
$$

NP from LHCb upper bound:
max: $V_{u b} V_{c b}^{*}\left|C_{9}^{\mathrm{NP}}\right|<1.87$

Obtain a bound on

운
$\stackrel{5}{0}$
5
5

CPV IN SCS D DECAYS

- CPV in SCS D decays suppressed by Im $\left(\mathrm{V}_{\mathrm{ub}} \mathrm{V}_{\mathrm{cb}} / \mathrm{V}_{\mathrm{us}} \mathrm{V}_{\mathrm{cs}}\right) \mathrm{P} / \mathrm{T}=6.50^{-4} \mathrm{P} / \mathrm{T}$
- Need an estimate of P / T to give a bound on SM CPV and search for NP, unless $A_{C P}{ }^{\text {exp }} \gg 10^{-3}$
- or use symmetry arguments to get rid of hadronic matrix elements

TESTING FOR NP USING $\Delta I=3 / 2$

- the general idea:
- in SM $\Delta I=3 / 2$ comes from tree operators (up to very small EWP)
- it carries no weak phase
- test if $\Delta I=3 / 2$ amplitude is CPV
- if it is \Rightarrow found NP!

THE IMPLEMENTATION

- we want to isolate $\Delta \mathrm{I}=3 / 2$ amplitudes
- for D^{0} and D^{+}decays this means identifying $I=2$ final state
- so can use $D \rightarrow \pi \pi, \rho \pi, \rho \rho$ decays
- but not $D \rightarrow K K$ decays
- for D_{s}^{+}decays need to isolate $\mathrm{I}=3 / 2$ final state
- $D_{s} \rightarrow \pi K, \ldots$ decays
- need to be careful about isospin breaking
- all sum rules valid to $2 n d$ order in isospin breaking
- corrections expected at $\mathrm{O}\left(10^{-4}\right)$
- present experimental errors at $\mathrm{O}\left(10^{-2}\right)$ to $\mathrm{O}\left(10^{-3}\right)$
- Cannot isolate NP in $\Delta I=1 / 2$ with isospin
- Could $S U(3)$ provide an estimate of P / T ?
- Exact SU(3) does not describe BR's
- Beyond exact SU(3), all reduced matrix elements generated \Rightarrow no prediction (except for few sum rules valid to $O\left(\varepsilon^{2}\right)$)
- SU(3) might help in identifying a hierarchy of amplitudes, but more dynamical info needed to predict CPV

See also A. Paul

Implications of sum rule II, future scenario

But: Assuming better measurements of the branching ratios by a factor of $\sqrt{50}$ changes the picture:

No th. assumption \Rightarrow no prediction

Green: prediction from $a_{C P}^{\mathrm{dir}}\left(D^{+} \rightarrow \bar{K}^{0} K^{+}\right), a_{C P}^{\mathrm{dir}}\left(D_{s}^{+} \rightarrow K^{0} \pi^{+}\right)$, and global fit to branching ratios.
Magenta: same as blue, but without $1 / N_{c}$ constraints.
Red: measurement. Dotted: 1σ, solid: 2σ, dot-d
Not shown: error from $\operatorname{SU}(3)_{F}$ breaking in $P_{s}+P_{d}$.

CONCLUSIONS

- Constantly improving experimental results are challenging our theoretical understanding of charm physics
- Interesting open problems in spectroscopy and production in vacuum and in matter could lead us to a much deeper understanding of QCD dynamics

CONCLUSIONS II

- The ever-increasing samples of D decays a \dagger LHCb, BESIII, BelleII, LHCb upgrade and possibly τ / c and XFX might provide us with evidence for NP
- A combined attack to seemingly impossible problems such as nonleptonic D decays using all possible tools will eventually allow us to fully exploit their potential NP sensitivity

