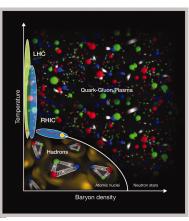
Theory aspects of open heavy flavor production and suppression in cold and hot nuclear matter

Marlene Nahrgang Duke University

May 19th 2015 at CHARM 2015, Detroit



What do we want to study?

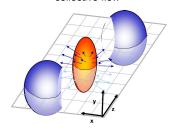
- Properties of strongly interacting many-body systems.
- Phases of hot and dense nuclear matter.
- Tool: (ultra)relativistic heavy-ion collisions.
- LHC: PbPb at $\sqrt{s_{\rm NN}}=$ 2.76, 5 TeV RHIC: AuAu at $\sqrt{s_{\rm NN}}=$ 200 7.7 GeV

Barbara V. Jacak, and Berndt Müller Science 2012;337:310-314

How to probe the properties of the quark-gluon plasma?

Probes

- Probes should not thermalize with the medium, e.g. dileptons, high-pT jets,...
- The mass of heavy quarks (HQ) sets another scale: m_c, m_b
 (top is too heavy to be produced abundantly and decays quickly)
- HQ vacuum shower terminates much earlier: E/Q_H^2 with $Q_H=\sqrt{Q_0^2+m_Q^2}$.
- The HQ mass reduces the radiation phase space: dead cone effect
- Number of thermally excited HQ is negligibly small.
- HQ as leading parton is always tagged (hard radiations change energy but not identity).

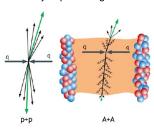


Quark-gluon plasma and its properties

Expectation in heavy-ion collisions:

Formation of QGP, which evolves fluid dynamically as a nearly perfect fluid.

collective flow



observable: Fourier coefficients of

$$\frac{\mathrm{d}^2 N}{\mathrm{d} p_T \mathrm{d} y} \propto \sum_n \frac{\mathbf{v_n}}{\mathbf{cos}(n\phi)}$$

sensitive to viscosity η/s

jet quenching

observable: nuclear modification factor

$$R_{AA}(p_T) = \frac{1}{N_{\text{coll}}} \frac{dN_{AA}/dp_T}{dN_{pp}/dp_T}$$

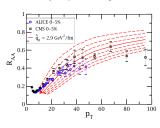
sensitive to jet quenching parameter \hat{q}

Quark-gluon plasma and its properties

Expectation in heavy-ion collisions:

Formation of QGP, which evolves fluid dynamically as a nearly perfect fluid.

collective flow


B. Schenke et al. PLB702 (2011)

observable: Fourier coefficients of

$$\frac{\mathrm{d}^2 N}{\mathrm{d} p_T \mathrm{d} y} \propto \sum_n \frac{\mathbf{v}_n \cos(n\phi)}{}$$

sensitive to viscosity η/s

jet quenching

Jet Collab. PRC90 (2014)

observable: nuclear modification factor


$$R_{AA}(p_T) = \frac{1}{N_{coll}} \frac{dN_{AA}/dp_T}{dN_{pp}/dp_T}$$

sensitive to jet quenching parameter \hat{q}

production

interaction with the medium

hadronization

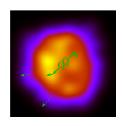
FORL (NC - D') = 0.238)
POWEG PY
POWEG

 LO pQCD → including resummation of logs: FONLL → inclusive spectra ⇒ back-to-back initialization, no information about the azimuthal QQ correlations

M. Cacciari et al. PRL95 (2005), JHEP 1210 (2012)

 NLO pQCD matrix elements plus parton shower, e.g. POWHEG or MC@NLO ⇒ exclusive spectra, like QQ correlations

S. Frixione et al. JHEP 0206 (2002), JHEP 0308 (2003)

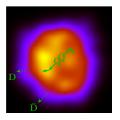

 Cold nuclear matter effects, i.e. shadowing, p_T broadening aka Cronin effect, etc.

K. J. Eskola, H. Paukkunen and C. A. Salgado, JHEP 0904 (2009)

production

interaction with the medium

hadronization

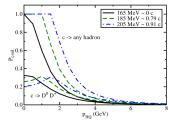

- Collisional (elastic) cross sections ⇒
 ΔE ~ log(E)L
- Incoherent radiation (GB regime) \Rightarrow $\Delta E \sim EL/I_{mfp}$
- Coherent radiation (BDMPS-Z regime) \Rightarrow $\Delta E \sim \sqrt{E}L$
- Dead cone effect reduces radiative energy loss for heavy quarks.
- For very energetic partons and thin media \Rightarrow $\Delta E \sim L^2$
- Further radiative effects: finite gluon mass and width

J. D. Bjorken (1982); E. Braaten et al, PRD 44 (1991), PRD 44 (1991); A. Peshier, PRL 97 (2006); S. Peigne et al., PRD 77 (2008) 114017; M. Gyulassy et al, NPB 420 (1994); BDMPS PLB 345 (1995); NPB 483 (1997); ibid. 484 (1997); B. G. Zakharov, JETP Lett. 63 (1996) 952; ibid. 64 (1996) 781; ibid. 65 (1997) 615; ibid. 73 (2001) 49; ibid. 78 (2003) 759; M. Gyulassy et al, PRL 85 (2000); NPB 571 (2000) 197; ibid. 594 (2001); Y. L. Dokshitzer et al., PLB 519 (2001); P. B. Arnold et al., JHEP 0011 (2000), 0305 (2003); N. Armesto et al., PRD 69 (2004); PRCC 72 (2005); B.-W. Zhang et al., PRL 93 (2004); B. Kämpfer et al., PLB 477 (2000); M. Djordjevic et al., PRC 68 (2003) PLB 560 (2003); M. Bluhm et al. PRL 107 (2011); O. Fochler et al. PRD88 (2013); M. Djordjevic, PLB734 (2014); J. Aichelin et al. PRD89 (2014)

production

interaction with the medium

hadronization

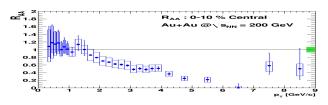

 Coalescence/Recombination – predominantly at small p_T.

C. B. Dover, U. W. Heinz, E. Schnedermann, J. Zimanyi PRC 44 (1991)

• Fragmentation – predominantly at large p_T .

M. Cacciari, P. Nason, R. Vogt PRL 95 (2005)

prob. coal.



b, m_q = 100MeV b, m_q = 200MeV c, m_q = 100MeV c, m_q = 200MeV 1 2 3 4 5 6 p_Q/m_Q

S. Cao et al. arxiv:1505.01413

What to expect from heavy-quark observables?

PHENIX, PRC84 (2011)

at low $p_T \sim m_O$

- Very different from light partons.
- Nonperturbative!
- Partial thermalization with the light partons in the QGP?
- Diffusion D mainly via collisional processes?
- Hadronization via coalescence/recombination?
- Initial shadowing and cold nuclear matter effects?

at high $p_T >> m_Q$

- Similar to light partons.
- Perturbative regime...
- Rare processes, probe the opacity of the matter.
- Energy loss dE/dx via collisional and radiative processes?
- Coherent energy loss → jet-quenching parameter q̂?
- Hadronization via (medium-modified) fragmentation?

Set the stage: Transport coefficients

Boltzmann equation for HQ phase-space distribution

$$\frac{\mathrm{d}}{\mathrm{d}t}f_Q(t,\vec{x},\vec{p}) = \mathcal{C}[f_Q] \quad \text{with} \quad \mathcal{C}[f_Q] = \int \mathrm{d}\vec{k} \underbrace{\left[\underline{w}(\vec{p} + \vec{k}, \vec{k}) f_Q(\vec{p} + \vec{k}) - \underline{w}(\vec{p}, \vec{k}) f_Q(\vec{p}) \right]}_{\text{loss term}} - \underbrace{w(\vec{p}, \vec{k}) f_Q(\vec{p})}_{\text{loss term}}$$

expanding $\mathcal C$ for small momentum transfer $k \ll p$ (in the medium $k \sim \mathcal O(gT)$) and keeping lowest 2 terms \Rightarrow Fokker-Planck equation

$$\frac{\partial}{\partial t} f_Q(t, \vec{p}) = \frac{\partial}{\partial p^i} \left(A^i(\vec{p}) f_Q(t, \vec{p}) + \frac{\partial}{\partial p^i} \left[B^{ij}(\vec{p}) f_Q(t, \vec{p}) \right] \right)$$
friction (drag)
momentum diffusion

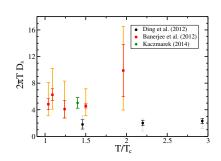
Recast to Langevin equation (probably good for bottom, but for charm?)

$$\frac{\mathrm{d}}{\mathrm{d}t}\vec{p} = -\eta_D(p)\vec{p} + \vec{\xi} \quad \text{with} \quad \langle \xi^i(t)\xi^j(t') \rangle = \kappa \delta^{ij}\delta(t-t')$$

Transport coefficients connected by fluctuation-dissipation theorem (Einstein relation):

$$\eta_D = \frac{\kappa}{2m_O T}, \qquad D_s = \frac{T}{m_O \eta_D} \quad \text{spatial diffusion}$$

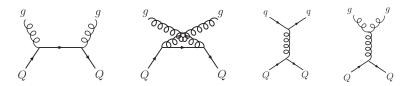
Diffusion coefficient from lattice QCD


Lattice QCD at finite T is performed in Euclidean space \Rightarrow notoriously difficult to calculate dynamical quantities.

Transport coefficients calculated from correlation function of conserved currents

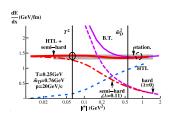
via slope of spectral function ρ_E at $\omega = 0$ (Kubo formula)

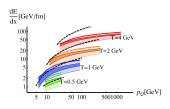
momentum diffusion:


$$\frac{\kappa}{T^3} = \lim_{\omega \to 0} \frac{2T\rho_E(\omega)}{\omega}$$

⇒ No reliable input from lattice QCD calculations yet...

Collisional (elastic) energy loss

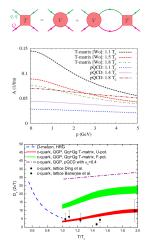

LO Feynmann diagrams for perturbative heavy quark scattering off a light parton



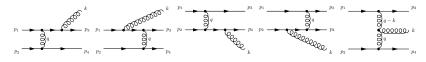
- Dominant contribution from the t-channel
- Well-known IR singularity, regulated by the Debye screening mass m_D
- Gluon propagator: $G(t) = \frac{\alpha_S}{t} \to \frac{\alpha_S}{t-m_D^2}$ with $m_D \sim \mathcal{O}(gT)$
- Use the Hard-Thermal Loop (HTL) resummed gluon propagator for small $|t| \ll t^*$ and the bare gluon propagator $|t| \gg t^*$ to calculate energy loss.
- For well-separated scales g²T² « T² results are independent of the intermediate scale t*.

Nantes model

- Relevant separation of scales $g^2T^2\ll T^2$ probably not fullfilled in RHIC and LHC experiments.
- Idea: introduce a reduced IR regulator λm²_D in the hard part: HTL+semi hard ⇒ by tuning λ achieve independence from t*.
- Calibrate pQCD Born matrix elements with $G(t)=rac{lpha_s}{t-\lambda m_D^2}$ to HTL+semi hard energy loss
- Use a running coupling at the scale of the specific process $\alpha_{\rm eff}(t)$.
- Self-consistently determine the Debye-mass from $m_D^2=(1+6n_f)4\pi\alpha_s(m_D^2)T^2$



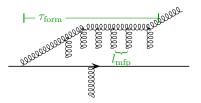
A. Peshier, hep-ph/0601119, PRL 97 (2006); P. B. Gossiaux et al. PRC78 (2008), NPA 830 (2009)

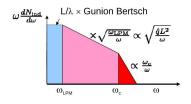

Non-perturbative resonance scattering

- Basic assumption: two-body interactions \to potential V(t) with $t \simeq -\vec{q}^2$ (c, b quarks; $T \lesssim 3T_c$)
- \mathcal{T} -matrix follows from Lippmann-Schwinger equation: $\mathcal{T} = V + \int d^3k V \, G_2 \, \mathcal{T} \to \mathsf{HQ}$ transport coefficients, e.g. $A_Q(\vec{p}) \sim |\mathcal{T}|^2$
- Medium-modified HQ potential from IQCD free/internal energy:
 - Stronger interaction from internal energy based V
 - Enhanced ΔE_{loss} than in pQCD due to resonant HQ-meson and di-quark states in scattering channels
- Spatial diffusion coefficient $D_s = 2\pi T^2/m_Q A_Q$:
 - comparable to quenched IQCD
 - smooth transition to hadronic medium with minimum close to T_c

H. v. Hees, PRC73 (2006); H. v. Hees, PRL100 (2008); R. Rapp arxiv:0903.1096

Radiative energy loss


- LO pQCD matrix element for 2 → 3 process Kunszt et al. PRD21 (1980)
- Gunion-Bertsch approximation derived in the high-energy limit, where the radiated gluon k_{\perp} and the momentum transfer q_{\perp} are soft $\ll \sqrt{s}$.
- Incoherent radiation off a massless parton, mid-rapidity
- Extention beyond mid-rapidity and to finite mass m_Q (heavy quarks!)
 ⇒ distribution of induced gluon radiation:

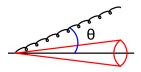

$$P_g(x, \vec{k_\perp}, \vec{q_\perp}, m_Q) = \frac{3\alpha_s}{\pi^2} \frac{1 - x}{x} \left(\frac{\vec{k_\perp}}{\vec{k_\perp}^2 + x^2 m_Q^2} - \frac{\vec{k_\perp} - \vec{q_\perp}}{(\vec{k_\perp} - \vec{q_\perp})^2 + x^2 m_Q^2} \right)^2$$

• $\Rightarrow E_{\rm rad}^{\rm loss} \propto E L$

J. Gunion, PRD25 (1982); O. Fochler et al. PRD88 (2013); J. Aichelin et al. PRD89 (2014)

Coherent emission - LPM

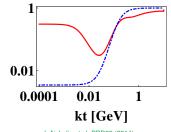
- coherent emission if $au_{
 m form} = \sqrt{rac{\omega}{\hat{q}}} > \emph{I}_{
 m mfp}$
- QCD analogon to the Landau-Pomeranchuk-Migdal (LPM) effect
- Important in QCD: rescattering of the forming gluon with medium partons ⇒ less suppression than in QED
- At large energies in BDMPS-Z: \Rightarrow $E_{\rm rad}^{\rm loss} \propto \sqrt{E} L$
- For very energetic partons $\tau_{\rm form} > L$, then $E_{\rm rad}^{\rm loss} \propto L^2$, estimate for the LHC ($L \sim 2 {\it fm}$, $\hat{q} \sim 2 {\rm ~GeV/fm} \Rightarrow \omega_{\it C} \sim 20 {\rm ~GeV}$)
- Dynamical realization challenging K. Zapp et al. PRL103 (2009), JHEP 1107 (2011), usually implemented effectively.


Baier et al. PLB 345 (1995); NPB 483 (1997); ibid. 484 (1997); B. G. Zakharov, JETP Lett. 63 (1996) 952

Dead cone effect

suppression of high-energetic (small angle) gluon emission by the heavy quark mass:

$$\frac{\mathrm{d}\sigma_{\mathrm{rad}}}{\theta\mathrm{d}\theta} \propto \frac{\theta^2}{\left(\theta^2 + M_Q^2/E_Q^2\right)}$$

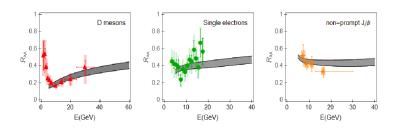

Dokshitzer et al., PLB 519 (2001)

- Suppresses gluon emission in the dead cone $\theta_D = M_O/E_O$
- Introduces a mass hierarchy in the radiative energy loss.
- · But: assumes hard scatterings!
- When the hard scattering assumption is relaxed, emission at low k_⊥ is significantly less suppressed:

$$\frac{P_g(x,k_\perp;M)}{P_g(x,k_\perp;0)}$$

hard-scattering approximation all scatterings

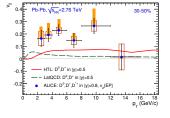
J. Aichelin et al. PRD89 (2014)


From theoretical input to dynamical modeling

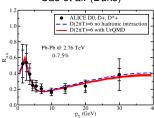
- No reliable input for the HQ diffusion coefficient from lattice QCD calculations.
- pQCD and pQCD inspired models of collisional and radiative processes.
- In a fully dynamical system processes on many scales involved, simple approximations are prone to fail at intermediate p_T.
- Due to uncertainties all models when compared to data contain (implicit or explicit) parameter tuning.
- Proper modeling of the QGP evolution is important! Should be well tested in the light hadron sector!

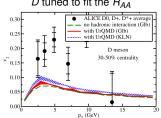
And finally some results...

pQCD at high momenta

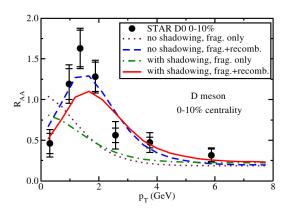


- Collisional and radiative pQCD energy loss implemented, only applicable at high p_T
- Good simultaneous description of D mesons, light hadrons and J/psi.
- While D meson suppression = charm quark suppression, the fragmentation into light hadron distorts the picture ⇒ light hadron suppression dominated by light quark suppression.
- No dynamical QGP description, only parametrized temperatures.


Langevin at the LHC



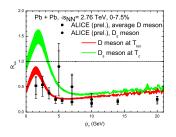
Cao et al. (Duke)

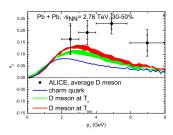


D tuned to fit the R_{AA}

Langevin models have problems describing both the R_{AA} and the v_2 .

Importance of recombination - RHIC

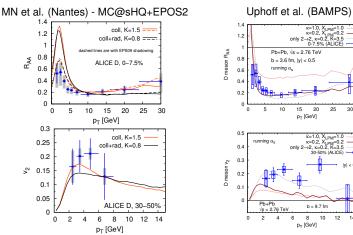



• Recombination needs to be included in order to describe the R_{AA} at lower p_T .

Cao et al. arxiv:1505.01413

Nonperturbative diffusion at the LHC

• Transport coefficients from \mathcal{T} -matrix approach, Langevin dynamics and 2+1d ideal fluid dynamical QGP evolution.



- Rather good description of R_{AA} but v_2 underestimated.
- Strangeness enhancement as signal of the QGP (thermal production) ⇒ enhancement of D_s compared to D mesons.

H. Min et al. PLB735 (2014)

pQCD Boltzmann transport

pQCD-inspired Boltzmann transport in 3 + 1d ideal fluid dynamics (EPOS) or in partonic transport (BAMPS).

- Rather good description of the R_{AA} and the v_2 .
- Slight preference for purely collisional energy loss in MC@sHQ+EPOS2.

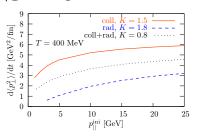
30

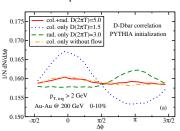
Initial shadowing - cold nuclear matter effects

How much of the observed suppression really comes from the hot QGP? Look at reference systems, like p+Pb collisions.

- The parton distribution function (pdf) is different for a proton in a nucleus than for a free proton: shadowing (ie. a depletion) at small x and possibly antishadowing (ie. enhancement) at intermediate x. → effect is parametrized in sets of npdf
- Parton saturation at small x: large parton densities in the nucleus. E.g. Color Glass Condensate formalism (JIMWLK non-linear evolution equations).
- multiple scattering of partons in the cold nucleus before & after the hard scattering ⇒ transverse momentum broadening, Cronin effect
- If high-multiplicity pA collisions produce a QGP hot medium effects will also contribute (work in progress by groups in Duke, Nantes,...)

For much more, see talk by R. Vogt this afternoon!

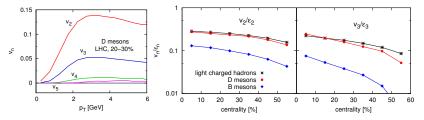

Beyond traditional observables...


Conclusion: too many models can (more or less) well describe the available data.

 \Rightarrow Need new observables with high discriminating power between purely collisional and collisional+radiative approaches: eg. azimuthal correlations of $Q\bar{Q}$ pairs.

 p_{\perp} from MC@sHQ+EPOS2:

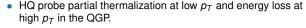
cc̄ correlation plot from Duke model


- Advantages: sensitive to the interaction mechanism: purely coll or coll+rad
- Difficulties: already the cē proton-proton baseline is not well understood theoretically, contributions from final hadronic interactions, experimental feasibility...

MN et al. PRC90 (2014)

Cao et al., arxiv:1505.01869

Beyond traditional observables...


- What can we learn from comparison to data from flow measurements?
- Most models give a τ_{relax} for charm quarks much longer than the evolution of the QGP, but HF v₂ is very similar to light hadron v₂.
- Further contributions from coalescence and energy loss.
- What about higher-order Fourier coefficients?

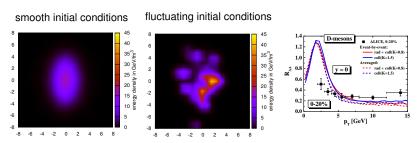
 Expectation: v₃ and higher-order coefficients show the incomplete coupling of HQ to the medium.

MN et al. PRC91 (2015)

Summary

- Mass ordering is seen in collisional and radiative interaction mechanisms from light hadrons → charm → bottom.
- Many effects important at intermediate p_T: onset of coherent gluon emission, gluon thermal mass, finite path length, nonperturbative scatterings,...
- Transport coefficients/scattering cross sections in Langevin or Boltzmann transport.
- In order to compare to experiment theory of energy loss needs to be coupled to a dynamical evolution of the QGP (better to use a model which is well tested in the light hadron sector!)
- R_{AA} and v_2 are described well by (too?) many models.
- Need for further observables, like QQ

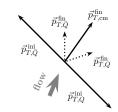
 correlations and higher-order flow coefficients, for veri/falsi-fication of models!

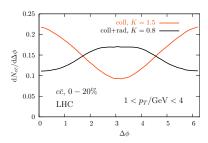

backup

production interaction with the medium hadronization

medium description

coupling medium - HF sector


- Model the QGP: a locally thermalized medium provides the scattering partners.
- Input from a fluid dynamical description of the bulk QGP medium: temperatures and fluid velocities.
- Use a fluid dynamical description which describes well the bulk observables!



"Partonic wind" effect

X. Zhu, N. Xu and P. Zhuang, PRL 100 (2008)

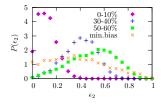
- Due to the radial flow of the matter low-p_T cc̄-pairs are pushed into the same direction.
- Initial correlations at Δφ ~ π are washed out but additional correlations at small opening angles appear.
- This happens only in the purely collisional interaction mechanism!
- No "partonic wind" effect observed in collisional+radiative(+LPM) interaction mechanism!

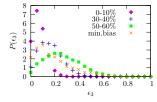
QGP: initial state and bulk flow (1)

• Bulk flow is driven by the initial elliptic or triangular eccentricity ϵ_2 and ϵ_3

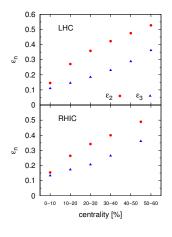
$$\epsilon_n = rac{\sqrt{\langle r^n \cos(n\phi)
angle^2 + \langle r^n \sin(n\phi)
angle^2}}{\langle r^n
angle}$$

• In the light hadron sector the final $v_2 \propto \epsilon_2$ and $v_3 \propto \epsilon_3$ for not too large centralities.

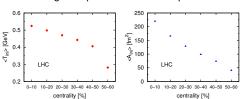

G.-Y. Qin et al., PRC82 (2010); H. Niemi et al., PRC87(2013)


Proportionality depends on viscosity and higher-order flow is more sensitive!

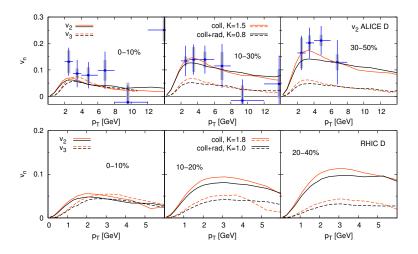
$$\frac{v_n}{\varepsilon_n} = \left(\frac{v_n}{\varepsilon_n}\right)_{\text{ideal}} (1 - \mathcal{O}(n^m K)) \quad m \sim 1 - 2$$


B. H. Alver et al., PRC82, (2010); P. Staig and E. Shuryak, PRC84 (2011); Y. Hatta et al., arXiv:1407.5952

 Dependence on centrality already in the ideal case: FO dynamics, core-corona separation, etc.

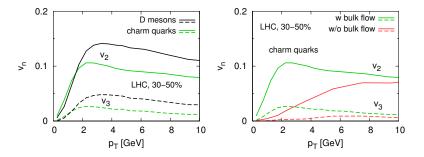


QGP: initial state and bulk flow (2)


average temperature and overlap area

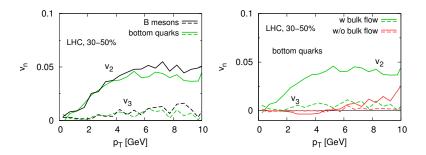
centrality dependence:

- + increase of initial eccentricities
- + decrease of interaction rate and medium size
- \Rightarrow expectation: heavy-flavor flow shows a weaker dependence on centrality, especially for v_3

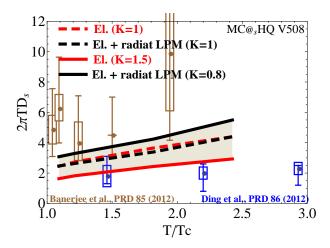

D meson v_2 and v_3 at LHC and RHIC

 At small p_T: relative enhancement of flow in purely collisional scenario over collisional+radiative(+LPM) larger for v₃ than for v₂

Charm flow: hadronization and energy loss


collisional+radiative(+LPM), K = 0.8

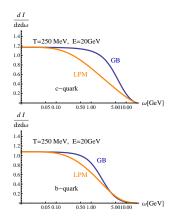
- Contribution to the flow from hadronization.
- For low p_T the charm flow is predominantly due to the flow of the bulk.

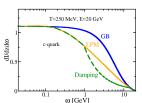

Bottom Flow: hadronization and energy loss

collisional+radiative(+LPM), K = 0.8

- Flow of B mesons reflects well the bottom quark flow.
- Flow of B mesons for $p_T \lesssim 6$ GeV entirely due to bulk flow.

Diffusion coefficient in MC@sHQ


Radiative energy loss


Incoherent radiation:
 Gunion-Bertsch spectrum
 extended to finite quark mass.

J. Aichelin et al., PRD89 (2014), arXiv:1307.5270

- Inclusion of an effective suppression of the spectra in the coherent radiation regime (LPM effect)
- Influence of gluon damping (not in this talk)

M. Bluhm et al., PRL 107 (2011), arXiv:1204.2469

