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Brief Review of NRQCD Factorization

• NRQCD Factorization Conjecture (Bodwin, Braaten, Lepage (1995)):
The inclusive cross section for producing a quarkonium at large momentum
transfer (pT ) can be written as

σ(H) =
∑
n

Fn(Λ)⟨0|OH
n (Λ)|0⟩.

• The Fn(Λ) are the “short-distance” coefficients (SDCs).

– The SDCs are essentially the partonic cross sections to make a QQ̄ pair con-
volved with the parton distributions.

• The ⟨0|OH
n (Λ)|0⟩ are the NRQCD long-distance matrix elements (LDMEs).

– The LDMEs are the probability for a QQ̄ pair to evolve into a heavy quarko-
nium.
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• The SDCs depend on the production process.
They can be calculated in QCD perturbation theory.

• The LDMEs are nonperturbative, but they are conjectured to be universal (pro-
cess independent).

• The LDMEs have a known scaling with the heavy-quark velocity v.

– v2 ≈ 0.23 for the J/ψ. v2 ≈ 0.1 for the Υ(1S).
– The sum in the factorization formula is a v expansion.

• In phenomenology, the v expansion in the factorization formula is truncated at a
particular order in v.

• A key feature of NRQCD factorization: Quarkonium production can occur through
color-octet, as well as color-singlet, QQ̄ states.

– The color-singlet production LDMEs are simply related to color-singlet decay
LDMEs.

– The color-octet LDMEs must be determined from fits to measured production
cross sections.

• If we drop all of the color-octet contributions and retain only the leading color-
singlet contribution, then we have the color-singlet model (CSM).
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• The current phenomenology of production of S-wave quarkonia (J/ψ, ψ(2S), and
Υ(nS)) makes use of LDMEs through relative order v4:

⟨OH(3S
[1]
1 )⟩ (O(v0)),

⟨OH(1S
[8]
0 )⟩ (O(v3)),

⟨OH(3S
[8]
1 )⟩ (O(v4)),

⟨OH(3P
[8]
J )⟩ (O(v4)).

– Calculations show that the 3S
[1]
1 contributions are negligible for J/ψ hadropro-

duction.

– The ⟨OH(3P
[8]
J )⟩ (J = 0, 1, 2) are related by the heavy-quark spin symmetry.

– Three color-octet LDMEs need to be determined phenomenologically for each
state.
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Status of a Proof of NRQCD Factorization

• Nayak, Qiu, Sterman (2005, 2006): Factorization holds through NNLO, up to
corrections of relative order m2

Q/p
2
T .

• It is not known if this result generalizes to higher orders in αs.

• An all-orders proof is essential because soft gluons can violate factorization, and
the αs that is associated with soft gluons is not small.

• In the absence of further theoretical progress, we must rely on experiment to
prove or to disprove NRQCD factorization.
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Why is large pT important?

• Existing proofs of factorization for light hadrons all require pT significantly greater
than the hadron masses.

– Power corrections ∝ (m2
H/p

2
T )
n get out of control when pT ∼ mH.

– There are known violations of factorization at order m4
H/p

4
T .

• Phenomenologically, Drell-Yan factorization doesn’t work until pT ≥ 3mH.

• Suggests that we should require pT ≥ 3mquarkonium.
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What are LP and NLP factorization (fragmentation)?

• Leading power (LP) fragmentation:
(Collins, Soper (1982))

– dσ/dp2T ∼ 1/p4T .

dσ[a+ b→ quarkonium +X] ∼ dσ[a+ b→ c+X]︸ ︷︷ ︸
hard scattering

⊗D[c→ quarkonium +X]︸ ︷︷ ︸
fragmentation fn.

.

• Next-to-leading power (NLP) fragmentation:
(Kang, Qiu, and Sterman (2011); Fleming, Leibovich, Mehen, Rothstein (2012))

– dσ/dp2T ∼ m2
Q/p

6
T .

dσ[a+ b→ quarkonium +X] ∼ dσ[a+ b→ QQ̄+X]︸ ︷︷ ︸
hard scattering

⊗D[QQ̄→ quarkonium +X]︸ ︷︷ ︸
fragmentation fn.

.

• Believed to hold to all orders in perturbation theory up to corrections of order
m4
Q/p

8
T .
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• Not very predictive by itself because the nonperturbative fragmentation functions
are unknown.

• If NRQCD factorization holds, then the fragmentation functions can be written as
a sum of NRQCD LDMEs times perturbatively calculable short-distance coeffi-
cients.

– Then, the fragmentation approach provides powerful a way to identify and
compute the contributions (LP and NLP) that are most important at high pT .

– Much simpler than a full perturbative calculation at any given order in αs.

– Also provides a framework in which to resum logs of p2T/m
2
Q.
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What happens in Hadroproduction at LO in αs?

• Only the 3S
[8]
1 contribution has LP behavior in LO.

– Dominates at large pT .

• The 3S
[8]
1 contribution is transversely polarized.

• LO NRQCD factorization predicts large transverse polarization at large pT .

• This prediction is not borne out by the data.
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J/ψ Polarization in LO

CDF Run I:

′

CDF Run II:
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• α ≡ λθ =

 1 transverse
0 unpolarized

−1 longitudinal

• LO NRQCD prediction (Braaten, Kniehl,
Lee (1999)).

• Run I results are marginally compatible
with the LO NRQCD prediction.

• The Run II results are incompatible with
the LO NRQCD prediction.

• The Run I and Run II results are incon-
sistent with each other.
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ψ(2S) Polarization in LO

Run: I

Run: II
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• The error bars on the Run I data are
too large to make a stringent test.

• The Run II data are incompatible with
the LO NRQCD prediction.
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Υ Polarization in LO

Υ(1S) Polarization:

Υ(2S) Polarization:
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• In the Υ(1S) case, the D0 results
(red) are incompatible with the CDF
results (black).

• Both the CDF and D0 results are
incompatible with the LO NRQCD
prediction (green) (Braaten and Lee
(2000)), but in different regions of pT .

• In the Υ(2S) case, the theoretical and
experimental error bars are too large
to make a stringent test.
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• It was thought that these discrepancies between theory and experiment might
not be definitive because

– there are inconsistencies in the experimental data,

– pT might not be high enough for factorization to work.

• These ideas were laid to rest by the CMS (2013) polarization measurement.
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What happens in Hadroproduction at NLO in αs?

• There is a large k factor ∼ −10 in the 3P
[8]
J channel.

• On the other hand, NLO corrections to the 3S
[8]
1 and 1S

[8]
0 channels are small.

Explanation

• Enhancements at high pT from LP behavior can overcome a power of αs.

• The 3P
[8]
J channel receives a large (negative) correction in NLO because it first

shows LP behavior in NLO (gluon fragmentation).

• The 3S
[8]
1 channel receives a small correction in NLO because it already has LP

behavior in LO (gluon fragmentation).

• The 1S
[8]
0 channel first shows LP behavior in NLO (gluon fragmentation).

But the NLO correction happens to be small (no IR enhancement).
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Why are there so many different NLO predictions?

• Three groups have carried out complete NLO calculations.

– PKU group (Kuang-Ta Chao’s group): Ma, Wang, Chao

– Hamburg group (Bernd Kniehl’s group): Butenschön, Kniehl

– IHEP group (Jianxiong Wang’s group): Gong, Wan, Wang, Zhang

• All three groups agree on the SDCs for hadroproduction.

• However, they extract very different NRQCD LDMEs and make different predic-
tions because of different assumptions about the data used in the fits.

• The PKU group (2010) fits the CDF J/ψ data for pT > 7 GeV.
They were able to determine only 2 linear combinations of LDMEs unambigu-
ously:

M0,r0 = ⟨OJ/ψ
(1
S
[8]
0

)
⟩+ (r0/m

2
c)⟨OJ/ψ

(3
P

[8]
0

)
⟩ = (7.4± 1.9)× 10−2 GeV3,

M1,r1 = ⟨OJ/ψ
(3
S
[8]
1

)
⟩+ (r1/m

2
c)⟨OJ/ψ

(3
P

[8]
0

)
⟩ = (0.05± 0.02)× 10−2 GeV3.

r0 = 3.9 and r1 = −0.56.
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• The Hamburg group (2011) determined all 3 color-octet LDMEs by making a
global fit to data with pT > 3 GeV from the Tevatron, LHC, RHIC, HERA, LEP II,
KEKB.

– They made use of their computations of NLO corrections to pp̄, pp, ep, γγ, and
e+e− production.

– Their LDMEs are very different from those of the PKU group:

M0,r0 = (2.17± 0.56)× 10−2 GeV3,

M1,r1 = (0.62± 0.08)× 10−2 GeV3.

• The IHEP group (2012) fit the CDF J/ψ, ψ(2S), and χcJ data for
pT > 7 GeV.

– They included NLO feeddown contributions from ψ(2S) and χcJ in their fit.
– They were able to determine all 3 color-octet LDMEs.
– They obtained a quality of fit and a result for the LDME linear combinations

that is similar to that of the PKU group:

M0,r0 = (6.00± 0.98)× 10−2 GeV3,

M1,r1 = (0.07± 0.02)× 10−2 GeV3.
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• Most of the difference between the Hamburg-group fit and the others comes from
the use of HERA (H1 (2002, 2005)) data.
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• The HERA data lie at pT <∼ 8 GeV.

• Does NRQCD factorization hold at
such low values of pT?
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• Although the Hamburg-group fits agree with the data, within uncertainties, there
are tensions in the shapes.

• The shape of the PKU-group fit agrees with the CDF data better than the shape
of the Hamburg-group (2011) global fit.
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• The shape discrepancy between the Hamburg-group prediction and the data
becomes more apparent at high pT .

• ATLAS (2011) data.

• Not included in the Hamburg-group
global fit.

• All of this suggests that NRQCD factorization may not work until pT is much
greater than the quarkonium mass.
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What happens to J/ψ polarization in NLO?

• At high pT , the 3P
[8]
J channel is mostly transversely polarized—just like the 3S

[8]
1

channel.

• Large NLO corrections to the 3P
[8]
J channel give it the same shape as the 3S

[8]
1

channel at high pT .

• The contribution from the 3P
[8]
J channel could cancel the contribution from the

3S
[8]
1 channel.

• The resulting 1S
[8]
0 dominance would result in near-zero polarization.
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Hamburg group (2011): NLO Prediction for J/ψ Polarization
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• Uses the Hamburg-group (2011)
global fit of the J/ψ production cross
sections.

• The contributions of the 3P
[8]
J and

3S
[8]
1 channels add to produce sub-

stantial polarization at high pT .

• The prediction is in disagreement with
the CDF data.
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• The prediction based on the Hamburg-group (2011) global fit is also in disagree-
ment with the CMS data.
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Chao, Ma, Shao, Wang, Zhang (PKU Group)(2012): Fit to J/ψ Polarization in NLO

• Two LDME combinations are insufficient to predict the polarization.

• Fix all three LDMEs by including the CDF Run II J/ψ polarization measurement
in the fit, as well as the CDF Run II measurements of dσ/dpT .
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• The 3S
[8]
1 and 3P
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J contributions

largely cancel.

• 1S
[8]
0 dominance ⇒ near-zero polariza-

tion.
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• The PKU-group (2012) LDMEs still give reasonable predictions for the LHC pT
spectra.
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• The PKU-group (2012) LDMEs
predict a slightly longitudinal po-
larization at the LHC.
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• However, the PKU-group LDMEs seem to be incompatible with the HERA data,
even at pT ≈ 8 GeV.
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Figure courtesy of Mathias Butenschön.

• Is higher pT needed in order suppress non-factorizing contributions?
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IHEP group (2013): NLO Prediction for J/ψ polarization

• Makes use of the LDMEs from a fit to the CDF (2005, 2009) and
LHCb (2011, 2012) J/ψ, χcJ , and ψ(2S) production cross sections.

• Effects of feeddown from χcJ and ψ(2S) states calculated and included in fits
and polarization predictions.

J/ψ Polarization at CDF:

• The prediction for CDF shows less transverse polarization than that of the Ham-
burg group.

• Agrees with the CDF Run I data, but not with the CDF Run II data.
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J/ψ Polarization at CMS:
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• The IHEP-group prediction (blue band) shows less transverse polarization than
the Hamburg-group prediction (green band).

• Still in disagreement with the CMS data.
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Conclusion about NLO Polarization

• NLO calculations either fail to make a polarization prediction (PKU) or make
predictions that disagree with the data (Hamburg, IHEP).
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What do we expect beyond NLO in αs?

• Since all three color-octet channels have LP behavior at NLO, we expect further
corrections to have “normal” k factors: factor of two or less.

• Exception: The LO and NLO corrections in the 3PJ channel have opposite signs
and cancel completely at pT ≈ 7 GeV.

– NNLO corrections could be very important in this channel.

How do we go beyond NLO in αs?

• Full NNLO calculations are probably not feasible at present.

• Use LP and NLP factorization to simplify the calculation.

• LP and NLP factorization are only valid for pT significantly larger than the quarko-
nium mass.
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LP-Fragmentation Corrections to J/ψ Hadroproduction

• Bodwin, Chung, Kim, Lee (2014):

– Fragmentation functions through α2
s.

– Parton-production cross sections through NLO (α3
s).

– Resummation of leading logs of p2T/m
2
c.

• As expected, the 3P
[8]
J channel re-

ceives large corrections.
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• The 3P
[8]
J contribution now has almost the same shape as the 3S

[8]
1 contribution.

NLO LP+NLO

• Bodwin, Chao, Chung, Kim, Lee, Ma (in progress):
Include feeddown from χcJ and ψ(2S) states.

• Fit to the CDF and CMS hadroproduc-
tion cross sections at pT > 10 GeV ≈
3mJ/ψ fixes the LDMEs.
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• The 3S
[8]
1 and 3P

[8]
J contributions large-

ly cancel: 1S
[8]
0 dominance.

• Prediction of near-zero polarization.
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Outstanding Problems

J/ψ Photoproduction at HERA

• Bodwin, Chung, Kim, Lee (2015): LP-fragmentation corrections do not resolve
the discrepancy between theory and experiment for photoproduction.

• Additional LP-fragmentation correc-
tions beyond NLO are small.

• The pT of the highest measured point
is only about 8 GeV.
Maybe too small for NRQCD factoriza-
tion to hold.

• But theory and data are not trending
toward each other as pT increases.
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ηc Production at LHCb

Butenschön and Kniehl (2014)

• The NLO prediction for the ηc cross section overshoots the LHCb (2014) mea-
surement by a factor of about 6.
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• The ηc LDMEs are fixed by using
the heavy-quark spin symmetry of
NRQCD to relate them to the J/ψ
LDMEs.
Good up to corrections of relative or-
der v2.

• The color-singlet contribution alone
accounts for the measured cross sec-
tion.

Theoretical Aspects Quarkonium Production in Vacuum 34 G. Bodwin (ANL)



• Use of the Bodwin et al. LDMEs from
LP+NLO fits to the J/ψ cross-section
makes the situation worse.
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Han, Ma, Meng, Shao, Chao (PKU Group) (2014)

• Apply an additional constraint to the PKU 2010 LDME fit:

0 < ⟨Oηc(3S
[8]
1 ⟩ < 0.0146 GeV3 =⇒ 0 < ⟨OJ/ψ(1S

[8]
0 ⟩ < 0.0146 GeV3

• They obtain reasonable agreement
with the ηc cross-section data.
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• The fit to the J/ψ cross-section data is
still reasonable, as well.
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• However, there is tension between the
data and the prediction for the J/ψ po-
larization.
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A Possible Weakness in the Measurement

• LHCb measures the relative rates of the ηc and J/ψ in the pp̄ channel.

• BF(ηc → pp̄) is determined from a global fit to BFs that has a very poor χ2/d.o.f.

• Direct measurements of BF(ηc → pp̄) have large uncertainties.

• A 2σ deviation to the low side would boost the cross section by a factor 3.
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Conclusions and Outlook

• Theoretical predictions for quarkonium production have undergone a major trans-
formation in recent years.
LO ⇒ NLO ⇒ LP+NLO ⇒ LP+NLP+NLO ??

• Much of this transformation has been driven by high-quality collider measure-
ments.

• The J/ψ hadroproduction cross sections and polarization are now well described
by theory.

• However, important discrepancies between theory and experiment remain.

– J/ψ photoproduction

– ηc hadroproduction
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What do we need from theory?

• NLO calculations for more processes

– double-charmonium production

– J/ψ + Z, J/ψ +W±

– J/ψ + jet

• LP and NLP calculations for more processes

• New ideas for additional experimental tests of theory

• A proof or disproof of NRQCD factorization
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What do we need from experiment?

• Check of the ηc cross-section measurement

• Measurements at the highest accessible values of pT in order to minimize effects
of non-factorizing contributions

• Measurements of direct-production cross sections and polarizations in order
avoid confusion from feeddown effects

• Measurements of χcJ cross sections and polarizations

– Particularly interesting because only one LDME must be determined from
phenomenology.

– Initial cross-section measurements show good agreement between theory
and experiment, but uncertainties are still large.

– The color-singlet LDME from fits to experiment agrees well with potential-
model values:
Suggests that NRQCD factorization is working.
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• Measurements of Υ(nS) and χb(nP ) cross sections and polarizations at higher
precision and higher pT (some measurements already exist)
Tests NRQCD in a new regime in which v2 is much smaller than for charmonium
systems.

– The v expansion should work much better for Υ(nS) than for J/ψ.

– Different v2 may mean different relative sizes of LDMEs.

Non-factorizing contributions may be suppressed only at pT ≫ mΥ.

• Measurements of additional production processes

– double-charmonium production

– J/ψ + Z, J/ψ +W±

– J/ψ + jet
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Outlook

• Thanks to the interplay between theory and experiment, we have come a long
way in understanding quarkonium production.

• We are not yet at the end of the story.
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Backup Slides
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• The current phenomenology of production of P -wave quarkonia (χcJ) makes use
of LDMEs through relative order v4:

⟨OH(3P
[1]
J )⟩ (O(v4)),

⟨OH(3S
[8]
1 )⟩ (O(v4)).

– The ⟨OH(3P
[1]
J )⟩ (J = 0, 1, 2) are related by the heavy-quark spin symmetry.

They can be determined from potential models.

– Only one LDME (⟨OH(3S
[8]
1 )⟩) has to be determined from phenomenology.
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Why isn’t the CSM a viable description of production?

• The CSM is theoretically inconsistent.

– Uncanceled infrared divergences at leading order in v for production of P -
wave states and at higher orders in v for other states.

• The CSM predictions in NLO fall well below the observed cross sections.
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• The NNLO* calculation is an es-
timate based on real-emission
contributions only.

• When the virtual contributions
are added, the true NNLO con-
tribution will likely be smaller.

Theoretical Aspects Quarkonium Production in Vacuum 46 G. Bodwin (ANL)



• The CSM predictions in NLO do not describe the polarization data.
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• There is also a slight discrepancy in shape between the LHCb data and the
Hamburg-group (2010) NLO fit to the Tevatron and HERA data.
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Why isn’t the CEM viable as a description of production?

• The Color Evaporation Model (CEM) says that rate to produce a quarkonium is
proportional to the rate to produce aQQ̄ pair, regardless of the quantum numbers
of the QQ̄ pair or the quarkonium.

– Not plausible in quantum field theory: Different QQ̄ states will have different
overlaps with a given quarkonium state.

• The CEM requires an ad hoc modification, kT smearing, in order to describe the
data reasonably well.

• Nevertheless, because of its simplicity, the CEM is a useful way to describe pro-
duction when a fundamental theory is not necessary, e.g. in studies of production
in media.
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Why isn’t the kT -Factorization Approach getting more attention?

• The kT -Factorization Approach could, in principle, yield valid results. But. . .

• it relies on kT -dependent parton distributions, which are poorly determined;

• calculations are usually carried out within the CSM;

• calculations are usually carried out only in LO.
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e+e− → J/ψ +X(non-cc̄)

• Belle (2009):

σ(e+e− → J/ψ +X(non-cc̄)) = 0.43± 0.09± 0.09 pb.

• NLO calculation (Zhang, Ma, Wang, Chao (2009), Butenschön and Kniehl (2011)):

σ(e+e− → J/ψ +X(non-cc̄)) = 0.99+0.35
−0.17 pb (µ =

√
s/2).

– NRQCD LDMEs from the Butenschön-Kniehl (2011) global fit.

– Includes feeddown estimate of 0.29 pb from Zhang, Ma, Wang, Chao (2009).

• The comparison with the Belle data favors the Butenschön-Kniehl value of M0,r0.

Comments

• The most recent Belle (2009) measurements give

σ(e+e− → J/ψ +X) = σ(e+e− → J/ψ + cc̄+X) + σ(e+e− → J/ψ +X(non-cc̄))
= 1.17± 0.12+0.13

−0.12 pb.
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• However, BaBar (2001) obtained

σ(e+e− → J/ψ +X) = 2.52± 0.21± 0.21 pb.

• Most of the data are at pT <∼ 3 GeV. Does factorization hold at such small values
of pT?
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J/ψ Production in γγ Scattering at LEP II
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• The DELPHI (2003) data are
slightly incompatible with the
prediction of the Butenschön
and Kniehl (2011) global fit.

• The error bars are large, espe-
cially at high pT .

• Factorization may not hold at low
values of pT .
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• The prediction from the Butenschön
and Kniehl (2011) global fit is in
agreement with the ALICE (2012)
data.

• But the theory is for direct production,
while the ALICE data includes pro-
duction in B-meson decays and feed-
down from χcJ states and the ψ(2S).
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• The Butenschön and Kniehl (2011) global fit can also be used to predict the
polarization in inelastic J/ψ photoproduction at HERA.

• The data are roughly compatible
with the theory at large pT , but
the error bars are large.
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