Resolving m_{c} and m_{b} in precision Higgs boson analyses

Zhengkang Zhang

University of Michigan

Based on A. A. Petrov, S. Pokorski, J. D. Wells, ZZ, Phys. Rev. D 91, 073001 (2015) [arXiv:1501.02803 [hep-ph]]

Introduction: the precision frontier

Measure its properties very precisely! (BSM hints?)

- Theory expectation: $\left(\frac{v}{\mathrm{TeV}}\right)^{2} \sim \mathcal{O}(1 \%)$.
- Experiment expectation: (sub)percent-level measurements of $\Gamma_{H \rightarrow c \bar{c}}, \Gamma_{H \rightarrow b \bar{b}}$ at HL-LHC, ILC, FCC-ee, CEPC. [Asner et al, 1310.0763] [Peskin, 1312.4974] [Fan, Reece, Wang, 1411.1054] [Ruan, 1411.5606]

Introduction: the precision frontier

Measure its properties very precisely! (BSM hints?)

- Theory expectation: $\left(\frac{v}{\mathrm{TeV}}\right)^{2} \sim \mathcal{O}(1 \%)$.
- Experiment expectation: (sub)percent-level measurements of $\Gamma_{H \rightarrow c \bar{c}}, \Gamma_{H \rightarrow b \bar{b}}$ at HL-LHC, ILC, FCC-ee, CEPC. [Asner et al, 1310.0763] [Peskin, 1312.4974] [Fan, Reece, Wang, 1411.1054] [Ruan, 1411.5606]

Will future experiments be sensitive to \%-level new physics effects?
No, unless theory uncertainties can be reduced to below $\mathcal{O}(1 \%)$!

Motivation: theory uncertainties in $\Gamma_{H \rightarrow c \bar{c}}, \Gamma_{H \rightarrow b \bar{b}}$

Where are the theory uncertainties from?

- Perturbative uncertainty well below 1%, thanks to $\mathrm{N}^{4} \mathrm{LO}$ calculations [Baikov, Chetyrkin, Kuhn, hep-ph/0511063].

Motivation: theory uncertainties in $\Gamma_{H \rightarrow c \bar{c}}, \Gamma_{H \rightarrow b \bar{b}}$

Where are the theory uncertainties from?

- Perturbative uncertainty well below 1%, thanks to $\mathrm{N}^{4} \mathrm{LO}$ calculations [Baikov, Chetyrkin, Kuhn, hep-ph/0511063].
- Parametric uncertainties dominate, especially a few \% from input quark masses m_{c}, m_{b} :

$$
\frac{\Delta \Gamma_{H \rightarrow c \bar{c}}}{\Gamma_{H \rightarrow c \bar{c}}} \simeq \frac{\Delta m_{c}\left(m_{c}\right)}{10 \mathrm{MeV}} \times 2.1 \%, \quad \frac{\Delta \Gamma_{H \rightarrow b \bar{b}}}{\Gamma_{H \rightarrow b \bar{b}}} \simeq \frac{\Delta m_{b}\left(m_{b}\right)}{10 \mathrm{MeV}} \times 0.56 \% .
$$

where $m_{Q}\left(m_{Q}\right) \equiv m_{Q}^{\overline{\mathrm{MS}}}\left(\mu=m_{Q}\right)$.
[Denner, Heinemeyer, Puljak, Rebuzzi, Spira, 1107.5909]
[Almeida, Lee, Pokorski, Wells, 1311.6721]
[Lepage, Mackenzie, Peskin, 1404.0319]
etc.
cf. PDG: $m_{c}\left(m_{c}\right)=1.275(25) \mathrm{GeV}, m_{b}\left(m_{b}\right)=4.18(3) \mathrm{GeV}$.

Motivation: theory uncertainties in $\Gamma_{H \rightarrow c \bar{c}}, \Gamma_{H \rightarrow b \bar{b}}$

Where are the theory uncertainties from?

- Perturbative uncertainty well below 1%, thanks to $\mathrm{N}^{4} \mathrm{LO}$ calculations [Baikov, Chetyrkin, Kuhn, hep-ph/0511063].
- Parametric uncertainties dominate, especially a few \% from input quark masses m_{c}, m_{b} :

$$
\frac{\Delta \Gamma_{H \rightarrow c \bar{c}}}{\Gamma_{H \rightarrow c \bar{c}}} \simeq \frac{\Delta m_{c}\left(m_{c}\right)}{10 \mathrm{MeV}} \times 2.1 \%, \quad \frac{\Delta \Gamma_{H \rightarrow b \bar{b}}}{\Gamma_{H \rightarrow b \bar{b}}} \simeq \frac{\Delta m_{b}\left(m_{b}\right)}{10 \mathrm{MeV}} \times 0.56 \% .
$$

where $m_{Q}\left(m_{Q}\right) \equiv m_{Q}^{\overline{\mathrm{MS}}}\left(\mu=m_{Q}\right)$.
[Denner, Heinemeyer, Puljak, Rebuzzi, Spira, 1107.5909]
[Almeida, Lee, Pokorski, Wells, 1311.6721]
[Lepage, Mackenzie, Peskin, 1404.0319]
etc.
cf. PDG: $m_{c}\left(m_{c}\right)=1.275(25) \mathrm{GeV}, m_{b}\left(m_{b}\right)=4.18(3) \mathrm{GeV}$.
Goal: understand this uncertainty propagation in more detail.

Precision Higgs analyses: conventional approach

Use PDG quark masses or other averaged quark masses as inputs.

c-QUARK MASS

The c-quark mass corresponds to the "running" mass $m_{c}\left(\mu=m_{c}\right)$ in the $\overline{\mathrm{MS}}$ scheme. We have converted masses in other schemes to the $\overline{\mathrm{MS}}$ scheme using two-loop QCD perturbation theory with $\alpha_{s}\left(\mu=m_{c}\right)=$ 0.38 ± 0.03. The value $1.275 \pm 0.025 \mathrm{GeV}$ for the $\overline{\mathrm{MS}}$ mass corresponds to $1.67 \pm 0.07 \mathrm{GeV}$ for the pole mass (see the "Note on Quark Masses").

VALUE (GeV)	DOCUMENT ID		TECN	COMMENT
1.275 ± 0.025 OUR EVALUATION	See the ideogram below.			
$1.26 \pm 0.05 \pm 0.04$	${ }^{1}$ ABRAMOWICZ	13 C	COMB	$\overline{\mathrm{MS}}$ scheme
$1.24 \pm 0.03{ }_{-0.07}^{+0.03}$	${ }^{2}$ ALEKHIN	13	THEO	$\overline{\mathrm{MS}}$ scheme
$1.282 \pm 0.011 \pm 0.022$	${ }^{3}$ DEHNADI	13	THEO	$\overline{\mathrm{MS}}$ scheme
1.286 ± 0.066	${ }^{4}$ NARISON	13	THEO	$\overline{\mathrm{MS}}$ scheme
1.159 ± 0.075	${ }^{5}$ SAMOYLOV	13	NOMD	$\overline{\mathrm{MS}}$ scheme
$1.36 \pm 0.04 \pm 0.10$	${ }^{6}$ ALEKHIN	12	THEO	$\overline{\mathrm{MS}}$ scheme
1.261 ± 0.016	7 NARISON	12A	THEO	$\overline{\mathrm{MS}}$ scheme
1.278 ± 0.009	${ }^{8}$ BODENSTEIN	11	THEO	$\overline{\mathrm{MS}}$ scheme
$1.28{ }_{-0.06}^{+0.07}$	${ }^{9}$ LASCHKA	11	THEO	$\overline{\mathrm{MS}}$ scheme
$1.196 \pm 0.059 \pm 0.050$	${ }^{10}$ AUBERT	10A	BABR	$\overline{\mathrm{MS}}$ scheme
1.28 ± 0.04	11 BLOSSIER	10	LATT	$\overline{\mathrm{MS}}$ scheme
1.273 ± 0.006	12 MCNEILE	10	LATT	$\overline{\mathrm{MS}}$ scheme
1.279 ± 0.013	13 CHETYRKIN	09	THEO	$\overline{\mathrm{MS}}$ scheme
1.25 ± 0.04	14 SIGNER	09	THEO	$\overline{\mathrm{MS}}$ scheme
1.295 ± 0.015	15 BOUGHEZAL	06	THEO	$\overline{\mathrm{MS}}$ scheme
1.24 ± 0.09	16 BUCHMULLER		THEO	$\overline{\mathrm{MS}}$ scheme
$1.224 \pm 0.017 \pm 0.054$	17 HOANG	06	THEO	$\overline{\mathrm{MS}}$ scheme

Unsatisfactory:

- Correlations among the entries neglected
- Correlation with α_{s} neglected
- Uncertainties underestimated and inflated [Dehnadi, Hoang,

Mateu, Zebarjad, 1102.2264]

Precision Higgs analyses: proposed approach

PDG averaged quark masses are dominated by m_{c}, m_{b} determinations from low-energy observables ${ }^{\dagger}$, e.g.

- $e^{+} e^{-} \rightarrow Q \bar{Q}$ cross sections;
- Kinematic distributions of semileptonic B decay.
${ }^{\dagger}$ For the prospect of lattice calculations see [Lepage, Mackenzie, Peskin, 1404.0319].

Precision Higgs analyses: proposed approach

PDG averaged quark masses are dominated by m_{c}, m_{b} determinations from low-energy observables ${ }^{\dagger}$, e.g.

- $e^{+} e^{-} \rightarrow Q \bar{Q}$ cross sections;
- Kinematic distributions of semileptonic B decay.

A global analysis!

$$
\left\{\begin{array}{c}
\widehat{O}_{1}^{\text {low }}\left(m_{c}, m_{b}, \alpha_{s}, \ldots\right) \\
\widehat{O}_{2}^{\text {low }}\left(m_{c}, m_{b}, \alpha_{s}, \ldots\right) \\
\widehat{O}_{3}^{\text {low }}\left(m_{c}, m_{b}, \alpha_{s}, \ldots\right) \\
\vdots
\end{array}\right\} \Leftarrow\left\{\begin{array}{c}
\frac{\text { Inputs }}{m_{c}} \\
m_{b} \\
\alpha_{s} \\
\vdots
\end{array}\right\} \Rightarrow\left\{\begin{array}{c}
\widehat{O}_{1}^{\text {Higgs }}\left(m_{c}, m_{b}, \alpha_{s}, \ldots\right) \\
\widehat{O}_{2}^{\text {Higgs }}\left(m_{c}, m_{b}, \alpha_{s}, \ldots\right) \\
\widehat{O}_{3}^{\text {Higgs }}\left(m_{c}, m_{b}, \alpha_{s}, \ldots\right) \\
\vdots
\end{array}\right\}
$$

${ }^{\dagger}$ For the prospect of lattice calculations see [Lepage, Mackenzie, Peskin, 1404.0319].

Precision Higgs analyses: proposed approach

... just like what we have done before!

Precision electroweak

Precision flavor

Precision Higgs?

Higgs observables $+$ low-energy observables

A first calculation: $\Gamma_{H \rightarrow c \bar{c}}, \Gamma_{H \rightarrow b \bar{b}}$ in terms of $\mathcal{M}_{1}^{c}, \mathcal{M}_{2}^{b}$

To see the role of low-energy observables in this precision Higgs boson analyses, we will

- focus on $\Gamma_{H \rightarrow c \bar{c}}, \Gamma_{H \rightarrow b \bar{b}}$, and
- eliminate m_{c}, m_{b} from the input in favor of $\mathcal{M}_{1}^{c}, \mathcal{M}_{2}^{b}$.
" nth moment of R_{Q} ":

$$
\mathcal{M}_{n}^{Q} \equiv \int \frac{\mathrm{~d} s}{s^{n+1}} R_{Q}(s), \quad \text { where } R_{Q} \equiv \frac{\sigma\left(e^{+} e^{-} \rightarrow Q \bar{Q} X\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}
$$

A first calculation: $\Gamma_{H \rightarrow c \bar{c}}, \Gamma_{H \rightarrow b \bar{b}}$ in terms of $\mathcal{M}_{1}^{c}, \mathcal{M}_{2}^{b}$

Moments of R_{Q} are calculated by relativistic quarkonium sum rules [Novikov, Okun, Shifman, Vainshtein, Voloshin, Zakharov, Phys. Rept. 41, 1 (1978)]

$$
\begin{gathered}
\mathcal{M}_{n}^{Q}=\int \frac{\mathrm{d} s}{s^{n+1}} R_{Q}(s)=\left.\frac{12 \pi^{2}}{n!}\left(\frac{\mathrm{d}}{\mathrm{~d} q^{2}}\right)^{n} \Pi_{Q}\left(q^{2}\right)\right|_{q^{2}=0}, \text { where } \\
\left(q^{2} g_{\mu \nu}-q_{\mu} q_{\nu}\right) \Pi_{Q}\left(q^{2}\right)=-i \int \mathrm{~d}^{4} x e^{i q \cdot x}\langle 0| T j_{\mu}(x) j_{\nu}^{\dagger}(0)|0\rangle
\end{gathered}
$$

via an operator product expansion (OPE)
$\mathcal{M}_{n}^{Q}=\frac{\left(Q_{Q} /(2 / 3)\right)^{2}}{\left(2 m_{Q}\left(\mu_{m}\right)\right)^{2 n}} \sum_{i, a, b} C_{n, i}^{(a, b)}\left(n_{f}\right)\left(\frac{\alpha_{s}\left(\mu_{\alpha}\right)}{\pi}\right)^{i} \ln ^{a} \frac{m_{Q}\left(\mu_{m}\right)^{2}}{\mu_{m}^{2}} \ln ^{b} \frac{m_{Q}\left(\mu_{m}\right)^{2}}{\mu_{\alpha}^{2}}+\mathcal{M}_{n}^{Q, \mathrm{np}}$.

Low moments (small n) are preferred to suppress $\mathcal{M}_{n}^{Q, \text { np }}$.

A first calculation: $\Gamma_{H \rightarrow c \bar{c}}, \Gamma_{H \rightarrow b \bar{b}}$ in terms of $\mathcal{M}_{1}^{c}, \mathcal{M}_{2}^{b}$

$\mathcal{M}_{n}^{Q}=\frac{\left(Q_{Q} /(2 / 3)\right)^{2}}{\left(2 m_{Q}\left(\mu_{m}\right)\right)^{2 n}} \sum_{i, a, b} C_{n, i}^{(a, b)}\left(n_{f}\right)\left(\frac{\alpha_{s}\left(\mu_{\alpha}\right)}{\pi}\right)^{i} \ln ^{a} \frac{m_{Q}\left(\mu_{m}\right)^{2}}{\mu_{m}{ }^{2}} \ln ^{b} \frac{m_{Q}\left(\mu_{m}\right)^{2}}{\mu_{\alpha}^{2}}+\mathcal{M}_{n}^{Q, \mathrm{np}}$.

Best calculations available:

- $C_{n, i}^{(a, b)}\left(n_{f}\right)$: up to $i=3$ [Maier, Maierhofer, Marquard, Smirnov, 0907.2117].
- $\mathcal{M}_{n}^{Q, n p}$: up to NLO [Broadhurst, Baikov, Ilyin, Fleischer, Tarasov, Smirnov, hep-ph/9403274], kept only for charm.

Renormalization scales: μ_{m} for m_{Q}, μ_{α} for α_{s}.

A first calculation: $\Gamma_{H \rightarrow c \bar{c}}, \Gamma_{H \rightarrow b \bar{b}}$ in terms of $\mathcal{M}_{1}^{c}, \mathcal{M}_{2}^{b}$

$$
\begin{gathered}
\mathcal{M}_{n}^{Q}=\frac{\left(Q_{Q} /(2 / 3)\right)^{2}}{\left(2 m_{Q}\left(\mu_{m}\right)\right)^{2 n}} \sum_{i, a, b} C_{n, i}^{(a, b)}\left(n_{f}\right)\left(\frac{\alpha_{s}\left(\mu_{\alpha}\right)}{\pi}\right)^{i} \ln ^{a} \frac{m_{Q}\left(\mu_{m}\right)^{2}}{\mu_{m}^{2}} \ln ^{b} \frac{m_{Q}\left(\mu_{m}\right)^{2}}{\mu_{\alpha}^{2}}+\mathcal{M}_{n}^{Q, \mathrm{np}} \\
\Rightarrow\left\{\begin{array}{l}
m_{c}\left(m_{c}\right)=m_{c}\left(m_{c}\right)\left[\alpha_{s}, \mathcal{M}_{1}^{c}, \mu_{m}^{c}, \mu_{\alpha}^{c}, \mathcal{M}_{1}^{c, \mathrm{np}}\right] \\
m_{b}\left(m_{b}\right)=m_{b}\left(m_{b}\right)\left[\alpha_{s}, \mathcal{M}_{2}^{b}, \mu_{m}^{b}, \mu_{\alpha}^{b}\right]
\end{array}\right.
\end{gathered}
$$

[Kuhn, Steinhauser, hep-ph/0109084]
[Kuhn, Steinhauser, Sturm, hep-ph/0702103]
[Chetyrkin, Kuhn, Maier, Maierhofer, Marquard, Steinhauser, Sturm, 0907.2110]

A first calculation: $\Gamma_{H \rightarrow c \bar{c}}, \Gamma_{H \rightarrow b \bar{b}}$ in terms of $\mathcal{M}_{1}^{c}, \mathcal{M}_{2}^{b}$

$$
\begin{gathered}
\mathcal{M}_{n}^{Q}=\frac{\left(Q_{Q} /(2 / 3)\right)^{2}}{\left(2 m_{Q}\left(\mu_{m}\right)\right)^{2 n}} \sum_{i, a, b} C_{n, i}^{(a, b)}\left(n_{f}\right)\left(\frac{\alpha_{s}\left(\mu_{\alpha}\right)}{\pi}\right)^{i} \ln ^{a} \frac{m_{Q}\left(\mu_{m}\right)^{2}}{\mu_{m}^{2}} \ln ^{b} \frac{m_{Q}\left(\mu_{m}\right)^{2}}{\mu_{\alpha}^{2}}+\mathcal{M}_{n}^{Q, \mathrm{np}} \\
\Rightarrow\left\{\begin{array}{l}
m_{c}\left(m_{c}\right)=m_{c}\left(m_{c}\right)\left[\alpha_{s}, \mathcal{M}_{1}^{c}, \mu_{m}^{c}, \mu_{\alpha}^{c}, \mathcal{M}_{1}^{c, \mathrm{np}}\right] \\
m_{b}\left(m_{b}\right)=m_{b}\left(m_{b}\right)\left[\alpha_{s}, \mathcal{M}_{2}^{b}, \mu_{m}^{b}, \mu_{\alpha}^{b}\right]
\end{array}\right.
\end{gathered}
$$

[Kuhn, Steinhauser, hep-ph/0109084]
[Kuhn, Steinhauser, Sturm, hep-ph/0702103]
[Chetyrkin, Kuhn, Maier, Maierhofer, Marquard, Steinhauser, Sturm, 0907.2110]

Should keep $\mu_{m} \neq \mu_{\alpha}$, otherwise perturbative uncertainty will be underestimated (common in the literature).
[Dehnadi, Hoang, Mateu, Zebarjad, 1102.2264]
[Dehnadi, Hoang, Mateu, 1504.07638]

A first calculation: $\Gamma_{H \rightarrow c \bar{c}}, \Gamma_{H \rightarrow b \bar{b}}$ in terms of $\mathcal{M}_{1}^{c}, \mathcal{M}_{2}^{b}$

$$
\left\{\begin{array}{l}
m_{c}\left(m_{c}\right)=m_{c}\left(m_{c}\right)\left[\alpha_{s}, \mathcal{M}_{1}^{c}, \mu_{m}^{c}, \mu_{\alpha}^{c}, \mathcal{M}_{1}^{c, \mathrm{np}}\right] \\
m_{b}\left(m_{b}\right)=m_{b}\left(m_{b}\right)\left[\alpha_{s}, \mathcal{M}_{2}^{b}, \mu_{m}^{b}, \mu_{\alpha}^{b}\right]
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\Gamma_{H \rightarrow c \bar{c}}=\Gamma_{H \rightarrow c \bar{c}}\left[\left\{\widehat{O}_{k}^{\mathrm{in}}\right\}, m_{c}\left(m_{c}\right), \mu_{H}^{c}\right]=\Gamma_{H \rightarrow c \bar{c}}\left[\left\{\widehat{O}_{k}^{\mathrm{in}}\right\}, \mathcal{M}_{1}^{c}, \mu_{m}^{c}, \mu_{\alpha}^{c}, \mu_{H}^{c}, \mathcal{M}_{1}^{c, \mathrm{np}}\right], \\
\Gamma_{H \rightarrow b \bar{b}}=\Gamma_{H \rightarrow b \bar{b}}\left[\left\{\widehat{O}_{k}^{\mathrm{in}}\right\}, m_{b}\left(m_{b}\right), \mu_{H}^{b}\right]=\Gamma_{H \rightarrow b \bar{b}}\left[\left\{\widehat{O}_{k}^{\mathrm{in}}\right\}, \mathcal{M}_{2}^{b}, \mu_{m}^{b}, \mu_{\alpha}^{b}, \mu_{H}^{b}\right] .
\end{array}\right.
$$

"Uncertainties from m_{Q} " are decomposed into concrete sources.

Uncertainty source	$\Delta \Gamma_{H \rightarrow c \bar{c}} / \Gamma_{H \rightarrow c \bar{c}}$	$\Delta \Gamma_{H \rightarrow b \bar{b}} / \Gamma_{H \rightarrow b \bar{b}}$
\mathcal{M}_{n}^{Q} measurement †	2%	0.6%
\mathcal{M}_{n}^{Q} calculation	see next 3 slides	
α_{s} (vs. no correlation)	$1 \%(1.6 \%)$	$0.5 \%(0.6 \%)$
$\mathcal{M}_{n}^{Q, n p}$	$<0.8 \%$	$\rightarrow 0$
m_{H}	$<0.3 \%$	$<0.3 \%$

[^0]
Perturbative uncertainty from \mathcal{M}_{n}^{Q} calculation

Renormalization scale dependence of finite-order calculation:

Vary μ_{m}, μ_{α} within $\left[\mu_{\min }, \mu_{\max }\right] \Rightarrow$ estimated perturbative uncertainty is very sensitive to $\mu_{\text {min }}$.

Perturbative uncertainty from \mathcal{M}_{n}^{Q} calculation

Renormalization scale dependence of finite-order calculation:

Vary μ_{m}, μ_{α} within $\left[\mu_{\min }, \mu_{\text {max }}\right] \Rightarrow$ estimated perturbative uncertainty is very sensitive to $\mu_{\text {min }}$.

Perturbative uncertainty from \mathcal{M}_{n}^{Q} calculation

Plot estimated perturbative uncertainty vs. $\mu_{\text {min }}$ and compare with uncertainties from $\mathcal{M}_{n}^{Q}, \alpha_{s}, \mathcal{M}_{n}^{Q, n p}, m_{H}$.

FIG. 2 (color online). Percent relative uncertainties in $\Gamma_{H \rightarrow c \bar{c}}$ (left) and $\Gamma_{H \rightarrow b \bar{b}}$ (right) as functions of $\mu_{\min }$ from various sources: perturbative uncertainty with $\mu_{\text {max }}^{c}=4 \mathrm{GeV}, \mu_{\text {max }}^{b}=15 \mathrm{GeV}$ (red solid) or alternatively $\mu_{\text {max }}^{c}=3,5 \mathrm{GeV}, \mu_{\text {max }}^{b}=13,17 \mathrm{GeV}$ (red dashed), parametric uncertainties from \mathcal{M}_{1}^{c} or \mathcal{M}_{2}^{b} (orange), $\alpha_{s}\left(m_{Z}\right)$ (cyan solid), $\mathcal{M}_{1}^{c, \text { np }}$ (blue, for $\Gamma_{H \rightarrow c \bar{c}}$ only), and m_{H} (purple). The parametric uncertainty from $\alpha_{s}\left(m_{Z}\right)$ incorrectly calculated assuming no correlation with m_{Q} (cyan dotted) is also shown for comparison.

Big challenge for higher-precision $\Gamma_{H \rightarrow Q \bar{Q}}$ calculations!

Perturbative uncertainty from \mathcal{M}_{n}^{Q} calculation

We need to get the perturbative uncertainty under control.

- $\mathcal{O}\left(\alpha_{s}^{4}\right)$ calculation of \mathcal{M}_{n}^{Q}, or equivalently, $\left.\left(\frac{\mathrm{d}}{\mathrm{d} q^{2}}\right)^{n} \Pi_{Q}\left(q^{2}\right)\right|_{q^{2}=0}$?
- Other algorithms to estimate perturbative uncertainty?
- BLM [Brodsky, Lepage, Mackenzie, PRD28, 228 (1983)] (not directly applicable)
- Convergence test [Dehnadi, Hoang, Mateu, 1504.07638] (still arbitrary)
- Other low-energy observables? (future work)
- Variants of \mathcal{M}_{n}^{Q}
[Bodenstein, Bordes, Dominguez, Penarrocha, Schilcher, 1102.3835, 1111.5742]
- High moments of R_{Q} (nonrelativistic sum rules for $n \geq 10$) [Signer, 0810.1152] [Hoang, Ruiz-Femenia, Stahlhofen, 1209.0450] [Penin, Zerf, 1401.7035] [Beneke, Maier, Piclum, Rauh, 1411.3132]
- Semileptonic B decay observables [Bauer, Ligeti, Luke, Manohar, Trott, hep-ph/0408002] [Buchmuller, Flacher, hep-ph/0507253] [Gambino, Schwanda, 1307.4551]

Conclusions

- m_{c}, m_{b} bring large theory uncertainties into $\Gamma_{H \rightarrow c \bar{c}}, \Gamma_{H \rightarrow b \bar{b}}$ calculations that should be understood better.
- The conventional approach to precision Higgs analyses using m_{c} and m_{b} as inputs hides various uncertainties and correlations.
- We propose a global analysis involving low-energy observables as well as Higgs observables.
- A first calculation in this direction shows how the uncertainties from m_{c}, m_{b} are resolved into concrete sources.

Conclusions

- m_{c}, m_{b} bring large theory uncertainties into $\Gamma_{H \rightarrow c \bar{c}}, \Gamma_{H \rightarrow b \bar{b}}$ calculations that should be understood better.
- The conventional approach to precision Higgs analyses using m_{c} and m_{b} as inputs hides various uncertainties and correlations.
- We propose a global analysis involving low-energy observables as well as Higgs observables.
- A first calculation in this direction shows how the uncertainties from m_{c}, m_{b} are resolved into concrete sources.

There is much theoretical work to be done for the precision Higgs program to succeed in the future!

Thank you!

[^0]: ${ }^{\dagger}$ This also includes a sizable uncertainty from pQCD input for $\sqrt{s}>11.2 \mathrm{GeV}$ where no data is available, but the situation will be improved by Belle-II.

