Tau-Charm Factory in Novosibirsk

Simon Eidelman

Budker Institute of Nuclear Physics SB RAS and Novosibirsk State University, Novosibirsk, Russia

Outline

1. Physics case

2. Detector

3. Machine

4. Conclusions

S.Eidelman, BINP

What is Super-Tau-Charm Factory?

A Super-Tau-Charm Factory is an accelerator complex for high-precision measurements between 2 and 5(7) GeV with luminosity up to 10^{35} cm⁻²s⁻¹ and longitudinal polarization

> Integrated luminosity of 1.5 ab^{-1} could be collected in 5-10 years

 τ Lepton Physics

- $\sigma_{\tau\tau}$ grows from 0.1 nb near threshold to 3.5 nb at 4.25 GeV
- $10^{10} \tau^+ \tau^-$ pairs can be collected
- Near threshold an additional kinematic constraint $2M_{\tau}E_h = M_{\tau}^2 + M_h^2$ suppresses background, with 1 ab⁻¹ about 10⁸ $\tau^+\tau^-$ pairs can be produced
- LFV, suppression of $e^+e^- \rightarrow \tau^+\tau^-\gamma$
- $M_{\tau}, M_{\nu_{\tau}}$, lepton universality, a_{τ}
- V A structure of the weak current in leptonic decays
- Rare hadronic decays
- Second class currents
- CP violation in τ decays

State	J/ψ	$\psi(2S)$	$\psi(3770)$	$\psi(4040)$
M, GeV	3.097	3.686	3.771	4.039
$\Gamma, {\rm MeV}$	0.093	0.337	23	80
σ , nb	1450	400	6	10
$\int L dt$, fb ⁻¹	800	250	400	10
N	10^{12}	10^{11}	$2 \cdot 10^9$	10^{8}

- 20 (25) fb⁻¹ needed to produce $10^8 \psi(4160) (\psi(4415))$ mesons
- ~ $10^{10} \chi_{cJ}$ and $\eta_c(1S)$ in radiative decays of the J/ψ and $\psi(2S)$
- About $10^8 h_c$ mesons in $\psi(2S) \to h_c \pi^0$
- $\eta_c(2S)$ mesons can be produced in $\psi(2S) \to \eta_c(2S)\gamma$ or $\gamma\gamma$ collisions

Study of Charmonium-(like) States – II

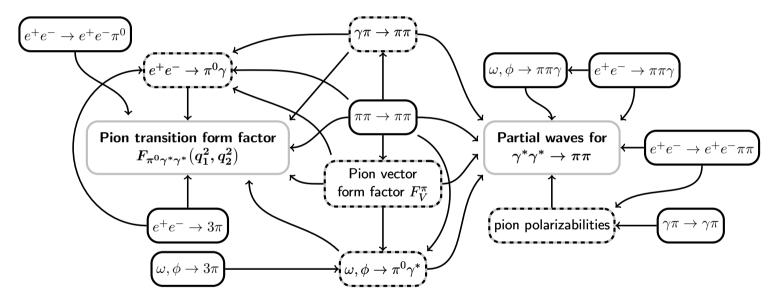
- All Y states with $J^{PC} = 1^{--}$ will be directly produced at $\sqrt{s} = M_Y$: Y(4260), Y(4360), Y(4660)
- Charged Z_c states can be produced by scanning the \sqrt{s} range and studying the $J/\psi\pi\pi$, $h_c\pi\pi$, $D^{(*)}\bar{D}^{(*)}$ final states
- Neutral $c\bar{c}$ states with other quantum numbers can be studied in the recoil to $\pi\pi$, π^0 , η , ω final states
- Between 6 and 7 GeV double $c\bar{c}$ production?

Charm Physics

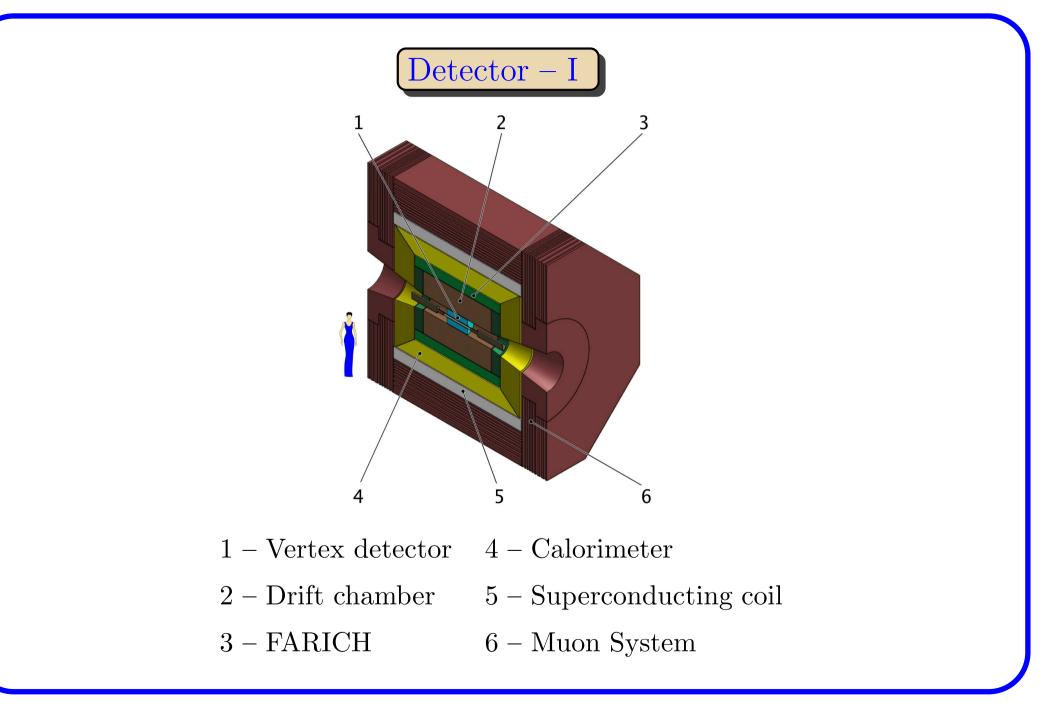
- 10^9 pairs of $D^{\pm,0}$ and $2 \cdot 10^7 D_s$ mesons can be collected in the reaction $e^+e^- \to D^+D^-$, $D^0\bar{D}^0$, $D_s^+D_s^-$
- More precise results can be expected at the $\psi(3770)$ with a data sample lower than at the $\Upsilon(4S)$
- The multiplicity of final particles is lower by a factor of 2
- Clean $D\overline{D}$ events are produced near threshold, additional kinematic constraints are possible (ν reconstruction), double-tagging: one D is fully reconstructed and for the other D absolute \mathcal{B} are measured
- 50 fb⁻¹ between 4.3 and 5 GeV to study spectroscopy of D_J and D_{sJ} states produced in $e^+e^- \rightarrow D_0^*\bar{D}^*$, $D_1^{(')}\bar{D}^{(*)}$, $D_2^*\bar{D}^{(*)}$ with $\sigma \sim 1$ nb

Charmed Baryons

- Charmed baryons are produced via $e^+e^- \rightarrow B_{1c}\bar{B}_{2c}$ with $B_{ic} = n_1 n_2 c$
- From the QF-asymmetric antitriplet 3 spin-1/2 states $(\Lambda_c^+, \Xi_c^+, \Xi_c^0)$
- From the QF-symmetric sextuplet 6 spin-1/2 states $(\Sigma_c^{++,+,0}, \Xi_c^{'+}, \Xi_c^{'0}, \Omega_c^0)$, 6 spin-3/2 states $(\Sigma_c^{*++,+,0}, \Xi_c^{*+}, \Xi_c^{*0}, \Omega_c^{*0})$, all 15 *S*-wave discovered
- The quark model predicts 63 *P*-wave states, 16 discovered between 2.6 and 3.1 GeV
- Weak decays of the $\Lambda_c^+(2286)$, $\Xi_c^+(2468)$, $\Xi_c^0(2471)$ and $\Omega_c^0(2698)$ are of interest, the required maximum energies are 4.7, 5.1 and 5.5 GeV


Measurements of e^+e^- Cross Sections

- 1. Detailed study of exclusive processes $e^+e^- \rightarrow (2-10)h, h = \pi, K, \eta, p, \ldots$, scan between 2 and 5 GeV and ISR for $\sqrt{s} < 2$ GeV
 - Meson Spectroscopy
 - Intermediate dynamics
 - Search for exotic states (tetraquarks, hybrids, glueballs)
- 2. High precision determination of $R = \sigma(e^+e^- \rightarrow \text{hadrons})/\sigma(e^+e^- \rightarrow \mu^+\mu^-)$ at low energies and fundamental quantitites
 - $(g_{\mu} 2)/2$, 92% from < 2 GeV, 7% for 2-5 GeV
 - $\alpha(M_Z^2)$, 19.0% from < 2 GeV, 18.1% for 2-5 GeV
 - QCD parameters (α_s , quark masses, quark and gluon condensates)

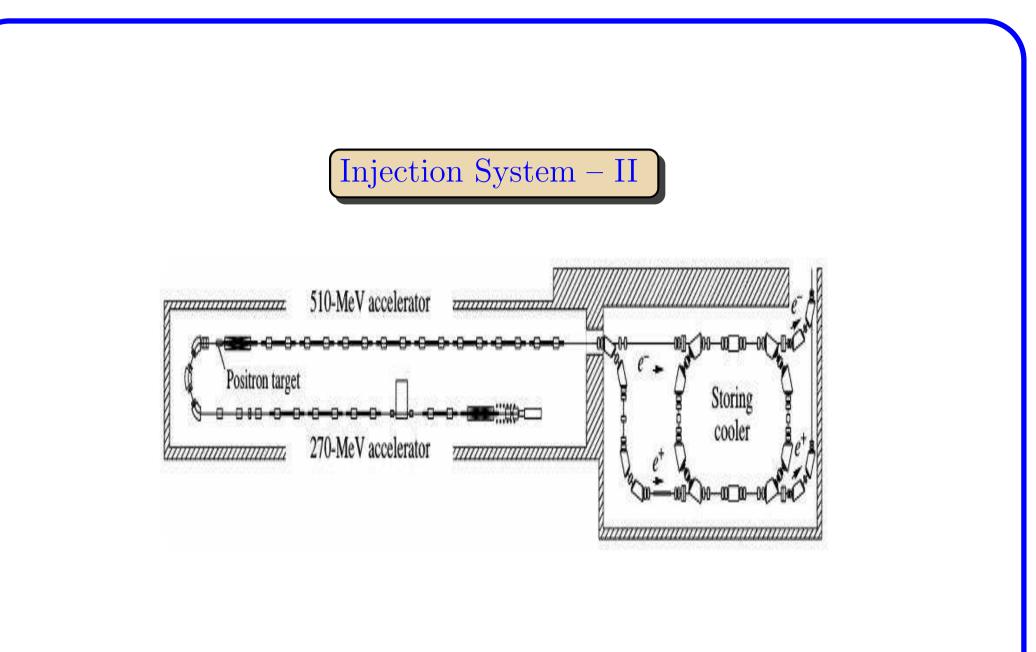

Two-Photon Physics

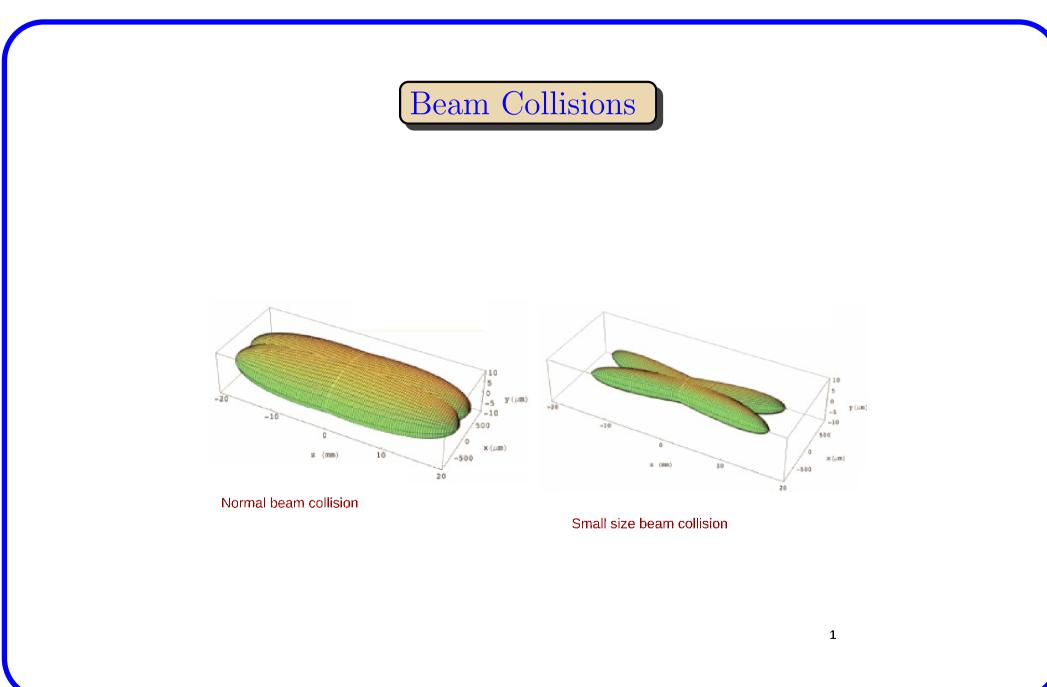
- Measurement of $\Gamma_{\gamma\gamma}$ for $J^{PC} = 0^{-+}, 0^{++}, 2^{-+}, 2^{++}$ States
- Study of $\gamma \gamma^* \to R$, $J^{PC} = 1^{++}$
- Transition Form Factors in $\gamma^* \gamma^* \to R$
- Total Cross Section of $\gamma \gamma \rightarrow$ hadrons
- Exclusive cross sections for $\gamma \gamma \rightarrow \rho \rho$, $p \bar{p}, \phi \phi$
- Taggers needed for single- and double-tag measurements

Transition Form Factors and Hadronic LbL

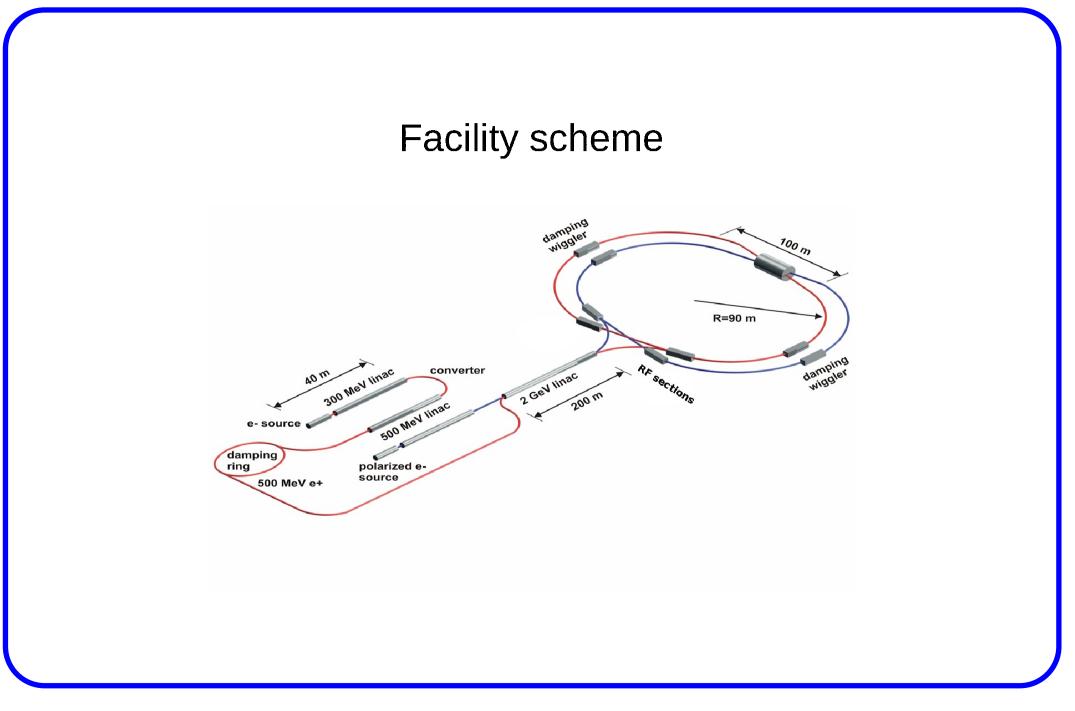
Measurements of various processes are in order G. Colangelo et al., Phys. Lett. B 738, 6 (2014); JHEP 1409, 091 (2014)

S.Eidelman, BINP

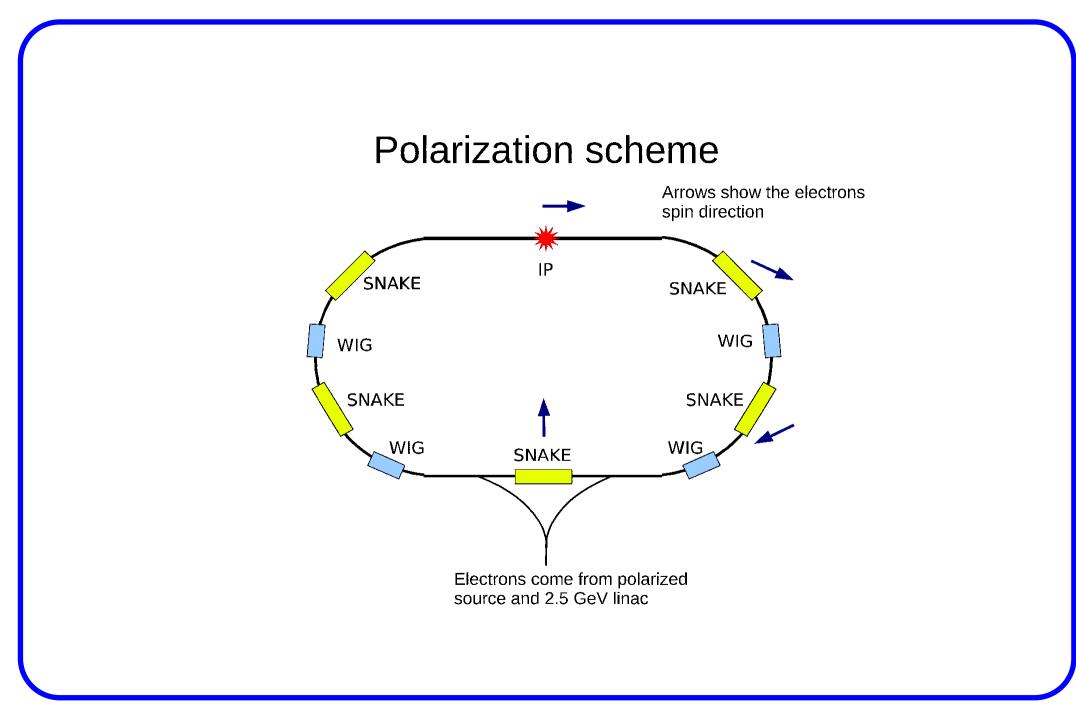

p.11/20


Detector – II

- Vertex detector: L = 60 cm, inner/outer D 5/40 cm, TPC or multilayered Si detector considered
- Drift chamber similar to BaBar, L = 200 cm, D = 180 cm, average spatial resolution 125 μ m
- E/m calorimeter on pure CsI crystals, 16-18 X_0 (30-34 cm), 5248 cr. (26-31 t), energy resol. 1.5% at 1 GeV
- Focusing Aerogel RICH (FARICH), radiator of several aerogel layers, K/π separation - 10 σ , from 1.3 to 2 GeV/c, multipixel APD
- Superconducting coil (1.0 1.2)T
- Muon system nine layers: localized-discharge counters, streamer gas detectors, scintillators


Injection System – I

- $\bullet\,$ A preinjector two linacs at the energies of 270 and 510 ${\rm MeV}$
- After a 180° bend electrons from the first linac are sent to a conversion target to produce positrons
- Positrons are accelerated to 510 MeV in the second linac
- The positron beam is passed through a debunching monochromator and is injected into a cooling storage ring
- The system exists and is currently being commissioned to start operation in 2015 and feed VEPP-2000 and VEPP-4M with positrons


p.15/20

S.Eidelman, BINP

Parameters

Energy	1.0 GeV	1.5 GeV	2.0 GeV	2.5 GeV	
Circumference	780 m				
Emittance hor/ver	8 nm/0.04 nm @ 0.5% coupling				
Damping time hor/ver/long	30/30/15 ms				
Bunch length	16 mm	11 mm	10 m m	10 mm	
Energy spread	10.1.10-4	9.96·10 ⁻⁴	8.44·10 ⁻⁴	7.38.10-4	
Momentum compaction	1.00·10 ^{·3}	1.06·10 ⁻³	1.06·10 ⁻³	1.06·10 ⁻³	
Synchrotron tune	0.007	0.010	0.009	0.008	
RF frequency	508 MHz				
Harmonic number	1300				
Particles in bunch	7.1010				
Number of bunches	390 (10% gap)				
Bunch current	4.4 mA				
Total beam current	1.7 A				
Beam-beam parameter	0.15	0.15	0.12	0.095	
Luminosity	0.63·10 ³⁵	0.95.1035	1.00.1035	1.00.1035	

S.Eidelman, BINP

Super-Tau-Charm Factory – I

- The project successfully passed the international expertise
- The cost of the machine is \sim 300 Million Euro plus a detector
- Approved by the Russian government together with 5 other megaprojects, but funding conditions are still unclear ...
- CDR and other details can be found at http://ctd.inp.nsk.su

Super-Tau-Charm Factory – II

BINP is considering alternative projects of a machine in the existing tunnels of VEPP-3 or VEPP-4M, at least an order of magnitude cheaper, doable ourselves?

A machine in the VEPP-4 tunnel (360 m circumference):

$E_{\rm beam}, {\rm GeV}$	0.5	1.0	1.5	2.1
$L, 10^{35} \mathrm{cm}^{-1} \mathrm{s}^{-1}$	0.92	0.92	1.3	1.3

A machine in the VEPP-3 tunnel (80 m circumference):

$E_{\rm beam}, {\rm GeV}$	0.5	0.75	1.0	1.2	1.55
$L, 10^{34} \mathrm{cm}^{-1} \mathrm{s}^{-1}$	0.954	1.49	1.81	1.86	1.60