#### Future prospects for charm physics at Belle II

#### Marko Starič



Jožef Stefan Institute, Ljubljana

CHARM 2015

M. Starič (IJS)

Future prospects for charm physics at Belle II Detroit, May 18-22, 2015 1 / 25



- $D^0 \overline{D}^0$  mixing and t-dependent CPV
- t-integrated CPV  $(A_{CP})$
- Rare decays (FCNC, LFV, LV)

イロト 人間ト イヨト イヨト

- 3

$$\bigcirc D^0 - \overline{D}^0$$
 mixing

Mass eigenstates differ from flavor eigenstates

$$|D^0_{1,2}
angle= p|D^0
angle\pm q|\overline{D}^0
angle$$

- $D_{1,2}^0$  with masses  $m_1, m_2$  and partial widths  $\Gamma_1, \Gamma_2$
- CP violation if  $q \neq p$
- Mixing parameters:

$$x = \frac{\Delta m}{\Gamma}$$
  $y = \frac{\Delta \Gamma}{2\Gamma}$ 

• Time dependent decay rates of  $D^0 \rightarrow f$  (since mixing is small):

$$rac{dN_{D^0 
ightarrow f}}{dt} \propto e^{-\Gamma t} ig| \langle f | \mathcal{H} | D^0 
angle + rac{q}{p} (rac{y+ix}{2} \Gamma t) \langle f | \mathcal{H} | \overline{D}^0 
angle ig|^2$$

イロト 不得下 イヨト イヨト 三日

### 🚰 Measurement strategies

$$rac{dN_{D^0 
ightarrow f}}{dt} \propto e^{-\Gamma t} \Big| \langle f | \mathcal{H} | D^0 
angle + rac{q}{p} (rac{y+ix}{2} \Gamma t) \langle f | \mathcal{H} | \overline{D}{}^0 
angle \Big|^2$$

- Wrong-sign semileptonic decays  $(D^0 \to K^+ \ell^- \nu)$ 
  - WS only via mixing:  $\langle f | \mathcal{H} | D^0 \rangle = 0$
  - measures time integrated mixing rate  $R_M = \frac{x^2 + y^2}{2} = \frac{N_{WS}}{N_{RS}}$
- Wrong-sign hadronic decays  $(D^0 o K^+ \pi^-)$ 
  - WS via doubly Cabibbo suppressed (DCS) decays or mixing
  - interference between DCS and mixing (strong phase  $\delta$ )
  - measures  $x' = x \cos \delta + y \sin \delta$ ,  $y' = y \cos \delta x \sin \delta$
- Decays to CP eigenstates  $(D^0 \to K^+ K^-, \pi^+ \pi^-)$ 
  - if no direct CPV:  $\langle f | \mathcal{H} | \overline{D}^0 \rangle = \langle f | \mathcal{H} | D^0 \rangle$
  - measures y
- Decays to self-conjugate states  $(D^0 o K^0_s \pi^+ \pi^-)$ 
  - time dependent Dalitz plot analysis
  - measures x and y



$$rac{dN_{D^0 
ightarrow f}}{dt} \propto e^{-\Gamma t} ig| \langle f | \mathcal{H} | D^0 
angle + rac{q}{p} (rac{y+ix}{2} \Gamma t) \langle f | \mathcal{H} | \overline{D}^0 
angle ig|^2$$

Two kinds:

•  $q/p \neq 1 \Rightarrow$  indirect CP violation

• 
$$q/p = |q/p| \cdot e^{i\phi}$$
:

- $|q/p| \neq 1 \Rightarrow \mathsf{CP}$  violation in mixing
- $\phi \neq 0(\pi) \Rightarrow$  CP violation in interference of decays w/ and w/o mixing

• 
$$|\mathcal{A}(D^0 \to f)|^2 \neq |\mathcal{A}(\bar{D}^0 \to \bar{f})|^2 \Rightarrow \text{direct CP violation}$$

Indirect CPV

•  $D^0$  only, common to all decay modes

Direct CPV

 $\bullet$  All three species (  $D^0,\ D^+,\ D^+_s$  ), decay mode dependent



#### Experimental techniques

- Time-dependent analysis:
  - difference in proper decay time distributions of  $D^0 o f$  and  $ar D^0 o ar f$
  - we measure indirect CPV
- Time-integrated analysis:
  - difference in time-integrated decay rates of  $D^0 o f$  and  $ar{D}^0 o ar{f}$
  - we measure direct+indirect CPV

#### Time-integrated analysis

• Asymmetry in time-integrated decay rates:  $A_{CP}^{f} = \frac{\Gamma}{\Gamma}$ 

$$A_{CP}^{f} = \frac{\Gamma(D \to f) - \Gamma(\overline{D} \to \overline{f})}{\Gamma(D \to f) + \Gamma(\overline{D} \to \overline{f})}$$

- Charged D mesons:  $A_{CP}^f = a_{dir}^f$
- Neutral D mesons:  $A_{CP}^f = a_{\mathrm{dir}}^f + a_{\mathrm{ind}}$ 
  - indirect CPV is universal:  $a_{\mathrm{ind}}\equiv -A_{\Gamma}$  (neglecting terms with y<sub>CP</sub>)
  - world average:  $A_{\Gamma} = (-0.014 \pm 0.052)\%$  (HFAG, June-2014)

#### 🚰 D<sup>0</sup> flavor tag

- Usually using  $D^{*+} 
  ightarrow D^0 \pi^+_{
  m slow}$ 
  - flavor tagging by  $\pi_{\rm slow}$  charge
  - provides also considerable background suppression
- Observables:
  - $D^0$  invariant mass:  $M \equiv m(K\pi)$
  - $D^{*+}$  mass difference:  $\Delta M \equiv m(K\pi\pi_{
    m slow}) m(K\pi)$  or  $Q \equiv \Delta M m_{\pi}$
- Measurements performed mainly at  $\Upsilon(4S)$ 
  - $D^{*+}$  from *B* decays can be completely rejected with

$$p_{D^{*+}}^{CMS} > 2.5 \ GeV/c$$

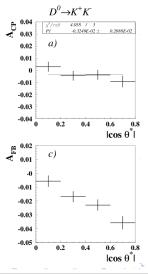
- similar requirement used also when reconstructing charged D mesons
- IP constrained refit of  $\pi_{\rm slow}$  to improve  $\Delta M$  resolution





#### Time-integrated measurements (A<sub>CP</sub>)

• Asymmetry in time-integrated decay rates of  $D^0 o f$  and  $\overline{D}^0 o \overline{f}$ 


$$A_{CP}^{f} = \frac{\Gamma(D^{0} \to f) - \Gamma(\overline{D}^{0} \to \overline{f})}{\Gamma(D^{0} \to f) + \Gamma(\overline{D}^{0} \to \overline{f})}$$

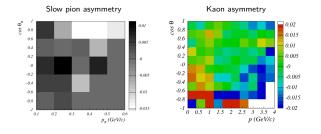
• Raw asymmetry

$$A_{\text{raw}} = \frac{N - \overline{N}}{N + \overline{N}} = A_{\text{prod}} + A_{\epsilon}^{f} + A_{CP}^{f}$$

- $A_{\rm prod}$  production asymmetry
- $A_{\epsilon}^{f}$  asymmetry in efficiency
- Production asymmetry at B-factory
  - odd function of CMS polar angle  $A_{\text{prod}} \equiv A_{FB}(\cos\theta^*)$
  - can easily be disentangled

$$A_{CP} = \frac{A_{raw}^{cor}(\cos\theta^*) + A_{raw}^{cor}(-\cos\theta^*)}{2}$$
$$A_{FB} = \frac{A_{raw}^{cor}(\cos\theta^*) - A_{raw}^{cor}(-\cos\theta^*)}{2}$$




Detroit, May 18-22, 2015 8 / 25

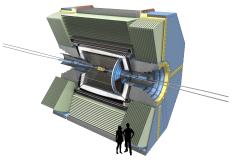
#### ${\boldsymbol{\mathscr{G}}}$ Detection asymmetries ${\mathcal{A}}^f_\epsilon$

- Asymmetries in detection efficiency can be measured with sufficient precision using CF decays (direct CPV is very unlikely)
  - must be performed in bins of relevant phase-spaces
  - requires production asymmetries to be known

$$ightarrow$$
 at B-factory:  ${\it A}_{
m prod}\equiv {\it A}_{\it FB}(cos heta^*)$ 

- Slow pions: from tagged and untagged  $D^0 o K^- \pi^+$  decays
- $\bullet$  Kaons: from decays  $D^0 \to K^-\pi^+$  and  $D^+_s \to \phi\pi^+$
- Pions: from decays  $D^+ o K^- \pi^+ \pi^+$  and  $D^0 o K^- \pi^+ \pi^0$




### 🚰 Belle II experiment

• Successor of Belle experiment (KEK, Tsukuba, Japan)



#### SuperKEKB accelerator

- upgraded KEKB
- luminosity 40  $\times$  KEKB (8  $\times$  10  $^{35} {\rm cm}^{-2} {\rm s}^{-1}$ )
- nano-beam optics



Belle II detector

- upgraded Belle detector
- majority of components replaced

M. Starič (IJS)

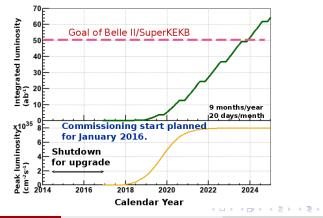
Future prospects for charm physics at Belle II Detroit, May 18-22, 2015 10 / 25



- Critical issues at  $\mathcal{L}=8\times 10^{35} \mathrm{cm}^{-2} \mathrm{s}^{-1}$ 
  - Higher background (×10 20)
    - radiation damage and occupancy
    - fake hits and pile-up noise in EM calorimeter
  - Higher event rate (×40)
    - affects trigger, DAQ and computing

Have to employ and develop new technologies to make such an apparatus work efficiently.

A B F A B F


## 🚰 Belle II detector upgrade

- Vertex detector
  - $\bullet\,$  4-layer DSSD replaced with 2 DEPFET layers + 4 DSSD layers
  - smaller inner radius, larger outer radius
    - $\rightarrow$  better vertex resolution
    - $\rightarrow$  improved efficiency for slow pions and  $K_S$
- Central drift chamber
  - smaller cells, larger outer radius
    - $\rightarrow$  improved momentum resolution and dEdx
- Hadron ID
  - ACC + TOF replaced with TOP (barrel) and aerogel RICH (forward)
    - $\rightarrow$  less material in front of calorimeter
    - $\rightarrow$  improved hadron ID
- Electromagnetic calorimeter
  - waveform sampling technique to cope with increased background
- K-long and muon detector
  - RPC's in endcaps and first two layers of barrel replaced with scintillator counters to cope with increased neutron background

12 / 25

#### 🚰 Belle II schedule

- 2018: start to increase luminosity
- $\bullet~{\rm collect} \sim 10~{\rm ab}^{-1}$  by mid 2020
- $\bullet$  collect 50  $\mathsf{ab}^{-1}$  by 2024



M. Starič (IJS)

#### 🚰 Prospects for charm at Belle II

- Belle measurements extrapolated to 50  $ab^{-1}$
- Systematic uncertainties primarily scale with integrated luminosity, with two exceptions:
  - t-dependent Dalitz: model related systematics (resonance parameters masses, widths, form factors, angular dependence etc.)
  - $A_{CP}$  of modes with  $K_s^0$ : asymmetry of  $K^0/\overline{K}^0$  interactions in material (PRD 84, 111501 (2011)),  $\sigma_{\rm ired} \approx 0.02\%$

• Extrapolation:

$$\sigma_{BelleII} = \sqrt{(\sigma_{stat}^2 + \sigma_{sys}^2) \frac{\mathcal{L}_{Belle}}{50 \text{ ab}^{-1}} + \sigma_{ired}^2}$$

Detector performance improvements are not included in the extrapolation (detailed MC studies are on the way)

イロン イボン イヨン イヨン 三日

## Mixing and indirect CPV

| $D^0 	o K^{(*)-} \ell^+  u$            | 492 fb $^{-1}$                        | $50 \text{ ab}^{-1}$     |
|----------------------------------------|---------------------------------------|--------------------------|
| R <sub>M</sub>                         | $(1.3\pm2.2\pm2.0)	imes10^{-4}$       | $\pm 0.3 	imes 10^{-4}$  |
| $D^0 \rightarrow K^+ K^-, \pi^+ \pi^-$ | 976 fb <sup>-1</sup>                  | $50 \text{ ab}^{-1}$     |
| Уср                                    | $(1.11\pm 0.22\pm 0.11)\%$            | ±0.04%                   |
| Α_Γ                                    | $(-0.03\pm0.20\pm0.08)\%$             | $\pm 0.03\%$             |
| $D^0  ightarrow K^+ \pi^-$             | 400 fb <sup>-1</sup>                  | $50 \text{ ab}^{-1}$     |
| x' <sup>2</sup>                        | $(1.8\pm2.2\pm1.1)	imes10^{-4}$       | $\pm 0.22 	imes 10^{-4}$ |
| У′                                     | $(0.06\pm0.40\pm0.20)\%$              | $\pm 0.04\%$             |
| $A_M$                                  | $0.67 \pm 1.20$                       | $\pm 0.11$               |
| $ \phi $                               | $0.16\pm0.44$                         | $\pm 0.04$               |
| $D^0  ightarrow K^0_s \pi^+ \pi^-$     | 921 fb $^{-1}$                        | $50 \text{ ab}^{-1}$     |
| X                                      | $(0.56 \pm 0.19 \pm 0.06 \pm 0.08)\%$ | $\pm 0.08\%$             |
| у                                      | $(0.30 \pm 0.15 \pm 0.06 \pm 0.04)\%$ | $\pm 0.05\%$             |
| q/p                                    | $0.90 \pm 0.16 \pm 0.04 \pm 0.06$     | $\pm 0.06$               |
| φ                                      | $-0.10\pm0.19\pm0.04\pm0.07$          | ±0.07                    |

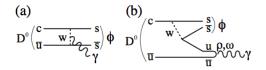
 $|q/p| = 1 + \frac{1}{2}A_{M} \Rightarrow \delta |q/p| = \frac{1}{2}\delta A_{M}$ 

M. Starič (IJS)

Future prospects for charm physics at Belle II Detroit, May 18-22, 2015 15 / 25

# $\mathcal{C}$ Time-integrated measurements ( $A_{CP}$ )

| mode                                   | $\mathcal{L}$ (fb <sup>-1</sup> ) | A <sub>CP</sub> (%)       | Belle II at 50 $ab^{-1}$ |
|----------------------------------------|-----------------------------------|---------------------------|--------------------------|
| $D^0  ightarrow K^+ K^-$               | 976                               | $-0.32 \pm 0.21 \pm 0.09$ | ±0.03                    |
| $D^0 	o \pi^+\pi^-$                    | 976                               | $+0.55 \pm 0.36 \pm 0.09$ | $\pm 0.05$               |
| $D^0 	o \pi^0 \pi^0$                   | 966                               | $-0.03 \pm 0.64 \pm 0.10$ | $\pm 0.09$               |
| $D^0 	o K^0_s \pi^0$                   | 966                               | $-0.21 \pm 0.16 \pm 0.07$ | $\pm 0.03$               |
| $D^0 	o K^0_s \eta$                    | 791                               | $+0.54 \pm 0.51 \pm 0.16$ | $\pm 0.07$               |
| $D^0 	o K^0_s \eta'$                   | 791                               | $+0.98 \pm 0.67 \pm 0.14$ | $\pm 0.09$               |
| $D^0  ightarrow \pi^+\pi^-\pi^0$       | 532                               | $+0.43\pm1.30$            | $\pm 0.13$               |
| $D^0 	o K^+ \pi^- \pi^0$               | 281                               | $-0.60\pm5.30$            | $\pm 0.40$               |
| $D^0  ightarrow K^+ \pi^- \pi^+ \pi^-$ | 281                               | $-1.80\pm4.40$            | $\pm 0.33$               |
| $D^+ 	o \phi \pi^+$                    | 955                               | $+0.51 \pm 0.28 \pm 0.05$ | ±0.04                    |
| $D^+ 	o \eta \pi^+$                    | 791                               | $+1.74 \pm 1.13 \pm 0.19$ | $\pm 0.14$               |
| $D^+ 	o \eta' \pi^+$                   | 791                               | $-0.12 \pm 1.12 \pm 0.17$ | $\pm 0.14$               |
| $D^+  ightarrow K^0_s \pi^+$           | 977                               | $-0.36 \pm 0.09 \pm 0.07$ | $\pm 0.03$               |
| $D^+  ightarrow K^0_s K^+$             | 977                               | $-0.25 \pm 0.28 \pm 0.14$ | $\pm 0.05$               |
| $D_s^+  ightarrow K_s^0 \pi^+$         | 673                               | $+5.45 \pm 2.50 \pm 0.33$ | ±0.29                    |
| $D^+_s 	o K^0_s K^+$                   | 673                               | $+0.12\pm 0.36\pm 0.22$   | $\pm 0.05$               |
|                                        |                                   | < □ >                     | ▲■ ▼ ▲ 田 ▼ ▲ 田 ▼ 田 ■ ● ④ |


M. Starič (IJS)

Future prospects for charm physics at Belle II Detroit, May 18-22, 2015

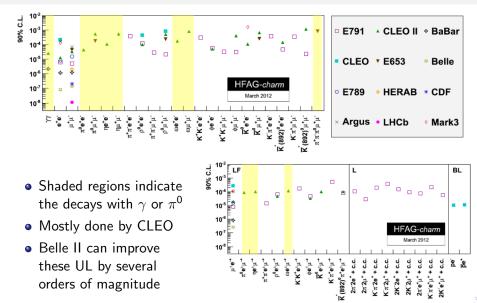
. . . . . .

5 16 / 25

## $\checkmark$ Direct CPV in $D^0 \to \phi \gamma, \rho^0 \gamma$



 Direct CPV in radiative decays can be enhanced to exceed 1% (G. Isidori and J. F. Kamenik, PRL 109, 171801 (2012))


• 
$$D^0 
ightarrow \phi \gamma$$
:  $A_{CP}$  up to 2%

• 
$$D^0 
ightarrow 
ho^0 \gamma$$
:  $A_{CP}$  up to 10%

- $D^0 \rightarrow \phi \gamma$ : first observation by Belle with 78 fb<sup>-1</sup> (PRL 92, 101803 (2004))
  - measured yield:  $27.6^{+7.4+0.5}_{-6.5-1.0}$ 
    - $\Rightarrow$  relative error on yield 25% (as would be the error on  $A_{CP}$ )
- $A_{CP}$  sensitivity at 50 ab<sup>-1</sup>:  $\approx 1\%$

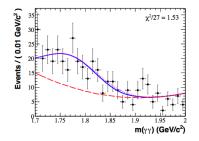
ヘロト 不得下 不足下 不足下

## 🚰 Rare and forbidden decays



18 / 25

 $\square D^0 \to \gamma \gamma$ 

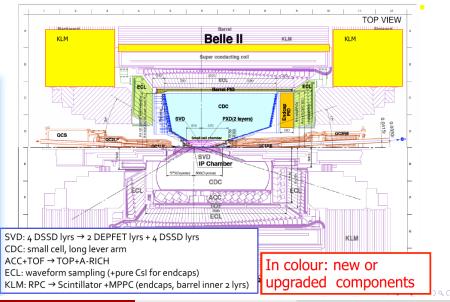

• SM predictions: long distance effects dominate  $Br \sim {\rm few} \times 10^{-8}$ 

• BaBar, 470 fb<sup>-1</sup>  $Br < 2.2 \times 10^{-6}$  @ 90% CL PRD 85 (2012) 091107


• Belle II at 50 fb<sup>-1</sup>:

 $\rightarrow$  depends how background behaves

- if UL would scale with  ${\cal L}:$  UL  $\sim 2\times 10^{-8}$
- if UL would scale with  $\sqrt{\mathcal{L}}$ : UL  $\sim 2 \times 10^{-7}$




A B A A B A



- Perspectives for charm measurements at Belle II have been discussed.
- We focused on D-mixing and CPV.
- Using Belle results and a rough extrapolation to 50  $ab^{-1}$  we found:
  - Sensitivities of most measurements will still be statistically limited.
  - In t-dependent Dalitz analysis of  $D^0 \to K_s^0 \pi^+ \pi^-$  the model dependent systematics will probably dominate and saturate the sensitivity.
  - Belle II is in favor (compared to LHCb) in A<sub>CP</sub> measurements because of equal D and D
     production; the sensitivity would reach in some cases a 0.03% level.
- Belle II can also be competitive in searches of rare and forbidden decays of D-mesons with  $\gamma$  or  $\pi^0$  in the final state.

#### 🚰 Belle II detector in comparison to Belle



M. Starič (IJS)

Future prospects for charm physics at Belle II Detroit, May 18-22, 2015

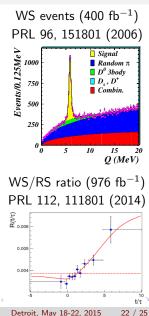
21 / 25

#### Time-dependent measurements: $D^0 \rightarrow K^+ \pi^-$

• Wrong sign (WS) final state: via DCS decays or via mixing

Proper decay time distribution

$$\frac{dN}{dt} \propto [R_D + y'\sqrt{R_D}(\Gamma t) + \frac{x'^2 + y'^2}{4}(\Gamma t)^2]e^{-\Gamma}$$


$$\bigcirc DCS \bigcirc \text{ interference } \text{mixing}$$

$$R_D \text{ ratio of DCS/CF decay rates}$$

$$x' = x \cos \delta + y \sin \delta$$

$$y' = y \cos \delta - x \sin \delta$$

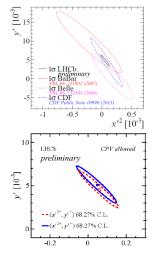
$$\delta \text{ strong phase between DCS and CF}$$



t

#### $\overset{\frown}{=}$ Time-dependent measurements: $D^0 \rightarrow K^+ \pi^-$

CP violation


- $D^0$  and  $\bar{D^0}$  samples analyzed separately  $\Rightarrow R_D^{\pm}, \ x'^{2\pm}, \ y'^{\pm}$
- direct CPV in DCS decays:

$$A_D = \frac{R_D^+ - R_D^-}{R_D^+ + R_D^-}$$

 CPV in mixing and interference → by solving 4 equations for 4 unknowns:

$$\begin{aligned} x'^{\pm} &= \left(1 \pm \frac{1}{2} A_M\right) \cdot \left(x' \cos \phi \pm y' \sin \phi\right) \\ y'^{\pm} &= \left(1 \pm \frac{1}{2} A_M\right) \cdot \left(y' \cos \phi \mp x' \sin \phi\right) \end{aligned}$$

 $ightarrow x', \ y', \ \phi, \ |q/p| = 1 + rac{1}{2}A_M$ 



Detroit, May 18-22, 2015

### $\overset{\bullet}{\frown}$ Time-dependent measurements: $D^0 \to K^+ K^-, \pi^+ \pi^-$

- Measurement of lifetime difference between flavor specific and decays into *CP* final states
  - choice of flavor specific: kinematically similar  $D^0 o K^- \pi^+$
- Timing distributions are exponential
  - mixing parameter:

$$y_{CP} = \frac{\tau(K^- \pi^+)}{\tau(K^+ K^-)} - 1$$

- $y_{CP} = y$ , if CP conserved
- If *CP* violated  $\rightarrow$  difference in lifetimes of  $D^0/\overline{D^0} \rightarrow K^+K^-, \pi^+\pi^-$ 
  - asymmetry in lifetimes:

$$A_{\Gamma} = \frac{\tau(\overline{D}^0 \rightarrow K^- K^+) - \tau(D^0 \rightarrow K^+ K^-)}{\tau(\overline{D}^0 \rightarrow K^- K^+) + \tau(D^0 \rightarrow K^+ K^-)}$$

• If direct CPV negligible:

• 
$$y_{CP} = y \cos \phi - \frac{1}{2} A_M x \sin \phi$$

• 
$$A_{\Gamma} = \frac{1}{2} A_M y \cos \phi - x \sin \phi$$

#### $\overset{igoddle{l}}{=}$ Time-dependent measurements: $D^0 o extsf{K}^0_s \ \pi^+\pi^-$

• This three body decay proceeds via many intermediate states, like CF:  $D^0 \rightarrow K^{*-}\pi^+$ DCS:  $D^0 \rightarrow K^{*+}\pi^-$ CP:  $D^0 \rightarrow \rho^0 K_s^0$ 

• Matrix element is Dalitz space dependent, so also time distribution is

$$\frac{dN_{D^0 \to f}}{dt} \propto e^{-\Gamma t} \left| \mathcal{A}(m_-^2, m_+^2) + \frac{q}{p} (\frac{y + ix}{2} \Gamma t) \overline{\mathcal{A}}(m_-^2, m_+^2) \right|^2$$

• Total amplitude A parametrized as a sum of quasy-two-body amplitudes of resonances  $A_r$ 

$$\mathcal{A}(m_{-}^2, m_{+}^2) = \sum_r a_r e^{i\phi_r} \mathcal{A}_r(m_{-}^2, m_{+}^2)$$

- Both mixing parameters, x and y as well as CPV parameters  $\phi$  and |q/p| can be measured
- 3D fit in  $(m_{-}^2, m_{+}^2, t)$ ; many free parameters

Detroit, May 18-22, 2015 25 / 25