DO-DObar Mixing in an exclusive approach

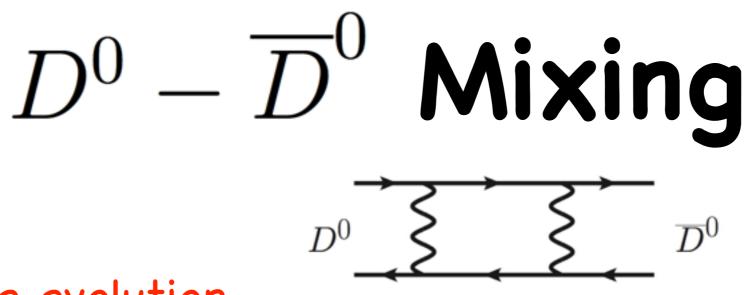
Fu-Sheng Yu

Lanzhou University

Collaboration with: H-n. Li, C-D. Lu, Q. Qin

in progress

20.05.2015


CHARM @ WSU

Outline

Motivation

A.Kagan's talk tomorrow

- DDbar mixing misunderstood in theory
- D-Dbar Mixing in an exclusive approach
 - Large flavor SU(3) breaking effect in factorization-assisted topological-amplitude approach
- Conclusions

The time evolution

$$i\frac{\partial}{\partial t} \left(\begin{array}{c} D^{0}(t) \\ \overline{D}^{0}(t) \end{array} \right) = \left(\mathbf{M} - \frac{i}{2}\mathbf{\Gamma} \right) \left(\begin{array}{c} D^{0}(t) \\ \overline{D}^{0}(t) \end{array} \right)$$

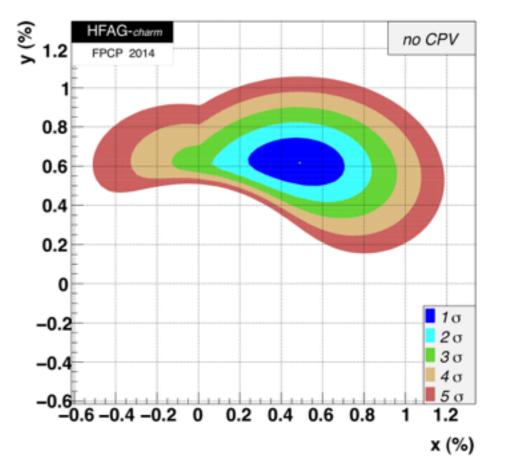
- Mass eigenstates in terms of weak eigenstates $|D_{1,2}
 angle=p|D^0
 angle\pm q|\overline{D}^0
 angle$
- Mass difference and Width difference

$$x \equiv \frac{\Delta m}{\Gamma} = \frac{m_1 - m_2}{\Gamma}$$

$$y \equiv \frac{\Delta \Gamma}{2\Gamma} = \frac{\Gamma_1 - \Gamma_2}{2\Gamma}$$

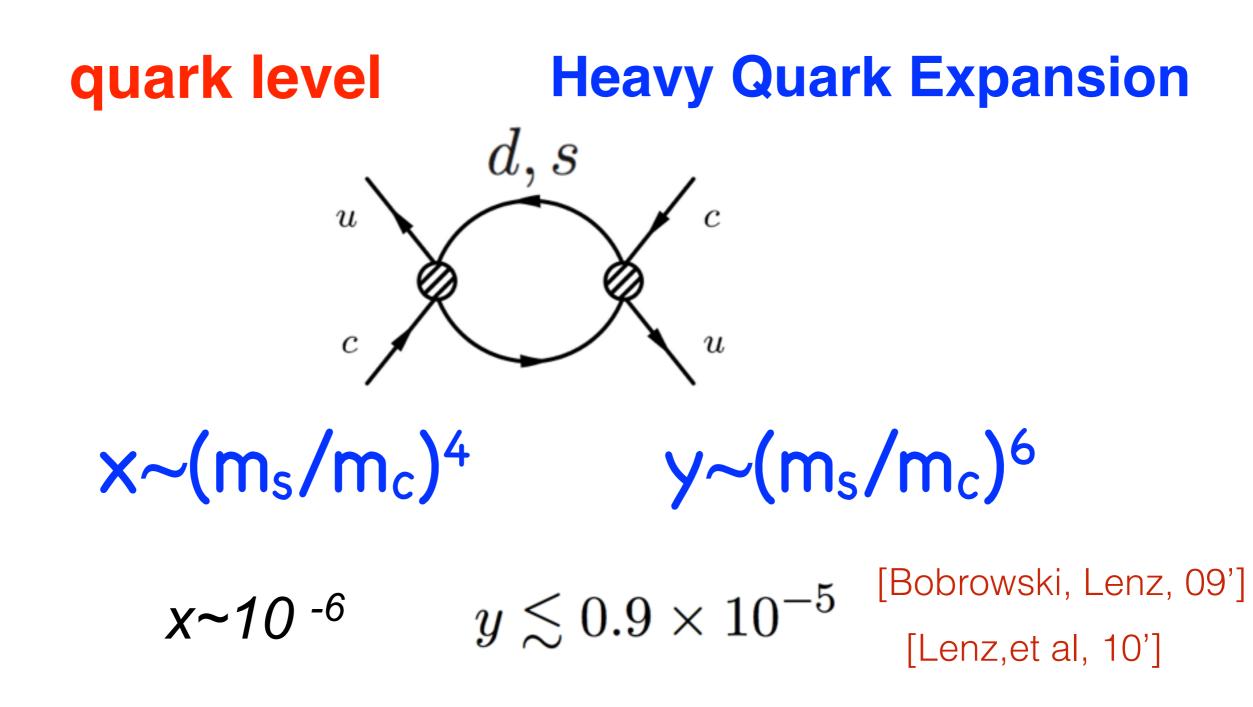
Experiment vs. Theory

[HFAG, 2014]

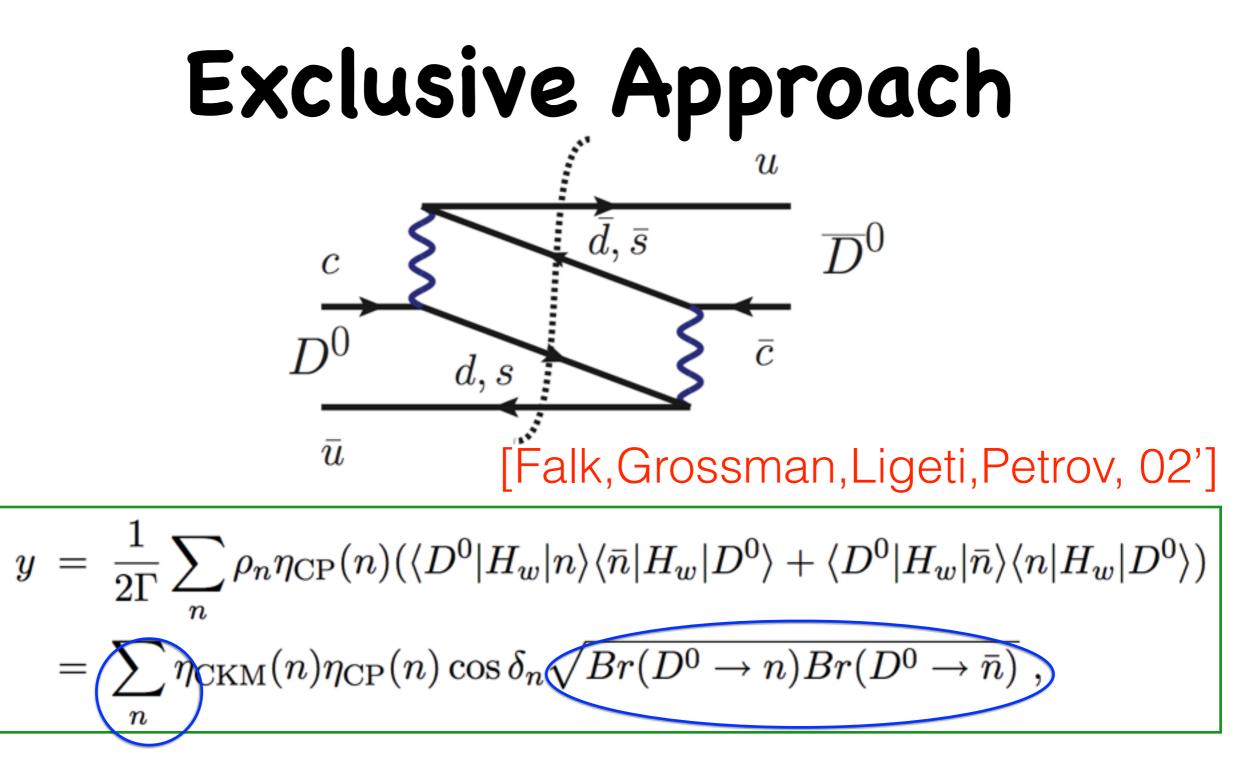

Current world average results

* If CP is conserved

 $x = (0.49^{+0.14}_{-0.15})\%, \quad y = (0.62 \pm 0.08)\%$


* If CP violation is allowed

 $x = (0.41^{+0.14}_{-0.15})\%, \quad y = (0.63^{+0.07}_{-0.08})\%$

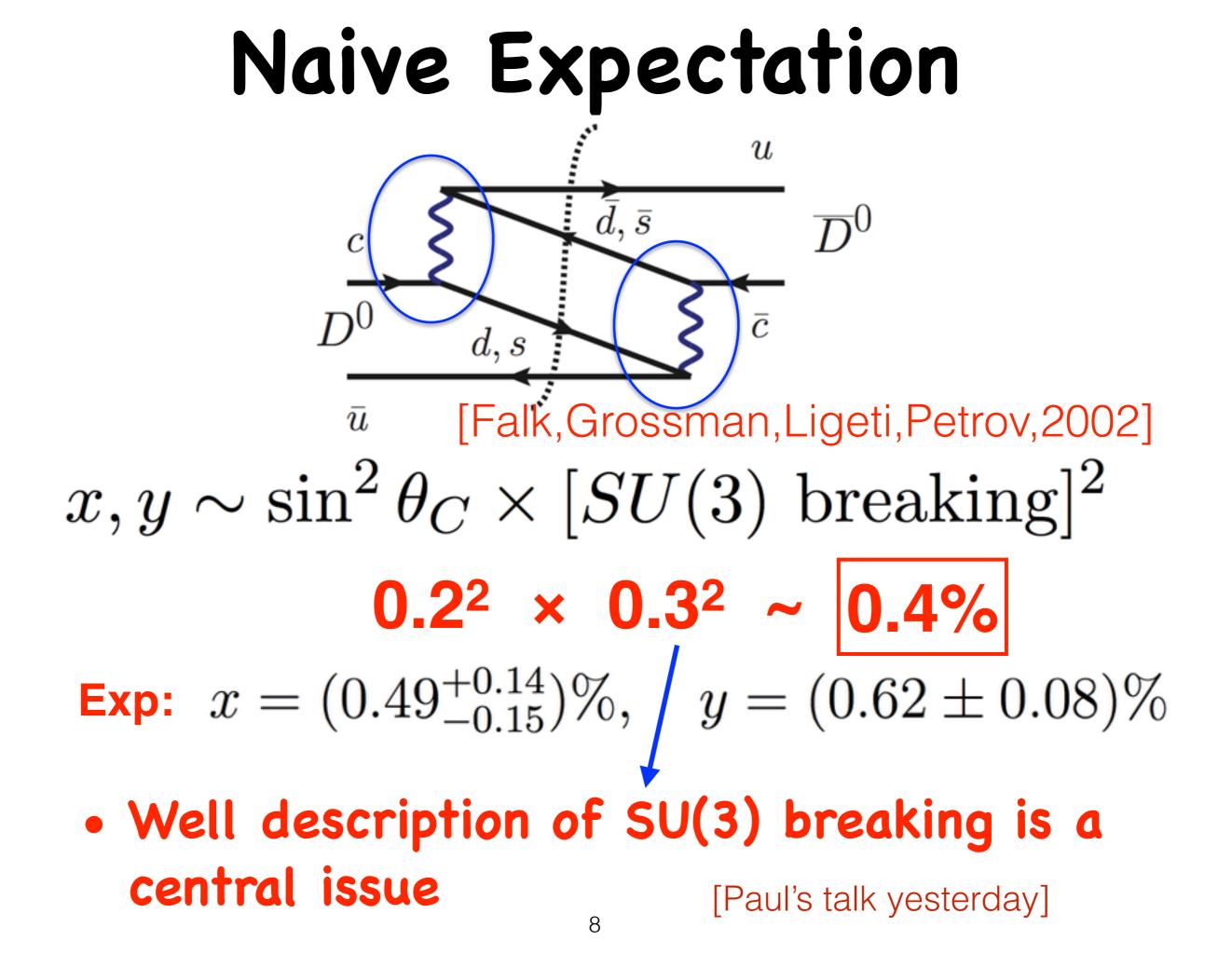


 So far, quantitatively theoretical calculation can just reach to the order of x~y~0.1%
 [Bigi et al, 00'; Lenz et al, 10'; Cheng et al, 10']

Inclusive approach:

Short-distance contributions are small

Sum up all the intermediate states

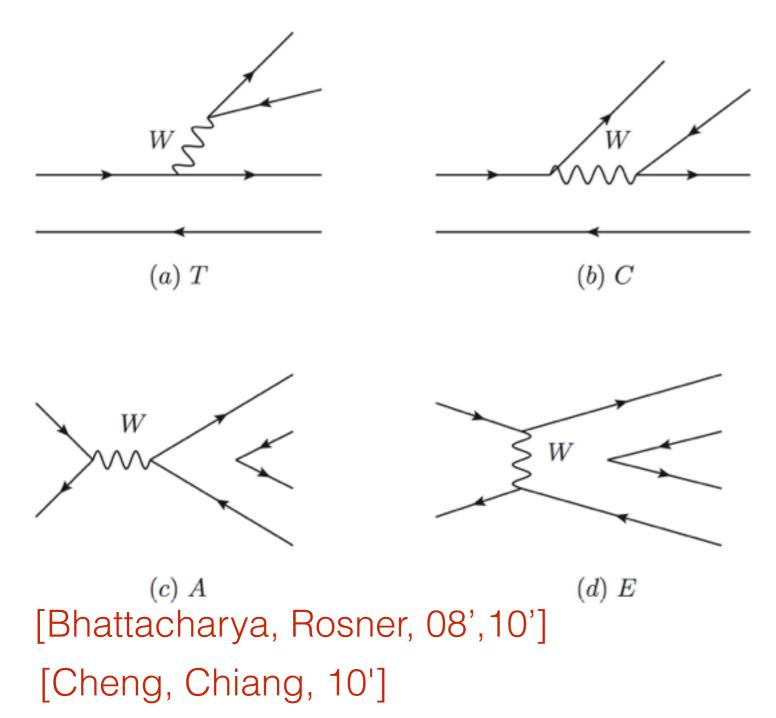

To predict Branching fractions well

Exclusive Approach Sum up all the intermediate states

$$y = \frac{1}{2\Gamma} \sum_{n} \rho_n \eta_{\rm CP}(n) (\langle D^0 | H_w | n \rangle \langle \bar{n} | H_w | D^0 \rangle + \langle D^0 | H_w | \bar{n} \rangle \langle n | H_w | D^0 \rangle)$$

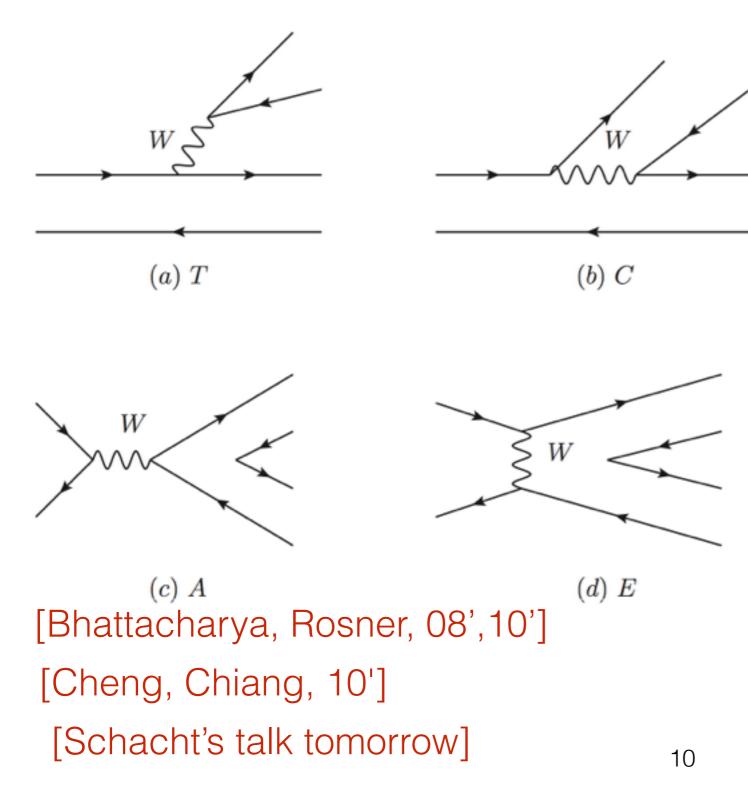
$$= \sum_{n} \eta_{\text{CKM}}(n) \eta_{\text{CP}}(n) \cos \delta_n \sqrt{Br(D^0 \to n) Br(D^0 \to \bar{n})} ,$$

- SU(3) breaking effect from phase space [Falk,Grossman,Ligeti,Petrov, 02'] $\pi\pi\pi\pi$ v.s. KKKK
- Topological diagrammatic approach [Cheng,Chiang, 10']
- U-spin breaking effect [Gronau, Rosner, 12']



Problem on dynamics

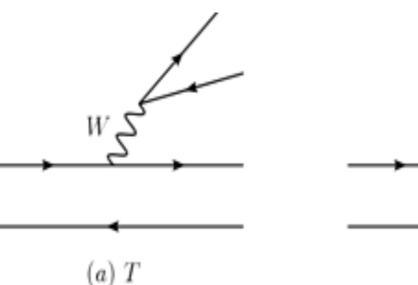
- *m_c*~1.3GeV
 - Neither heavy enough for heavy quark expansion, 1/mc
 - Nor light enough for chiral perturbation theory
- QCD-inspired methods do not work: HQET, QCDF, PQCD, SCET.


Large nonperturbative contributions

Topological-Amplitude Approach

[Schacht's talk tomorrow]

Factorization-Assisted Topological-Amplitude Approach

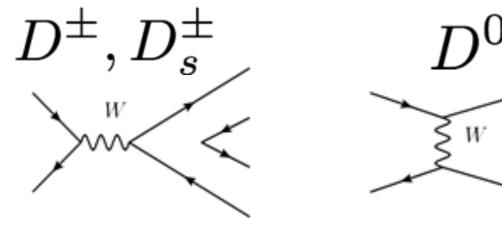


- Calculate each topological amplitude in factorization:
- Short-distance dynamics: Wilson coefficients
- Long-distance dynamics: hadronic matrix elements

[Li, Lu, FSY, 1203.3120]

Emission Amplitudes

- Color-favored Tree (T)
- Color-suppressed (C)


(b) C

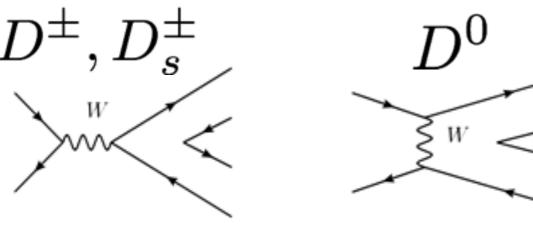
/

$$a_{1}(\mu) = C_{2}(\mu) + \frac{C_{1}(\mu)}{N_{c}}, \text{ Non-factorizable}$$

$$a_{2}(\mu) = C_{1}(\mu) + C_{2}(\mu) \Big[\frac{1}{N_{c}} + \chi_{nf} e^{i\phi} \Big],$$

$$\mu = \sqrt{\Lambda m_{D}(1 - r_{2}^{2})}, \quad r_{2} = m_{P_{2}}^{2}/m_{D}^{2}$$
[Li, Lu, FSY, 1203,3120]

[Li, Lu, FSY, 12'] W-annihilation (A) W-exchange (E)


(c) A

$$\langle P_1 P_2 | \mathcal{H}_{\text{eff}} | D \rangle_{E,A} = \frac{G_F}{\sqrt{2}} V_{\text{CKM}} b_{q,s}^{E,A}(\mu) f_D m_D^2 \left(\frac{f_{P_1} f_{P_2}}{f_\pi^2} \right)$$

(d) E

Dominated by **non-factorizable** contribution

A:
$$b_{q,s}^{A}(\mu) = C_{1}(\mu)\chi_{q,s}^{A}e^{i\phi_{q,s}^{A}}$$

E: $b_{q,s}^{E}(\mu) = C_{2}(\mu)\chi_{q,s}^{E}e^{i\phi_{q,s}^{E}}$
Factorization-Assisted
Topological Approach nonperturbative
contributions

[Li, Lu, FSY, 12'] W-annihilation (A) W-exchange (E)

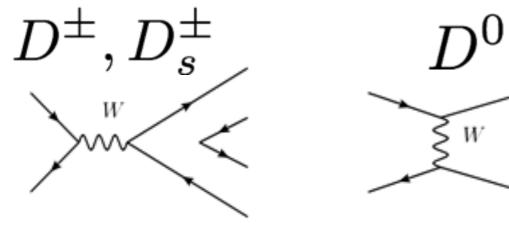
χ

$$\langle P_1 P_2 | \mathcal{H}_{\text{eff}} | D \rangle_{E,A} = \frac{G_F}{\sqrt{2}} V_{\text{CKM}} b_{q,s}^{E,A}(\mu) f_D m_D^2 \left(\frac{f_{P_1} f_{P_2}}{f_{\pi}^2} \right)$$

Dominated by **non-factorizable** contribution

A:
$$b_{q,s}^{A}(\mu) = C_{1}(\mu)\chi_{q,s}^{A}e^{i\phi_{q,s}^{A}}$$

E: $b_{q,s}^{E}(\mu) = C_{2}(\mu)\chi_{q,s}^{E}e^{i\phi_{q,s}^{E}}$


SU(3) breaking effects

 $\chi_q \neq \chi_s$

$$\chi^A \sim \chi^E$$
 $\chi^E_q = 0.11, \quad \chi^A_q = 0.12,$
 $\chi^E_s = 0.18, \quad \chi^A_s = 0.17.$

(d) E

subscripts: quark pairs produced from vacuum

(c) A

[Li, Lu, FSY, 12'] W-annihilation (A) W-exchange (E)

$$\langle P_1 P_2 | \mathcal{H}_{\text{eff}} | D \rangle_{E,A} = \frac{G_F}{\sqrt{2}} V_{\text{CKM}} b_{q,s}^{E,A}(\mu) f_D m_D^2 \left(\frac{f_{P_1} f_{P_2}}{f_{\pi}^2} \right)$$

Dominated by **non-factorizable** contribution

A:
$$b_{q,s}^{A}(\mu) = C_{1}(\mu)\chi_{q,s}^{A}e^{i\phi_{q,s}^{A}} + S_{\pi}$$

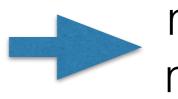
E: $b_{q,s}^{E}(\mu) = C_{2}(\mu)\chi_{q,s}^{E}e^{i\phi_{q,s}^{E}} + S_{\pi}$

(d) E

SU(3) breaking effects

Glauber strong phase for pions

pion=> Goldstone boson? qqbar bound state?


 $\chi_q \neq \chi_s$

Much and precise experimental data

To extract nonperturbative parameters from data

PP: 12 parameters for 28 data PV: 14 parameters for 33 data

more dynamics more predictive

Singly Cabibbo-suppressed modes agree well with experiments

More SU(3) breaking effects included

(×10⁻³)

Modes	Br(FSI)	Br(diagram)	Br(pole)	Br(exp)	Br(this work)
$D^0 o \pi^+ \pi^-$	1.59	2.24 ± 0.10	2.2 ± 0.5	1.45 ± 0.05	1.43 🗲
$D^0 \rightarrow K^+ K^-$	4.56	1.92 ± 0.08	3.0 ± 0.8	4.07 ± 0.10	4.19
$D^0 \rightarrow K^0 \bar{K}^0$	0.93	0	0.3 ± 0.1	0.320 ± 0.038	0.36
$D^0 ightarrow \pi^0 \pi^0$	1.16	1.35 ± 0.05	0.8 ± 0.2	0.81 ± 0.05	0.57
$D^0 o \pi^0 \eta$	0.58	0.75 ± 0.02	1.1 ± 0.3	0.68 ± 0.07	0.94
$D^0 o \pi^0 \eta'$	1.7	0.74 ± 0.02	0.6 ± 0.2	0.91 ± 0.13	0.65
$D^0 ightarrow \eta \eta$	1.0	1.44 ± 0.08	1.3 ± 0.4	1.67 ± 0.18	1.48
$D^0 o \eta \eta'$	2.2	1.19 ± 0.07	1.1 ± 0.1	1.05 ± 0.26	1.54
$D^+ ightarrow \pi^+ \pi^0$	1.7	0.88 ± 0.10	1.0 ± 0.5	1.18 ± 0.07	0.89
$D^+ \rightarrow K^+ \bar{K}^0$	8.6	5.46 ± 0.53	8.4 ± 1.6	6.12 ± 0.22	5.95
$D^+ o \pi^+ \eta$	3.6	1.48 ± 0.26	1.6 ± 1.0	3.54 ± 0.21	3.39
$D^+ o \pi^+ \eta'$	7.9	3.70 ± 0.37	5.5 ± 0.8	4.68 ± 0.29	4.58
$D^+_S ightarrow \pi^0 K^+$	1.6	0.86 ± 0.09	0.5 ± 0.2	0.62 ± 0.23	0.67
$D_S^+ \rightarrow \pi^+ K^0$	4.3	2.73 ± 0.26	2.8 ± 0.6	2.52 ± 0.27	2.21
$D_S^+ \to K^+ \eta$	2.7	0.78 ± 0.09	0.8 ± 0.5	1.76 ± 0.36	1.00
$D_S^+ \to K^+ \eta'$	5.2	1.07 ± 0.17	1.4 ± 0.4	1.8 ± 0.5	1.92

[Li, Lu, FSY, 1203.3120]

Back to our topic in the end

$$y = \frac{1}{2\Gamma} \sum_{n} \rho_n \eta_{\rm CP}(n) (\langle D^0 | H_w | n \rangle \langle \bar{n} | H_w | D^0 \rangle + \langle D^0 | H_w | \bar{n} \rangle \langle n | H_w | D^0 \rangle)$$

$$= \sum_{n} \eta_{\rm CKM}(n) \eta_{\rm CP}(n) \cos \delta_n \sqrt{Br(D^0 \to n) Br(D^0 \to \bar{n})} ,$$

 $CP|M_1M_2\rangle = \eta_{\rm CP}(M_1)\eta_{\rm CP}(M_2)(-1)^L|M_1M_2\rangle = \eta_{\rm CP}(M_1M_2)|M_1M_2\rangle$

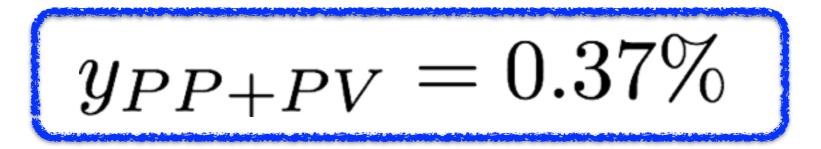
y_{PP}

vanish in the SU(3) symmetry limit

$$\begin{aligned} \mathcal{B}(\pi^{+}\pi^{-}) + \mathcal{B}(K^{+}K^{-}) - 2\cos\delta_{K^{+}\pi^{-}}\sqrt{\mathcal{B}(K^{-}\pi^{+})\mathcal{B}(K^{+}\pi^{-})} \\ + \mathcal{B}(\pi^{0}\pi^{0}) + \mathcal{B}(K^{0}\bar{K}^{0}) - 2\cos\delta_{K^{0}\pi^{0}}\sqrt{\mathcal{B}(\bar{K}^{0}\pi^{0})\mathcal{B}(K^{0}\pi^{0})} \\ + \mathcal{B}(\pi^{0}\eta) + \mathcal{B}(\pi^{0}\eta') + \mathcal{B}(\eta\eta) + \mathcal{B}(\eta\eta') \\ - 2\cos\delta_{K^{0}\eta}\sqrt{\mathcal{B}(\bar{K}^{0}\eta)\mathcal{B}(K^{0}\eta)} - 2\cos\delta_{K^{0}\eta'}\sqrt{\mathcal{B}(\bar{K}^{0}\eta')\mathcal{B}(K^{0}\eta')} \end{aligned}$$

y_{PV}

$$\begin{split} Br(\pi^{0}\rho^{0}) + Br(\pi^{0}\omega) + Br(\pi^{0}\phi) + Br(\eta\omega) + Br(\eta'\omega) + Br(\eta\phi) + Br(\eta\rho^{0}) + Br(\eta\rho^{0}) \\ -2\cos\delta_{K^{*-}\pi^{+}}\sqrt{Br(K^{*-}\pi^{+})Br(K^{*+}\pi^{-})} - 2\cos\delta_{K^{*0}\pi^{0}}\sqrt{Br(K^{*0}\pi^{0})Br(\bar{K}^{*0}\pi^{0})} \\ -2\cos\delta_{K^{-}\rho^{+}}\sqrt{Br(K^{-}\rho^{+})Br(K^{+}\rho^{-})} - 2\cos\delta_{K^{0}\rho^{0}}\sqrt{Br(K^{0}\rho^{0})Br(\bar{K}^{0}\rho^{0})} \\ -2\cos\delta_{K^{*0}\eta}\sqrt{Br(K^{*0}\eta)Br(\bar{K}^{*0}\eta)} - 2\cos\delta_{K^{*0}\eta'}\sqrt{Br(K^{*0}\eta')Br(\bar{K}^{*0}\eta')} \\ -2\cos\delta_{K^{0}\omega}\sqrt{Br(K^{0}\omega)Br(\bar{K}^{0}\omega)} - 2\cos\delta_{K^{0}\phi}\sqrt{Br(K^{0}\phi)Br(\bar{K}^{0}\phi)} \\ +2\cos\delta_{K^{+}K^{*-}}\sqrt{Br(K^{+}K^{*-})Br(K^{-}K^{*+})} + 2\cos\delta_{K^{0}\bar{K}^{*0}}\sqrt{Br(K^{0}\bar{K}^{*0})Br(\bar{K}^{0}K^{*0})} \\ +2\cos\delta_{\pi^{+}\rho^{-}}\sqrt{Br(\pi^{+}\rho^{-})Br(\pi^{-}\rho^{+})} \end{split}$$


More decay modes

[Qin, Li, Lu, FSY, 14']

Our results

$$y_{PP} = 0.08\%$$

 $y_{PV} = 0.29\%$

- Experimental data
 - Exp: $y_D = (0.62 \pm 0.08)\%$ [HFAG]

Outlook 1: uncertainties to be studied Outlook 2: contributions from other modes

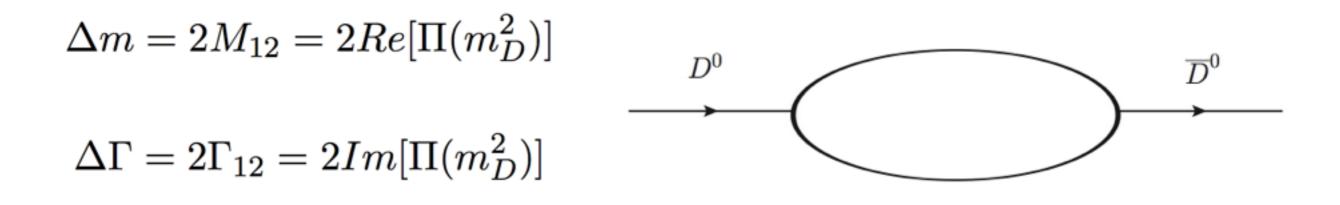
$$\begin{array}{c|cccc} & \mathcal{D}^{0} \text{ decay branching fractions} \\ \hline \mathbf{two-body \ decays \ dominated} \\ \hline \hline PP & PV & VV & PA & PS & PT & semilep \\ \hline 10\% & 30\% & 10\% & 10\% & 5\% & 0.2\% & 15\% \end{array} \qquad \mbox{[PDG]} \\ \hline \eta_{CP}: & + & + & +, \ S, D & + & - \\ & & -, \ P \ wave \end{array}$$

Estimation: $y_{VV} = 0.10\%$ Longitudinal $y_{PP+PV+VV} = 0.47\%$ Exp: $y_D = (0.62 \pm 0.08)\%$

More efforts required for experimentalists to measure VV, PA, PS modes

x from dispersion relation

$$Ref(s) = \frac{1}{\pi} P \int_0^\infty \frac{ds'}{s' - s} Imf(s')$$


In the heavy quark limit

$$\Delta m = -\frac{1}{2\pi} P \int_{2m_{\pi}}^{\infty} dE \left[\frac{\Delta \Gamma(E)}{E - m_D} + \mathcal{O} \left(\frac{\Lambda_{\text{QCD}}}{E} \right) \right]$$

[Falk,Grossman,Ligeti,Nir,Petrov,2004]

x from dispersion relation

$$Ref(s) = \frac{1}{\pi} P \int_0^\infty \frac{ds'}{s' - s} Imf(s')$$

$$\Delta m(m_D^2) = \frac{2}{\pi} P \int_{(2m_\pi^2)^2}^{\infty} \frac{\Delta \Gamma(s)}{s - m_D^2} ds$$

x from dispersion relation $\Delta m(m_D^2) = \frac{2}{\pi} P \int_{(2m^2)^2}^{\infty} \frac{\Delta \Gamma(s)}{s - m_D^2} ds$ $m_{B} = \begin{cases} wanishes due to SU(3) symmetry \\ m_{D} = \begin{cases} y(m_{D}^{2}) & \text{Simulate nearby } m_{D} \\ y(4m_{\pi}^{2}) = 0 \end{cases}$ dynamics require dynamics required

Summary

- Two-body D meson decays are well studied in Factorization-Assisted Topological-amplitude approach. SU(3) breaking effects are well described.
- D-Dbar mixing parameter y can be understood in an exclusive approach.
- More efforts for experimentalist are required to measure VV, PA and PS modes
- More efforts on dynamics are required for mixing parameter x
 Thank you for your attention!

 $D^0 \rightarrow \pi^+ \pi^- v.s. \ D^0 \rightarrow K^+ K^-$

$$\begin{aligned} \mathcal{A}(D^{0} \to \pi^{+}\pi^{-}) &= \frac{G_{F}}{\sqrt{2}} \lambda_{d} \left(T^{\pi\pi} + E^{\pi\pi}\right) & \text{Glauber phase} \\ &= \frac{G_{F}}{\sqrt{2}} V_{cd}^{*} V_{ud} \left[a_{1}(\mu) (m_{D}^{2} - m_{\pi}^{2}) f_{\pi} F_{0}^{D\pi}(m_{\pi}^{2}) + C_{2}(\mu) e^{i(\phi_{q}^{E}} + 2S_{\pi}) \chi_{q}^{E} f_{D} m_{D}^{2} \right] \\ \mathcal{A}(D^{0} \to K^{+}K^{-}) &= \frac{G_{F}}{\sqrt{2}} \lambda_{s} \left(T^{KK} + E^{KK}\right) & \text{Main difference} \\ &= \frac{G_{F}}{\sqrt{2}} V_{cs}^{*} V_{us} \left[a_{1}(\mu) (m_{D}^{2} - m_{K}^{2}) f_{K} F_{0}^{DK}(m_{K}^{2}) + C_{2}(\mu) e^{i\phi_{q}^{E}} \chi_{q}^{E} f_{D} m_{D}^{2} \frac{f_{K}^{2}}{f_{\pi}^{2}} \right] \end{aligned}$$

Modes	Br(FSI)	Br(diagram)	Br(pole)	Br(exp)	Br(this work)
$D^0 o \pi^+ \pi^-$	1.59	2.24 ± 0.10	2.2 ± 0.5	1.45 ± 0.05	1.43 🗲
$D^0 \rightarrow K^+ K^-$	4.56	1.92 ± 0.08	3.0 ± 0.8	4.07 ± 0.10	4.19 🗲

$$T^{\pi\pi} = 2.73, \qquad E^{\pi\pi} = 0.82e^{-i142^{\circ}},$$

 $T^{KK} = 3.65, \qquad E^{KK} = 1.2e^{-i85^{\circ}},$

Result of CP asymmetries

Difference of CPV in D->KK and D-> pipi

$$\Delta A_{CP}^{\rm dir} = A_{CP}(D^0 \to K^- K^+) - A_{CP}(D^0 \to \pi^- \pi^+)$$

• Our prediction:

$$\Delta A_{CP} = (-0.57 \sim -1.87) \times 10^{-3}$$
 [Li, Lu, FSY, 12']

 After our prediction, the world average value is lowered down by the LHCb results

Exp: $\Delta A_{CP} = (-2.53 \pm 1.04) \times 10^{-3}$ [HFAG2014]