

Study of $B \rightarrow X(3872) \ K \pi$ at Belle

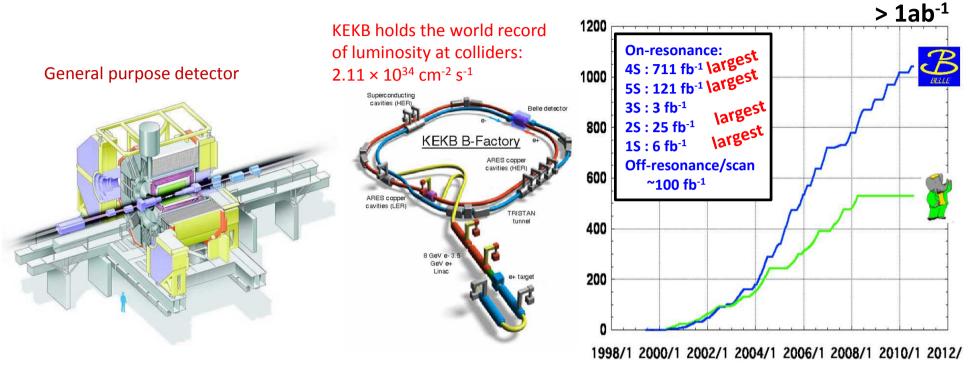
Vishal Bhardwaj[‡] University of South Carolina (for the Belle Collaboration)

18-23 May 2015

[†] for Anu Bala (PU, Chandigarh)

CHARM 2015: The 7th International Workshop on Charm Physics

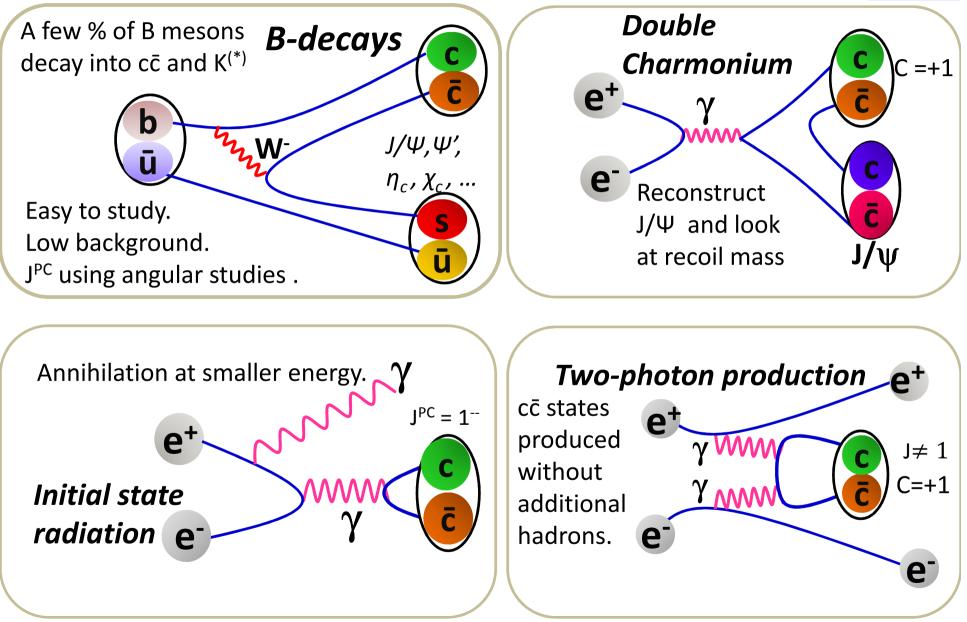
Outline

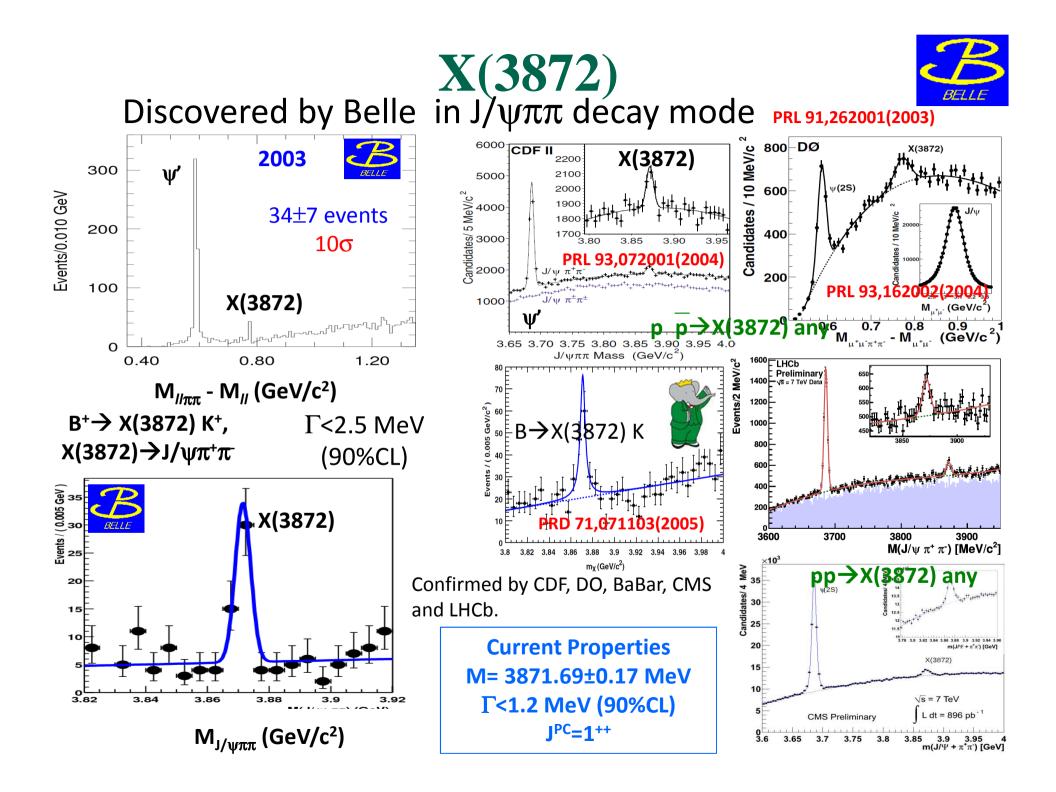

Motivation

Published in Belle, PRD91, 051101 (R) (2015)

- ♦ Illustration with the large $B^0 \rightarrow \psi' K^+ \pi^-$ sample.
- ♦ Observation of $B^0 \rightarrow X(3872) \text{ K}^+\pi^-$ decay mode
- ♦ $\mathscr{B}(B^0 \rightarrow X(3872) \text{ K}^+\pi^-)$ measurement
- $M(K\pi)$ study
- ♦ Evidence of B⁺ → X(3872) $K_S^{0}\pi^{+}$ decay mode
- Summary

KEKB and Belle




- ✤ Belle started in 1999.
- ♦ Experiment designed for CP Violation measurement in $B^0 \rightarrow c\bar{c}K^0$
- Data taking stopped in June 2010.
- Belle recorded ~ 772 x 10⁶ BB pairs as final sample at Υ(4S) resonance.
- Excellent place to perform charmonium spectroscopy !

$c\bar{c}\ production$ at Belle

Radiative and eXotic decay(s) of X(3872)

Belle found evidence for X(3872) \rightarrow J/ $\psi\gamma$ in B⁺ \rightarrow X(3872) K⁺ arXiv:0505037

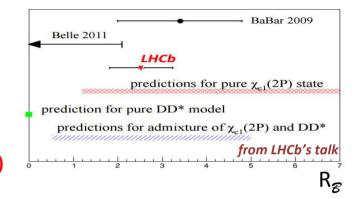
Also seen by BaBar

BaBar also found signal in X(3872) $\rightarrow \psi' \gamma$ $\mathcal{C}(X(3872)\rightarrow \psi' \gamma) / \mathcal{C}(X(3872)\rightarrow J/\psi \gamma) = 3.5 \pm 1.4$

Update from Belle, established X(3872) \rightarrow J/ $\psi\gamma$ with 5.5 σ observation

 $\mathcal{C}(B^+ \rightarrow XK^+) \times \mathcal{C}(X \rightarrow J/\psi\gamma) = (1.78\pm0.46\pm0.12) \times 10^{-6}$ However, no evidence for X(3872) $\rightarrow \Psi'\gamma$

Recently, LHCb has confirmed X(3872) $\rightarrow \Psi'\gamma$, provided more precise measurement : consistent with Belle and BaBar. NPB 886, 665 (2014)


Belle & BaBar both observe X(3872) $\rightarrow D^{*0} \overline{D}^{0}$ but they got slight shift in mass

recent Mass→ $3872.9^{+0.6}_{-0.4}$ MeV/c² PRL 97,162002 (2006), PRD 81, 031103 (2010) Mass→ $3875.1^{+0.7}_{-0.5} \pm 0.5$ MeV/c² PRD 77,011102 (2008)

These decays along with negative search of $\chi_{c1}' \rightarrow \chi_{c1} \pi^+ \pi^-$ suggest : X(3872) to be an admixture of DD^{*} molecule and χ_{c1}' state^{*}.

PRL 107, 091803 (2011) ation

PRD 83, 094009 (2011)

PRD91, 051101 (R) (2015)

Study of $B \rightarrow X(3872) K\pi$

Attempt to understand the *production* of X(3872) in B \rightarrow X(3872) Kπ, in comparison to normal charmonium state.

First study was done by Belle using 605 fb⁻¹

arXiv:0809.1224, BELLE-CONF-0849

- ✓ Saw signal of $B^0 \rightarrow X(3872) K^+\pi^-$. ✓ $\mathscr{C}(B^0 \rightarrow X(3872) K^+\pi^-) \mathscr{C}(X(3872) \rightarrow J/\Psi\pi\pi) = (8.1 \pm 2.0^{+1.1}_{-1.4}) \times 10^{-6}$
- ✓ $\mathscr{C}(B \rightarrow X(3872)K^{*0})\mathscr{C}(X(3872) \rightarrow J/\Psi \pi \pi)$ < 3.4 x 10⁻⁶ (90% CL)
- ✓ Non-resonant contribution dominates, unlike other cc̄ states.

With full data sample (711fb⁻¹) and reprocessed data, one expects more sensitivity to the study.

- > Improved analysis technique.
- **♦** Further, B⁺→ X(3872)K_S⁰π⁺ is also studied in an attempt to increase the statistics.

★Exploit B→ψ' Kπ as calibration mode to train and calibrate B→X(3872) Kπ decay mode.

PRD91, 051101 (R) (2015)

Selection criteria

- $B^0 \rightarrow \psi'(K^+\pi^-)$ and $B^0 \rightarrow X(3872)(K^+\pi^-)$ selection criteria
- Beam-constraint mass

$$M_{bc} = \sqrt{E_{beam}^2 - p_B^2} > 5.27 \text{ GeV/c}^2$$

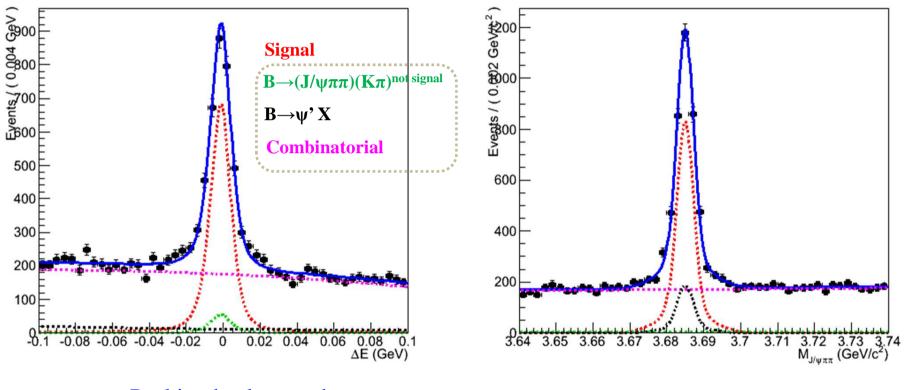
- To avoid combinatorial background from $\pi^+ \pi^ \gg M_{\pi^+\pi^-} > (M_{(\pi^+\pi^- J/\psi)} - (m_{J/\psi} + 0.2 \text{ GeV/c}^2))$
- Fit was performed in 2-D using ΔE & M_{J/ψππ}
 → -0.1 GeV < ΔE < 0.1 GeV
 → 3.64 < M_{J/ψππ} < 3.74 GeV/c² for B⁰ → ψ' (K⁺π⁻)
 → 3.82 < M_{J/ψππ} < 3.92 GeV/c² for B⁰ → X(3872) (K⁺π⁻)

Based upon above selection cuts, reconstruction efficiency from MC is:

Decay Mode	Weighted Signal Efficiency (%)
$B^0 \rightarrow X(3872) (K^+\pi^-)$	16.0
$B^+ \rightarrow X(3872) \ (K_S^{\ 0}\pi^+)$	10.3

Signal Extraction

For signal extraction :

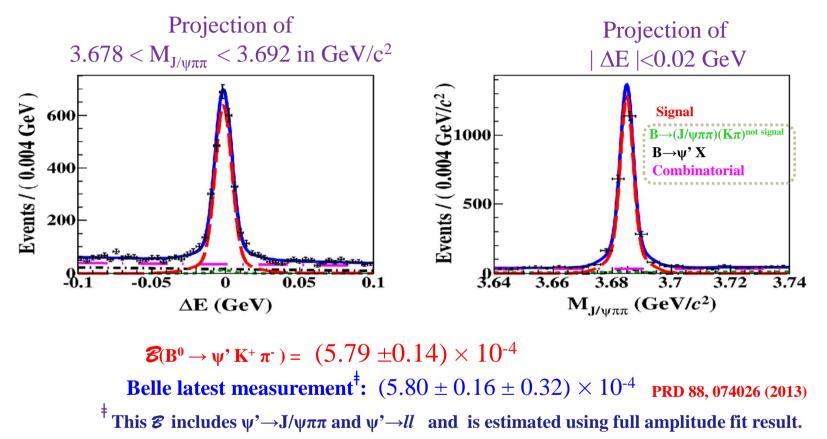

- ➤ 2-D fit to ΔE & M_{J/ψππ} to observe B → X(3872) (Kπ) decay mode.
- Background estimated from :
 - ✓ Large B→J/ ψ X signal MC (x 100 times data)
 - ✓ Non-J/ ψ background estimated using J/ ψ mass sidebands.
 - ✓ 89fb⁻¹ off resonance data collected at 60 MeV below Υ (4S).
- > Major background comes from $B \rightarrow J/\psi X$ processes.
- ≻ The procedure is first tested with $B^0 \rightarrow \psi'(K^+\pi^-)$:
 - Same final state
 - o Larger statistics (~2600 events).

Fit parametrization

2-D Fit (ΔE and $M_{J/\psi\pi\pi}$)

$B^0 \rightarrow \psi' K^+ \pi^-$ decay mode

Peaking background


- Same final state, $B \rightarrow (J/\psi \pi \pi)(K\pi)$, peaks at ΔE
- ► Decay modes of the type $B \rightarrow \psi' X$, peaks at $M_{J/\psi \pi \pi}$

Tested our fitter with toys and no bias was seen.

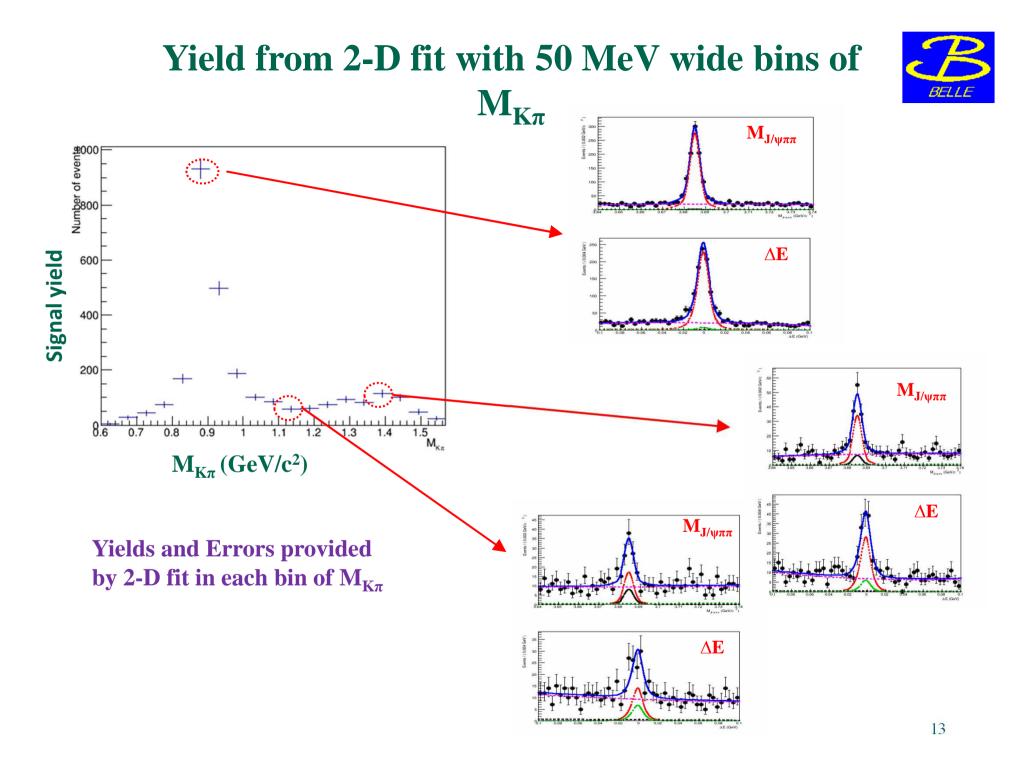
Control sample in data

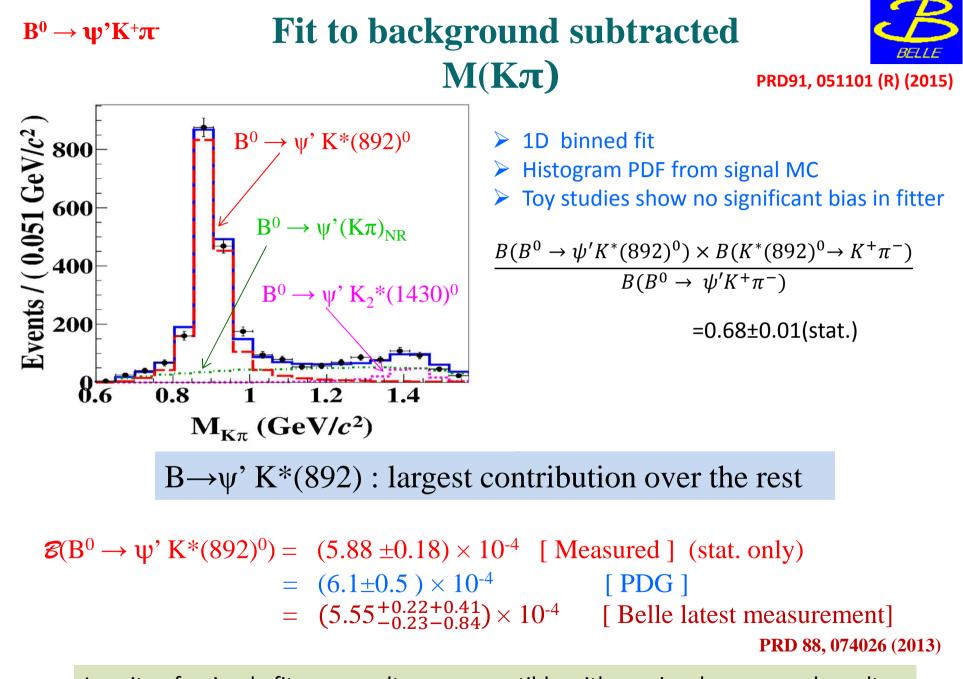
• In our measurement, no interference and $Z(4430)^+ \rightarrow \psi' \pi$ component is taken into account.

- This is just an illustration for $B \rightarrow X(3872)$ K π study:
 - one expects 100-150 signal events

 $B^0 \rightarrow \psi' K\pi$ decay mode is used to calibrate our PDF resolutions.

Different components of $M(K\pi)$ system

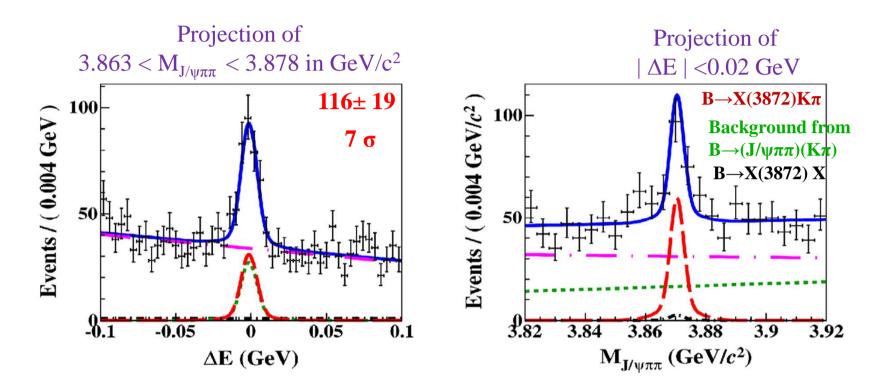

Our interest lies in understanding the decay dynamics of X(3872) Kπ
 Study of M(Kπ) becomes a straight forward choice.


- ★ Measured $\mathcal{B}(B^0 \rightarrow \psi' K^+ \pi^-)$ includes all possible components:
 - \succ K*(892), K₂*(1430) and (K⁺π⁻)_{NR}, etc ...
- Interesting to separate the resonant and non-resonant components
 Fit to M(Kπ)

We fit $\Delta E \& M_{J/\psi\pi\pi}$ in bins of $M(K\pi)$ to obtain background subtracted $M(K\pi)$ distribution

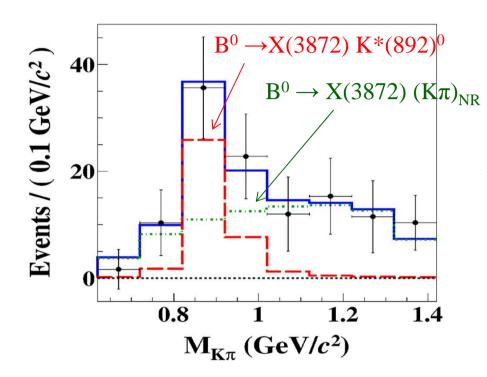
Fit the resultant M(K π) distribution to extract the resonant (K*) and non-resonant (PHSP) components.

50 MeV/c² wide for ψ ' and 100 MeV/c² wide for X(3872)


In spite of a simple fit, our results are compatible with previously measured results.

$B^0 \rightarrow X(3872) K^+\pi^- decay mode$ study

2-D ($\Delta E - M_{J/\psi\pi\pi}$) Fit to data for B⁰ \rightarrow X(3872) K⁺ π ⁻ decay mode


A clear signal peak is observed for $B^0 \rightarrow X(3872)K^+\pi^-$ decay mode

 $\mathcal{E}(B^{0} \rightarrow X(3872)K^{+}\pi^{-}) \times \mathcal{E}(X(3872) \rightarrow J/\psi\pi^{+}\pi^{-}) = (7.91 \pm 1.29 \pm 0.43) \times 10^{-6}$

$B^0 {\rightarrow} X(3872) K^+ \pi^-$

Fit to background subtracted $M(K\pi)$

➢ 1D binned fit

Histogram PDF from signal MC

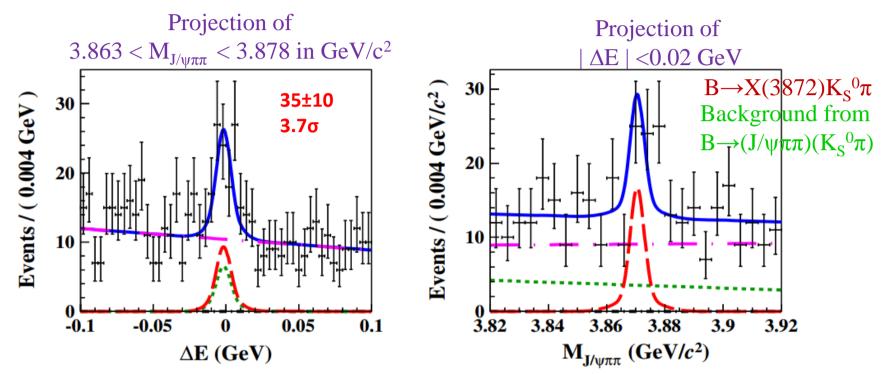
Toy studies show no significant bias in fitter

Upper bound on M(Kπ) due to the kinematics is 1.41 GeV/c²
 Evaluated K *(1420) in this fit

 \succ Excluded K₂*(1430) in this fit

$$\frac{B(B^{0} \to X(3872)K^{*}(892)^{0}) \times B(K^{*}(892)^{0} \to K^{+}\pi^{-})}{B(B^{0} \to X(3872)K^{+}\pi^{-})} = 0.34 \pm 0.09 \text{(stat.)} \pm 0.02 \text{(syst.)}$$
while
$$\frac{B(B^{0} \to \psi'K^{*}(892)^{0}) \times B(K^{*}(892)^{0} \to K^{+}\pi^{-})}{B(B^{0} \to \psi'K^{+}\pi^{-})} = 0.68 \pm 0.01 \text{(stat.)}$$

• Here $K^*(892)^0$ has less contribution as compared to the level seen in Ψ' .


17

PRD91, 051101 (R) (2015)

 $B^+ \rightarrow X(3872)K_S^0\pi^+$

2D UML fit

First evidence for B⁺ \rightarrow X(3872)K_S⁰ π ⁺ decay mode

 $\mathcal{E}(B^+ \to X(3872)K^0\pi^+) \times \mathcal{E}(X(3872) \to J/\psi\pi^+\pi^-) = (10.61 \pm 3.04 \text{ (stat)} \pm 0.85(\text{syst})) \times 10^{-6}$

In absence of sufficient statistics, we didn't study its $M(K\pi)$ distribution.

Summary

Clear observation of B⁰→X(3872)K⁺π⁻ decay mode using Belle full data sample.

 $\mathcal{E}(B^{0} \rightarrow X(3872)K^{+}\pi^{-}) \times \mathcal{E}(X(3872) \rightarrow J/\Psi\pi\pi) = (7.91 \pm 1.29 \pm 0.43) \times 10^{-6}$ 116±19 signal events with 7σ

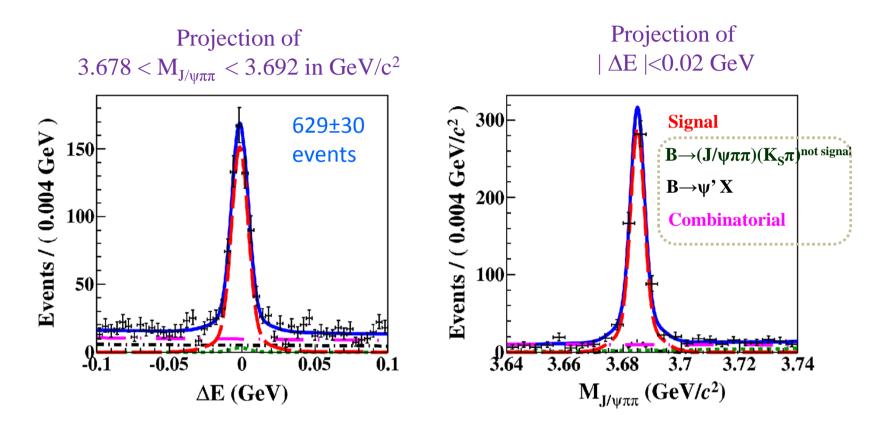
★ First evidence of B⁺→X(3872)K_S⁰π⁺ decay mode
★ 𝔅(B⁺→X(3872)K_S⁰π⁺) x 𝔅(X(3872)→J/Ψππ) = (10.61±3.04±0.85)x 10⁻⁶ 35±10 signal events with 3.7σ

***** Studied production dynamics using M(K π) system.

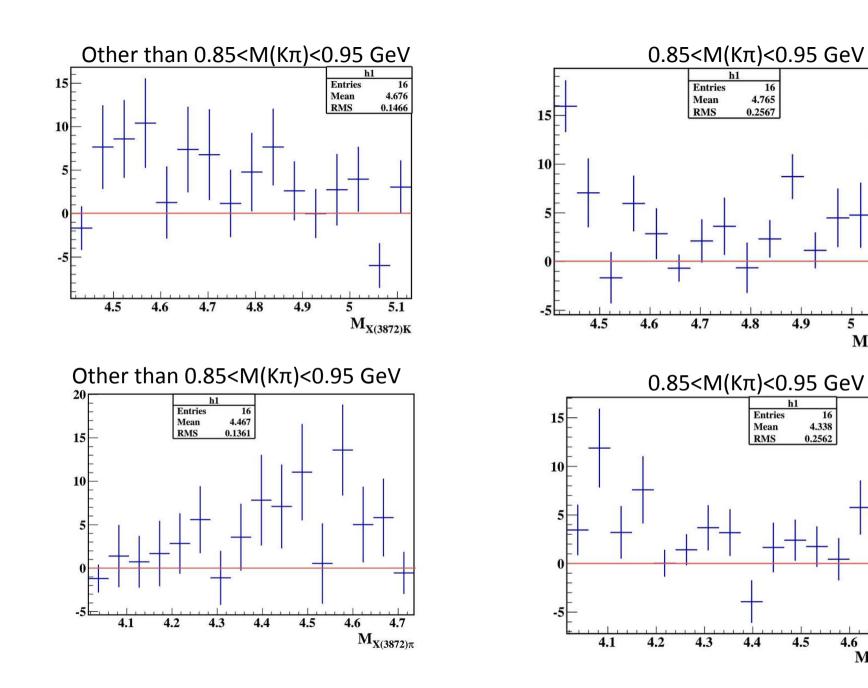
K*(892)⁰ component in (Kπ) system in X(3872) does not dominate, is in marked contrast to Ψ' case.

Most probable :

• X(3872) to be an admixture of $D\bar{D}^*$ molecule and χ_{c1} ' state^{*}.


Thank you

Backup


 $B^+ \rightarrow \psi' K_S^0 \pi^+$

2D UML fit

𝔅(**B**⁺ → ψ' **K**⁰ π⁺) = (6.00 ±0.28(stat)) × 10⁻⁴ **World Average:** (5.88 ± 0.34) × 10⁻⁴

Results are compatible with previously measured results.

5.1

4.7

 $M_{X(3872)\pi}$

4.6

M_{X(3872)K}

5

4.9

h1

4.5

16 4.338

0.2562