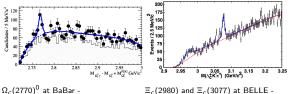
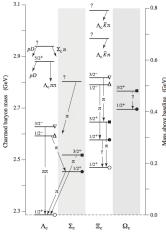
Charmed baryons from LHCb

Charm 2015 Detroit

Stephen Ogilvy on behalf of the LHCb collaboration

University of Glasgow




- The LHCb charmed baryon programme
- Recent results:
 - Λ_c^+ production
 - Doubly-charmed baryon searches
- Analyses underway with Run I data:
 - Precision measurements lifetimes, branching fractions...
 - CP- violation and amplitude analyses
 - Searches for new states
 - Rare Λ_c decays
- And some prospects for the future

Charm baryon spectra - experiment

- Considerable progress in past 10 years on measuring charm baryon spectra.
- Variety of Σ_c, Ω_c and Ξ_c states identified by the B factories.
- Quark model has been very successful in predicting masses of singly charmed states, and mass splittings.
- Still an open question if calculations will work equally well on double and triple charm baryons.

 $\Xi_c(2980)$ and $\Xi_c(3077)$ at BELLE -Phys. Rev. Lett. 97, 162001

Baryon Spectra - Phys. Rev. D86, 010001 (2012)

Phys. Rev. Lett. 97, 232001

Charm baryon spectra - theory

Experiment Lattice QCD (Brown et al., 2014) 5000 Shown: predicted charm/beauty baryon states from lattice QCD $\Omega_{bb} \Omega_{bb}^*$ 4500 (Brown, Detmold, $W/MeV - n_b \cdot 3000$ Meinel, Orginos) 4000 Where observed states $\Xi_{cb}\,\Xi_{cb}^\prime\,\Xi_{ch}^*\,\Omega_{cb}\,\Omega_{ch}^\prime\,\Omega_{ct}^*$ shown in red. 3500 Ξ. • Huge menagerie of states $\Omega_b \ \Omega_b^*$ to still be found! 3000 Large number of HQET calculations - lifetimes. decay widths, masses. 2500

5500

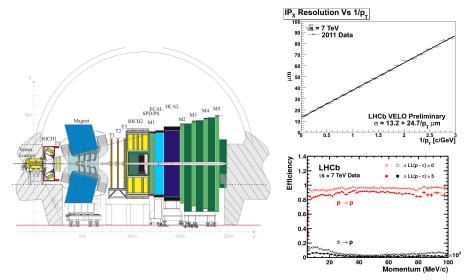
• Experiment needs to catch up!

Phys. Rev. D 90, 094507 (2014)

2000

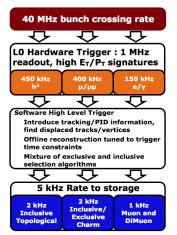
 Ω_{bbb}

 Ω_{ccc}

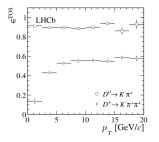

 $\Omega_{cbb} \Omega_{cbb}^*$

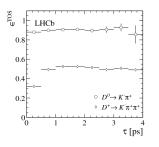
I

 $\Omega_{ccb}\Omega_{ccb}^{*}$


The LHCb Detector

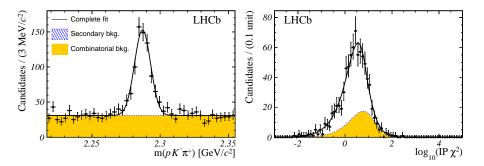
• Forward arm spectrometer designed for precision flavour measurements


The LHCb trigger in Run I


- Huge $c\overline{c}$ production at LHC relative to *B* factories.
- $\sigma(c\overline{c})p_{T<8 \text{ GeV}/c,2.0< y<4.5} = 1419 \pm 12 \text{ (stat)} \pm 116 \text{ (syst)} \pm 65 \text{ (fragmentation)} \mu b$

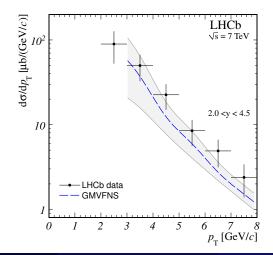
- But only get what we trigger!.
- For hadrons in L0, calorimeter cluster $E_{\rm T} > 3.5~{
 m GeV}$
- For hadrons in HLT1 require single charged track:
 - IP wrt PV > 0.1 mm
 - $p_{\rm T} > 1.7 \, {\rm GeV}/c$
 - Track quality criteria
- At HLT2 employ full event reconstruction.

Triggering on charm

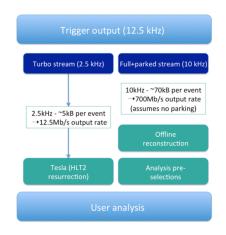

JINST 8 (2013) P04022

- Stephen Ogilvy (University of Glasgow)
- Charmed baryons from LHCb

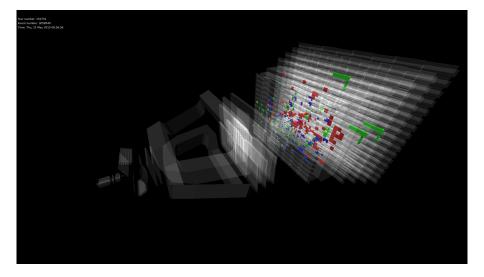
- Prompt charm reconstructed using exclusive lines.
- Secondary charm from *b*-hadron decays with inclusive *b* triggers
- Primary concerns for charm baryon exclusive triggers:
 - Hadronic acceptance strongly dependent on $\ensuremath{\textit{p}_{\rm T}}$ and lifetime
 - Use variety of data-driven techniques to correct for acceptance
 - Higher backgrounds than for muon final states PID selection vital
- Shown: Trigger On Signal (TOS) efficiency signal decay alone sufficient to fire HLT2 trigger line.


Open charm production at LHCb

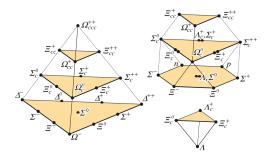
- Open charm cross sections at $\sqrt{s} = 7$ TeV measured with 15 nb⁻¹ of 2010 data.
- Production of strictly prompt particles measured.
 - From either open charm at PV or excited charm from PV.
 - Isolated from *b*-hadron decays through $\log(IP\chi^2)$ distributions.
- Mainly charmed mesons but includes $\Lambda_c^+ \rightarrow p K^- \pi^+$ differential cross section.


Open charm production at LHCb

- Differential cross section in LHCb acceptance shown in $p_{\rm T}$ bins.
- Compared with predictions from Generalized Mass Variable Flavour Number Scheme (GMVFNS, Eur.Phys.J.C72(2012)2082).


Stephen Ogilvy (University of Glasgow)

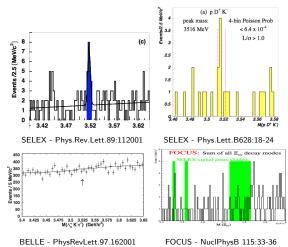
- For Run II, July 15: early measurements programme includes open charm cross section at $\sqrt{s}=13~{
 m TeV}$
- Expanded suite of baryons Λ_c^+ , Σ_c^0 , Σ_c^{++} , Ξ_c^+ , Ξ_c^0 .
- Employ SCS mode cross checks
- New trigger developments Turbo stream (see Sean Benson's CHEP 2015 talk here).
- Core idea: reconstruct full signal candidates in trigger, not offline.
- Smaller events more yield per bandwidth.
- Especially useful to charm, trigger output was a limitation in Run I



$13 \, \mathrm{TeV!}$

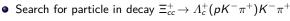
• First collisions at $\sqrt{s} = 13$ TeV today!

Double and triple charmed states


Phys. Rev. D86, 010001 (2012)

- Numerous predictions for $\Xi_{cc}^{+/++}$ masses and lifetimes:
 - $m(\Xi_{cc}^+)$: 3500 3700 MeV/ c^2 Phys. Rev. D70 (2004) 094004
 - $\tau(\Xi_{cc}^+)$: 100 250 fs Eur. Phys. J. A45 (2010) 267
 - Production relative to Λ_c^+ generally expected to be highly suppressed e.g. Physics-Uspekhi 45 (2002), no. 5 455

- Baryons with u,d,s,c form SU(4) multiplets
- Ground state baryons shown
- Three weakly decaying
 C = 2, J^P = 1/2⁺ states:
 - Ξ_{cc} isodoublet (ccu, ccd)
 - Ω_{cc} singlet (*ccs*)


SELEX Ξ_{cc}^+ candidates

- SELEX reported signals in $\Lambda_c^+ K^- \pi^+$ and $p^+ D^+ K^-$ final states
 - $m(\Xi_{cc}^+)$: (3519 ± 2) MeV/ c^2 , $\tau(\Xi_{cc}^+)$: < 30 fs @ 90 % CL
 - SELEX calculate 20 % of their Λ_c produced in Ξ_{cc}^+ decays

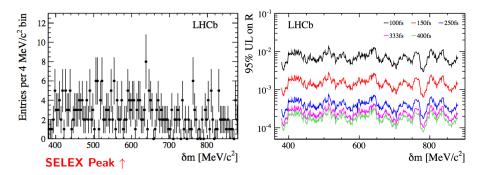
PV @

LHCb 2011 Ξ_{cc}^+ search

- Using 0.65 fb⁻¹ of 2011 data at $\sqrt{s} = 7$ TeV.
- Measure production ratio relative to control channel $\Lambda_c^+ o p K^- \pi^+$

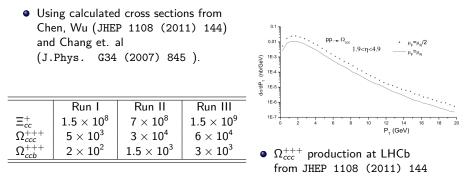
$$R \equiv \frac{\sigma(\Xi_{cc}^+)\mathcal{B}(\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+)}{\sigma(\Lambda_c^+)} = \frac{N_{\text{signal}}}{N_{\text{control}}} \frac{\epsilon_{\text{control}}}{\epsilon_{\text{signal}}}$$

- Measured LHCb Λ_c cross-section at $\sqrt{s}=7~{\rm TeV}\approx 230~\mu{\rm b}$ NUCL.PHYS.B871,1-20
- Predicted LHC Ξ_{cc}^+ cross-section at $\sqrt{s} = 7 \text{ TeV} \approx (30 900) \text{ nb.}$
- Assume $\mathcal{B}(\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+) \approx \mathcal{B}(\Lambda_c^+ \to p^+ K^- \pi^+) \approx 5 \%$
 - expected value of R at LHCb is of order $10^{-5} 10^{-4}$


 K^{-}

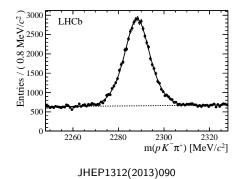
Ξ_{cc}^+ search results

• Define:


$$\delta m \equiv m(\Lambda_c^+ K^- \pi^+) - m_{meas}(\Lambda_c^+) - m(K^-) - m(\pi^+)$$

- Perform 2D fit in $m(\Lambda_c)$ and δm to extract signal yields.
- No observed excess in δm spectrum in data set upper limits on R.
- Calculate 95% CL_s ULs of R as function of δm for variety of lifetime hypotheses.

Double charm at LHCb


- 2011 analysis a strong proof of concept
- Full 2 fb⁻¹ at $\sqrt{s} = 8$ TeV under analysis, with improved triggers
- Now searching for Ξ_{cc} in multiple final states
 - Notable inclusion: $\Xi_{cc}^+ \to (D^+ \to K^- \pi^+ \pi^+) p^+ K^-$.
 - High D^+ lifetime (1 $\,\mathrm{ps}$) vs. Λ_c^+ (0.2 $\,\mathrm{ps}$) more efficient selections
- Estimated production in LHCb acceptance and $p_{\mathrm{T}} > 5~\mathrm{GeV}/c$:

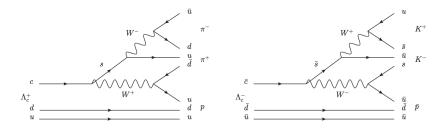
- Extensive charmed baryon programme underway at LHCb.
- Our early efforts in charm have focused on mesons, which are:
 - theoretically more precise
 - often experimentally cleaner than baryons.
 - often provide more access to new physics.
- Beginning to change considerably more work now in charmed baryons
- Large number of charmed baryon decays gathered during Run I
- Will now discuss some analyses underway with this dataset.

$\Lambda_c^+ \rightarrow phh'$ branching fractions

- $\Lambda_c^+ \rightarrow phh'$ decays have imprecisely measured branching fractions.
- Most precise to-date:
 - $\mathcal{B}(\Lambda_c^+ \to pK^-K^+)/\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)$: (1.4 ± 0.2 ± 0.2) % (Belle) Phys.Lett.B524:33-43,2002
 - $\mathcal{B}(\Lambda_c^+ \to p\pi^-\pi^+)/\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)$: (6.9 ± 3.6) % (NA32) Z. Phys. C48 (1990) 29.
- Shown: 30 pb⁻¹ of normalisation $\Lambda_c^+ \rightarrow p K^- \pi^+$ from Ξ_{cc}^+ search.
- $\bullet~818\times10^3$ yield in just 0.65 $\,fb^{-1}$
- Far more than this recorded in Run I.
- Copious samples of Cabibbo suppressed samples recorded \$\mathcal{O}\$(10⁵).

CPV in charmed baryons

- Weakly decaying baryons: Λ_c^+ , Ξ_c^0 , Ξ_c^+ , Ω_c^0 .
- Complementary to charmed mesons, direct asymmetries in their decays see Bigi, arXiv:1206.4554 [hep-ph]:

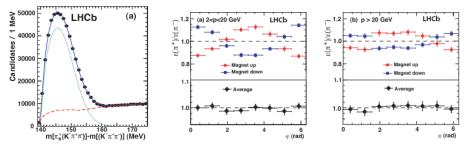

$$\mathcal{A}^{CP}(\Lambda_c^+ \to f) = \frac{\Gamma(\Lambda_c^+ \to f^+) - \Gamma(\Lambda_c^+ \to f^-)}{\Gamma(\Lambda_c^+ \to f^+) + \Gamma(\Lambda_c^+ \to f^-)} \sim |r| \sin(\Delta_s) \sin(\Theta)$$

- $\bullet~$ where Δ_s/Θ are differences between strong/CPV phases of SM and NP contributions
- May provide access to NP: SM backgrounds lower than meson sector.
- Can access experimentally via:

$$A_{R_{aw}}^{\Lambda_c}(h) = \frac{N(\Lambda_c^+ \to ph^+h^-) - N(\Lambda_c^- \to ph^+h^-)}{N(\Lambda_c^+ \to ph^+h^-) + N(\Lambda_c^- \to ph^+h^-)}$$

• But underlying production and detection assymetries too.

$\Delta \mathcal{A}^{CP}$ in $\Lambda_c^+ \rightarrow phh'$ Decays


• Production and detector asymmetries mostly cancelled by taking difference:

$$\Delta A_{CP}^{\Lambda_c} = A_{Raw}^{\Lambda_c}(K) - A_{Raw}^{\Lambda_c}(\pi) \approx A_{CP}^{\Lambda_c}(K) - A_{CP}^{\Lambda_c}(\pi)$$

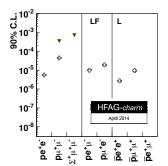
- In SCS modes should be close to zero in SM: $\mathcal{O}(10^{-4})$
- First studies well underway with Run I data.
- Limiting factor how well do proton asymmetries cancel?
- Longer term prospects:
 - CPV in DCS SM even smaller CP asymmetry than SCS possible window to NP?
 - Examine local assymetries in "Dalitz" plot, e.g. Miranda method (Phys.Rev.D80 (2009) 096006) local asymmetries stronger than global.

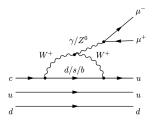
Proton detection asymmetry

- Precision measurments on D and D_s^+ production asymmetries performed at LHCb PLB 713 186 (2012), PLB 718 902 (2013)
- Recent theoretical interest in baryon production asymmetries Phys. Rev. D 91, 054022 (2015)
- Where are they? Detection asymmetries complicate things.
- 0.1 % precision acquired in K/π from partially reconstructed decays.
- Eg: $D^{*+} \rightarrow D^0(K^-\pi^+\pi^-\pi^+)\pi_s^+$ and calculate missing mass.

- For protons more difficult less abundant decay modes, lower efficiencies.
- But work in progress now using:
 - $B^0 \to \overline{p}\pi^+\pi^-\pi^+$, $\Lambda^0_b \to \Lambda^+_c\pi^-$, $\Sigma^0_c \to \Lambda^+_c\pi^-$ and more.

Rare and Forbidden Λ_c Decays


- LHCb published $\tau \rightarrow 3\mu$ and $\tau \rightarrow p\mu\mu$ searches Phys.Lett.B724(2013), JHEP 02 (2015) 121
- First direct experimental limits on $\tau^- \rightarrow \bar{p}\mu^+\mu^-$ and $\tau^- \rightarrow p\mu^+\mu^-$
- Analogous channels for Λ_c :

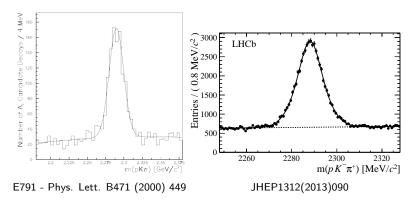

$$au
ightarrow 3\mu \; (\mathrm{LFV}) \; : \Lambda_c
ightarrow 3\mu \; (|\mathrm{B}-\mathrm{L}|=0)$$

$$\begin{aligned} \tau^+ &\to p\mu^-\mu^+ \ (|\mathbf{B} - \mathbf{L}| = 0) \ : \Lambda_c^+ \to \mu^-\mu^+ \ (\text{FCNC}) \\ \tau^+ &\to \overline{p}\mu^+\mu^+ \ (|\mathbf{B} - \mathbf{L}| = 0) \ : \Lambda_c^+ \to \overline{p}\mu^+\mu^+ \ (|\mathbf{B} - \mathbf{L}| = 0) \end{aligned}$$

- Current limits at 90% CL:
 - $\mathcal{B}(\Lambda_c^+ \to p\mu^-\mu^+) < 4.4 \times 10^{-5}$ $\mathcal{B}(\Lambda_c^+ \to \bar{p}\mu^+\mu^+ < 9.4 \times 10^{-6}$ Babar - Phys. Rev. D84 (2011) 072006 • $\mathcal{B}(\Lambda^+ \to 3\mu)$ no constraints
 - $\mathcal{B}(\Lambda_c^+ \to 3\mu)$ no constraints.
- LHCb should probe $\Lambda_c^+ \rightarrow p\mu^-\mu^+$ to $\mathcal{O}(10^{-7})$ with current dataset.
- After Run III down to $\mathcal{O}(10^{-8})$

Charmed baryon amplitude analysis

- First multidimensional amplitude analysis of a charmed baryon decay from E791.
- Analysis published back in 2000 (Phys.Lett.B471:449-459) no advances since
- Experimentally challenging: three-body $D \rightarrow hhh$ meson decays fully parameterised by $m(h_1h_2)$ and $m(h_2h_3)$.
- But baryons carry spin. Differential rate as function of Λ_c polarisation \mathbf{P}_{Λ_c} :


$$d\Gamma \sim \frac{1 + \mathbf{P}_{\mathbf{A}_{\mathbf{c}}}}{2} \left(|\sum_{r} B_{r}(m_{r})\alpha_{r,\frac{1}{2},\frac{1}{2}}|^{2} + |\sum_{r} B_{r}(m_{r})\alpha_{r,\frac{1}{2},-\frac{1}{2}}|^{2} \right) \\ + \frac{1 - \mathbf{P}_{\mathbf{A}_{\mathbf{c}}}}{2} \left(|\sum_{r} B_{r}(m_{r})\alpha_{r,-\frac{1}{2},\frac{1}{2}}|^{2} + |\sum_{r} B_{r}(m_{r})\alpha_{r,-\frac{1}{2},-\frac{1}{2}}|^{2} \right)$$

• α_{r,m,λ_p} is complex decay amplitude for resonance r with spin m (Λ_c spin projection onto beam-axis) and proton helicity λ_p in Λ_c rest frame, $B_r(m_r)$ Breit-Wigner amplitude.

• Need 5 vars to parameterise decay - $m(h_1h_2)$, $m(h_2h_3)$ and 3 helicity angles.

Amplitude analysis at LHCb

- Such analysis at LHCb looks promising.
- $10^3 \Lambda_c^+ \rightarrow p K^- \pi^+$ recorded at E791, $\mathcal{O}(10^6)$ recorded at LHCb in 2011 alone.
- Huge body of amplitude analysis expertise at LHCb.
- Cabibbo-favoured and singly suppressed modes tentatively seem possible with already gathered data.

Summary

- LHCb starting to realise our capabilities with charmed baryons.
- This far published a modest number of production analyses...
 - .. but have datasets to conduct wide variety of analyses
 - Main barrier has been lack of analyst time, now far more being invested.
- Analyses with curent dataset underway:
 - $\Lambda_c^+ \rightarrow phh'$ branching fractions
 - Ξ_c branching fractions
 - $\Delta \mathcal{A}^{CP}$ in SCS Λ_c^+ decays
 - Expanded Ξ⁺_{cc} searches
 - Excited charm spectroscopy.
- $\sqrt{s} = 13$ TeV cross sections in Run II early measurements

- Possible with current data, but longer term prospects:
 - Rare Λ_c decays
 - Amplitude analysis in Λ_c decays
 - Other *CP* violation in $\Lambda_c^+ \rightarrow phh'$.
- Possible we have some new charmed baryon publications for later this summer.