Selected Recent Results on Charm Hadronic Decays from BESTT

Hajime Muramatsu
University of Minnesota

Outline

- A pair production of DD (D_S⁺D_S⁻) at mass threshold
- σ (e⁺e⁻ → DD) at E_{cm} = 3.773 GeV
- Line shape of $\sigma(e^+e^- \rightarrow DD)$ around $E_{cm} \sim 3.770 \text{ GeV}$
- 1st observation of SCSD, D $\rightarrow \omega \pi$
- $D_S^+ \rightarrow \eta' X$ and $D_S^+ \rightarrow \eta' \rho^+$

Charm @ mass threshold

- Around $E_{cm} \sim 3.770 \text{ GeV}$, $e^+e^- \rightarrow \gamma^* \rightarrow D\overline{D}$
- Typical main backgrounds from $e^+e^- \rightarrow \gamma^* \rightarrow q\overline{q} \rightarrow light hadrons (q = u, d, and s).$ $\sigma(e^+e^- \rightarrow \gamma^* \rightarrow q\overline{q})$ is ~ 17 nb, while $\sigma(e^+e^- \rightarrow D\overline{D})$ ~ 6.5 nb.
- Typically, two ways to obtain the D yields:
 - **Single Tag (ST): Find only one D.**
 - **→**Larger backgrounds
 - **→**Higher efficiencies
 - **Double Tag (DT): Find both of them.**
 - **⇒**Smaller backgrounds
 - **⇒**Smaller efficiencies

Two popular variables

- Beam-Constrained-Mass; $M_{BC} = \sqrt{(E_{beam}^2 |\vec{p}_D|^2)}$ \vec{p}_D is a reconstructed D 3-momentum.
 - ► Its resolution is dominated by the spread in E_{beam}
- $\Delta E = E_D E_{beam}$
 - ► Almost independent of the measured M_{BC.}

3 e⁺e⁻ annihilation samples in this talk

- 1. At $E_{cm} = 3.773$ GeV. Accumulated luminosity = 2920 pb⁻¹.
- 2. $3.745 \le E_{cm} \le 3.854$ GeV with 22 different E_{cm} values.
 - For each E_{cm} , the accumulated luminosity ~ 1~8 pb⁻¹.
 - The total accumulated luminosity ~ 70 pb⁻¹.

 (For more detail, please see Yi Fang's talk given at yesterday's parallel session.)
- 3. At $E_{cm} = 4.009$ GeV. Accumulated luminosity = 482 pb⁻¹. This sample produces;

$$e^+e^- \rightarrow \gamma^* \rightarrow D_S^+D_S^-$$

where the paris of $D_S^+D_{S^-}$ come from decays of $\psi(4040)$. Thus, M_{BC} and ΔE are useful again.

Measurement of $\sigma(e^+e^- \rightarrow DD)$ at $E_{cm} = 3.773$ GeV

An interesting topic in the context of $\sigma(e^+e^- \rightarrow \psi(3770) \rightarrow \text{non-DD})$

Useful information to normalize a measured ST BF along with the accumulated luminosity

DT method

 Reconstruct (charge conjugate modes are implied) $D^0 \rightarrow 3$ modes: $K^-\pi^+$, $K^-\pi^+\pi^0$, $K^-\pi^+\pi^-\pi^+$ $D^+ \rightarrow 6$ modes: $K^-\pi^+\pi^+$, $K^-\pi^+\pi^0$, $K_S\pi^+$, $K_S\pi^+\pi^0$, $K_S\pi^+\pi^+\pi^-$, $K^-K^+\pi^+$ - In $e^+e^- \rightarrow DD$ events, where $D \rightarrow X$ and $D \rightarrow Y$, let BF(D \rightarrow X) = N_x/($\varepsilon_x \cdot N_{DD}$) : Single Tag (ST) $BF(D \rightarrow Y) = N_v/(\epsilon_v \cdot N_{DD})$: Single Tag (ST) BF(D \rightarrow X)× BF(D \rightarrow Y) = N_{xy}/(ϵ_{xy} ·N_{DD}): Double Tag (DT) Then, $N_{DD} = [N_x \cdot N_y / N_{xy}] \times [\epsilon_{xy} / (\epsilon_x \cdot \epsilon_y)]$ and $\sigma = N_{D\bar{D}}/L$ $L = 2920 \text{ fb}^{-1} \text{ (Chin.Phys.C37, 123001 (2013))}.$ (one can obtain the absolute BF from the DT/ST BFs ratio above)

- Extract N_x and N_y by fitting to M_{BC} (with cut on ΔE)
- Extract N_{xy} by fitting to a 2D; M_{BC}^{y} v.s. M_{BC}^{x} .

Preliminary results

- Averaging the resultant cross sections over different decay modes (X and Y), we have;

$$\sigma(e^+e^- \to D^0\bar{D}^0) = 3.641\pm0.010$$
 (stat.) nb $\sigma(e^+e^- \to D^+D^-) = 2.844\pm0.011$ (stat.) nb

at $E_{cm} = 3.773$ GeV based on 2920 pb⁻¹.

- Consistent with CLEO-c (PRD 89, 072002)

at
$$E_{cm} = 3.774$$
 GeV based on 818 pb⁻¹;
$$\sigma(e^+e^- \to D^0\bar{D}^0) = 3.607 \pm 0.017 (stat) \pm 0.056 \text{ nb}$$

$$\sigma(e^+e^- \to D^+D^-) = 2.882 \pm 0.018 (stat) \pm 0.042 \text{ nb}$$

How about in the vicinity of E_{cm}^{\sim} 3.770 GeV? Line shape of $\sigma(e^+e^- \rightarrow D\bar{D})$

Does the highest $\sigma(e^+e^- \to DD)$ position correspond to the mass $\psi(3770)$ measurement? Or is there another source(s) that feeds $\sigma(e^+e^- \to D\overline{D})$ in this energy region?

For more detail on this preliminary result, Please see Yi Fang's talk given at yesterday's parallel session.

Production line shape of DD $\sigma(e^+e^- \rightarrow [not only \psi(3770) ?] \rightarrow DD)$

- Recently, it has been claimed that a single BW may not be sufficient to describe the observed line shape of DD.
 - And some introduced an interference in the DD final states with DD from non- $\psi(3770)$ decays (e.g., tails from other $c\bar{c}$ resonances).
- Consequently, there has been changes in $\psi(3770)$ parameters, like MASS. The mass of the highest $\sigma(e^+e^- \to DD)$ does NOT change at ~3.773 GeV/c².

A brief description of analysis procedure

We primarily follow the KEDR procedure (PLB 711, 292 (2012)) in today's preliminary results.

- Define $\sigma_{born}(E_{cm}) \propto |A_{NR} + A_{Res} \cdot e^{i\phi}|^2$
 - ► $A_{Res}(E_{cm}): \psi(3770)$ amplitude: $\propto V[\Gamma_{ee}\Gamma_{D\bar{D}}(E_{cm})] / [M^2-E_{cm}^2-iM\Gamma(E_{cm})]$ where $\Gamma_{D\bar{D}}(E_{cm}) \propto \Gamma(E_{cm}) \times BF(\psi(3770) \rightarrow D\bar{D})$.
 - ► A_{NR}: Try two models for today (NOT the only choices)
 - **→** Vector Dominance Model (VDM): use the above BW w/ M = 3.686 GeV.
 - → An empirical approach: $A_{NR} \propto$ exponential form to probe the above model dependency.
- Procedure:
 - Fit to $\sigma_{obs}(E_{cm}) = N_D/[2 \cdot \epsilon \cdot L(E_{cm})].$
 - ► Obtain ψ(3770) shape parameters from $\sigma_{born}(E_{cm})$. We float $\Gamma_{ee}^{\psi(3770)}$, $\Gamma^{\psi(3770)}$, and φ with a fixed BF(ψ(3770)→DD) = 100%.

Fitting to "ΔE vs M_{BC}"

- Reconstruct (same as the previous analysis)
 - $D^0 \rightarrow 3$ modes: total reconstruction efficiency ~ 11%: $K^{-}\pi^{+}$, $K^{-}\pi^{+}\pi^{0}$, $K^{-}\pi^{+}\pi^{-}\pi^{+}$
 - $D^+ \rightarrow 6$ modes: total reconstruction efficiency ~ 10%: $K^{-}\pi^{+}\pi^{+}$, $K^{-}\pi^{+}\pi^{0}$, $K_{S}\pi^{+}$, $K_{S}\pi^{+}\pi^{0}$, $K_{S}\pi^{+}\pi^{+}\pi^{-}$, $K^{+}K^{-}\pi^{+}$
- SingleTag method:
 - Fit to 2D (ΔE vs M_{BC}) with MC shapes
 - \rightarrow obtain yields, N_D, in each E_{cm} bins
 - Form $\sigma_{obs}(E_{cm}) = N_D/[2 \cdot \epsilon \cdot L(E_{cm})]$. $L(E_{cm})$ is the accumulated luminosity in E_{cm} bin.

Projections onto M_{BC} (in GeV/c^2)

- At around $E_{cm} \sim 3.773$ GeV, the direct production dominates (not much the ISR tail on the high side of M_{BC}).
- At higher E_{cm}, the contribution from ISR dominates. Particularly,

at $E_{cm} \sim 3.810$ GeV (not shown), the peak at 1.865 GeV/c² is gone! That is, the yield of D is entirely from the ISR tail!

Not easy to fit

Fitting to $\sigma_{obs}(E_{cm})$

- Simultaneously fit to $\sigma_{obs}(W)$ of $D^0\overline{D^0}$ and D^+D^- .

- Only $\sigma_{obs}(e^+e^- \rightarrow D^+D^-)$ with the VDM is shown here.

with a single BW? $\sigma_{\mathbf{D}^{+}\mathbf{D}^{-}}$ [nb] Data Fit $\sigma_{\mathrm{D^{+}D}}^{\mathrm{RC}}$ Resonant - $\psi(3770) \rightarrow D^{\dagger}D^{\overline{}}$ Non-resonant - ψ(2S) BESIII - On-peak Data [2.92 fb⁻¹] 3.74 3.76 3.78 The fit finds the minimum σ_{born} at around E_{cm} = 3.810 GeV without the knowledge of the ISR effect 3.76 3.78 3.88 3.8 3.86

s [GeV]

Results

We got only one solution from the fit

Source	M ^{ψ(3770)} [MeV/c ²]	Γ ^{ψ(3770)} [MeV]	Γ _{ee} ^{ψ(3770)} × Β (ψ(3770)→DD) [eV]
BESIII _{VDM}	3781.5±0.3	25.2±0.7	230±18
BESIII _{Exponential}	3783.0±0.3	27.5±0.9	270±24
KEDR	3779.3 ^{+1.8} _{-1.7}	25.3 ^{+4.4} -3.9	160 ⁺⁷⁸ -58, 420 ⁺⁷² 80
PDG	3773.2±0.3	27.2±1.0	[262±18]× B(ψ(3770)→DD)

Systematics, likely dominated by the NR model dependency

- Consistent with the KEDR's result (as they should).
- The shown errors are statistical errors only.
- We can only determine $\Gamma_{ee}^{\psi(3770)} \times BF(\psi(3770) \rightarrow DD)$ (this is essentially, our DD YIELDS).

That is, IF $\Gamma_{ee}^{\psi(3770)}$ could be determined independently, THEN BF($\psi(3770)\rightarrow DD$) can be extracted from our fit!

The first observation of singly Cabibbo-suppressed decay

 $D^+ \rightarrow \omega \pi^+$ and the evidence in $D^0 \rightarrow \omega \pi^0$

For more detail on this preliminary result, Please see Peter Weidenkaff's talk given at yesterday's parallel session.

$D \rightarrow \omega \pi$ so far

The singly Cabibbo-suppressed decays $D^{+(0)} \rightarrow \omega \pi^{+(0)}$ have not been observed yet.

The most recent experimental search:

```
BF(D<sup>+</sup> \rightarrow \omega \pi^+) < 3.0 × 10<sup>-4</sup> @90% C.L.
BF(D<sup>0</sup> \rightarrow \omega \pi^0) < 2.6 × 10<sup>-4</sup> @90% C.L.
(CLEO-c; PRL96, 081802(2006); 281 pb<sup>-1</sup>)
was Singe Tag method → continuum background dominates.
```

- H.Y. Cheng and C.W. Chiang predicts BF(D⁰ $\rightarrow \omega \pi^0$) ~ 1×10⁻⁴ (PRD 81, 074021 (2010), due to destructive interference between color-suppressed diagrams.
- We'll go the Double Tag route: Reconstruct the same 3 and 6 decay modes for D⁰ and D⁺ as in the DD line shape study.

Double Tag: on the signal side

- Reconstruct $\omega \to \pi^+\pi^-\pi^0$, $\pi^0 \to \gamma\gamma$
- ω helicity angle: Require $|H_{\omega}| = |\cos\theta_{\text{helicity}}| > 0.54 (0.51)$ for D⁺(D⁰): Expect the signal to have H_{ω}^2 shape.
- ω peaking backgrounds are estimated from 2D M_{BC} sidebands (both tag and signal side M_{BC}).
- Require M_{BC} and ΔE to be consistent with D on both signal and tag sides.
- Fit to $M_{3\pi}$ = invariant mass of $\pi^+\pi^-\pi^0$ with MC-based signal shapes and background polynomials.

So we fit to the n region only as well

but without the requirement on the $|H_{\omega}|$.

Decay mode	This work	PDG value
$D^+ \to \omega \pi^+$	$(2.74 \pm 0.58 \pm 0.17) \times 10^{-4}$	$< 3.4 \times 10^{-4}$ at 90% C.L.
$D^0 o \omega \pi^0$	$(1.05 \pm 0.41 \pm 0.09) \times 10^{-4}$	$< 2.6 \times 10^{-4}$ at 90% C.L.
$D^+ \to \eta \pi^+$	$(3.13 \pm 0.22 \pm 0.19) \times 10^{-3}$	$(3.53 \pm 0.21) \times 10^{-3}$
$D^0 \to \eta \pi^0$	$(0.67 \pm 0.10 \pm 0.05) \times 10^{-3}$	$(0.68 \pm 0.07) \times 10^{-3}$

Results

D_S⁺ hadronic decays

For today,

$$D_S^+ \rightarrow \eta X$$

and
 $D_S^+ \rightarrow \eta \rho^+$

This is based on the sample taken at $E_{cm} = 4.009 \text{ GeV}$ (Accumulated luminosity = 482 pb⁻¹)

BF(D_S⁺ $\rightarrow \eta'X$) and BF(D_S⁺ $\rightarrow \eta'\rho^+$)

- The situation is rather interesting

```
Sum[BF(D<sub>S</sub><sup>+</sup> \rightarrow \eta' + exclusive in PDG)] = (18.6±2.3)%, while
BF(D_S^+ \to \eta' X) = (11.7 \pm 1.8)\% (CLEO-c @ E<sub>cm</sub>~4.170 GeV PRD79, 112008).
```

- In the exclusives, the single largest BF is $BF(D_S^+ \to \eta' \rho^+) = (12.5 \pm 2.2)\%$ (CLEO2 @ $E_{cm}^- M_{Y(4S)}$, PRD58, 052002(1998)) However, CLEO-c reports (@ E_{cm}~4.170 GeV; PRD88,032009(2013)) BF(D_S⁺ $\rightarrow \eta' \pi^{+}\pi^{0}$; inclusive) = (5.6±0.5±0.6)%.
- A factorization method predicts BF(D_S⁺ $\rightarrow \eta' \rho^+$) = (3.0±0.5)% (F.S. Yu, et al, PRD84, 074019 (2011)).
- We can use our " E_{cm} = 4.009 GeV" data to measure these BFs. We'll employ

the Double Tag method for BF(D_S⁺ $\rightarrow \eta'X$) analysis and the Single Tag method for BF($D_S^+ \rightarrow \eta' \rho^+$) analysis.

The tag side

- Reconstruct these 9 tag modes.
- Cutting on ΔE and fit to M_{BC} .
- Fit with **MC-based signal shapes** and ARGUS bkg functions.

The signal side: $D_S^+ \rightarrow \eta' X$

- $\eta' \rightarrow \eta \pi^{+} \pi^{-}, \eta \rightarrow \gamma \gamma$
- Take the smallest $|M(\pi\pi\eta) M(\eta')|$ if multiple candidates
 - \rightarrow bkg in M($\pi\pi\eta$) tends to peak. It also peaks due to mis-reconstructed D_S.
- Fit to a 2D; $M(\pi\pi\eta)$ vs M_{BC} , where M_{bc} is the tag side beam-constrained mass.
- M_{BC} : MC-based signal shape and ARGUS background function.

 $M(\pi\pi\eta)$: MC-based signal shape

BKG = polynomial + 2 Gaussians (center fixed at M(PDG)).

Single TAG: $D_S^+ \rightarrow \eta' \rho^+$

- Due to the limited statistics, we'll do the Singe Tag method.
- Require
 - 0.943<M($\pi\pi\eta$)<0.973 (roughly ±3σ)
 - $|M(\pi^+\pi^0) M(\rho)| < 0.170 \text{ GeV/c}^2$
 - $|\Delta E|$ be consistent with zero (~-4+3 σ)
- Goal: obtain BF($D_S^+ \rightarrow \eta' \rho^+$)/BF($D_S^+ \rightarrow K^+ K^- \pi^+$) And use BF(D_S⁺ \rightarrow K⁺K⁻ π ⁺) as a reference mode.
- Use the helicity angle of ρ⁺ to separate $D_S^+ \rightarrow \eta' \pi^+ \pi^0$ (3 body) from $D_S^+ \rightarrow \eta' \rho^+$ (2 body).
 - ► $D_S^+ \rightarrow \eta' \rho^+ : \cos^2 \theta_{\text{helicity}}$
 - ► $D_S^+ \rightarrow \eta' \pi^+ \pi^0$: independent of $\cos \theta_{helicity}$

2D fit: M_{BC} vs $cos\theta_{helicity}$

: SIGNAL = MC-based shapes, BKG = ARGUS bkg function. M_{BC}

 $cos\theta_{helicity}$: SIGNAL = MC-based shapes,

non-D_S Background = the shape is FIXed based on sidebands of M_{BC} $(1.932 < M_{BC} < 1.950 \text{ and } 1.988 < M_{BC} < 1.997 \text{ GeV/c}^2).$

Systematics

Source	$\mathcal{B}(D_s^+ \to \eta' X)$	$\mathcal{B}(D_s^+ \to \eta' \rho^+)$
MDC track reconstruction	2.0	
PID	2.0	3.0
π^0 detection		2.8
η detection	2.7	3.5
ΔE requirement	1.0	1.4
$M(\eta'_{\pi\pi\eta})$ requirement		2.0
$M(\eta'_{\pi\pi\eta})$ backgrounds	1.5	
Peaking backgrounds in ST	0.3	
$M_{ m BC}$ signal shape	1.0	0.6
$M_{ m BC}$ fit range	1.7	0.5
Uncertainty of efficiency	1.6	0.5
Quoted branching fractions	1.7	3.8
Total	5.3	7.1

- π^0 reconstruction uncertainty is estimated from DT $D^0 \overline{D^0}$, $D^0 \to K^- \pi^+ \pi^0$ in each p bins. The disagreement between data/MC is assumed to be the same for η .
- BF($\eta'\rho$) error is dominated by BF($D_S^+ \rightarrow K^+K^-\pi^+$) from CLEO-c (PRD88, 032009(2013)).
- Also looked at sidebands of $M(\pi^{+}\pi^{0})$ and $M(\pi^{+}\pi^{-}\eta)$ and saw no yields of "Ds+" in MBC.
 - \rightarrow indicates possible non-resonant processes like $D_S^+ \rightarrow \pi^+\pi^-\eta\rho^+$ is negligible.

reliminary

Results

```
-BF(D_S^+ \to \eta' X) = (8.8\pm 1.8\pm 0.5)\%, consistent with
          PDG = (11.7\pm1.7\pm0.7)\% within ~1\sigma.
-BF(D<sub>S</sub><sup>+</sup> \rightarrow \eta' \rho^+)/BF(D<sub>S</sub><sup>+</sup> \rightarrow K^+K^-\pi^+) = 1.04±0.25±0.07 or
  BF(D_S^+ \rightarrow \eta' \rho^+) = (5.8 \pm 1.4 \pm 0.4)\%
          PDG = (12.5\pm2.2)\% from PDG,
  confirming the CLEO-c result,
  BF(D<sub>S</sub><sup>+</sup> \rightarrow \eta' \pi^{+}\pi^{0}; inclusive) = (5.6±0.5±0.6)%
  (CLEO-c:PRD88,032009(2013)).
-Also set UL @ 90%CL:
  BF(D<sub>S</sub><sup>+</sup> \rightarrow \eta' \pi^+ \pi^0; non-resonant) < 5.1%
```

Summary

- Our preliminary results on $\sigma_{obs}(e^+e^- \to D\overline{D})$ at $E_{cm} = 3.773$ GeV are consistent with the CLEO-c results.
- $\sigma_{obs}(e^+e^- \rightarrow DD)$ line shape in the vicinity of $E_{cm} = 3.770$ GeV is not a consistent with a single BW form. Followed the KEDR procedure and obtained a consistent result, the higher mass of $\psi(3770)$.
- Presented the first observation of SCSD, D $\rightarrow \omega \pi$.
- Measured BF($D_S^+ \rightarrow \eta' X$) and BF($D_S^+ \rightarrow \eta' \rho^+$) which solved the self-consistent problem within the PDG and confirmed the latest CLEO-c measurements.

Other results from **ESI**

- SCDS: $D^0 \rightarrow \pi^0 \pi^0$ (arXiv:1505.03087)
- **Quantum-Correlated analyses:** (see Onur Albayrak's talk at this workshop)
 - $\triangleright D^0 \rightarrow K_S \pi^+ \pi^-$
 - ► the y_{CP} measurement
- Amplitude analysis in D⁰ → K_SK⁺K⁻ (see Peter Weidenkaff's talk at this workshop).
- Strong phase difference in $D^0 \rightarrow K^-\pi^+$ (PLB 734, 227 (2014))
- Amplitude analysis in $D^+ \rightarrow K_S \pi^+ \pi^0$

Backups

- ► The observed cross section, $\sigma_{obs}(W)$ at $E_{cm} = W$ is given by; $\sigma_{obs}(W) = \int z_{DD}(W',x) \times \sigma_{born}(W',x) \times F_{ISR}(W'^2,x) \times G(W,W') dW'dx$ $-x = 1 - (W'/W)^2$ -z_{DD}: Coulomb interaction (Sommerfeld-Sakharov factor) -F_{ISR}(W'²,x): The ISR radiator (E.A. Kuraev and V.S. Fadin)
 - -G(W,W'): Beam energy spread (Gaussian)
 - $-\sigma_{born}(W',x)$: Born level cross section of DD
- $ightharpoonup \Gamma_{DD}(W) = (M/W) \times \Gamma^{\psi(3770)} \times BF(\psi(3770) \rightarrow DD) \times \Gamma_{DD}(W) = (M/W) \times \Gamma^{\psi(3770)} \times BF(\psi(3770) \rightarrow DD) \times \Gamma_{DD}(W) = (M/W) \times \Gamma^{\psi(3770)} \times BF(\psi(3770) \rightarrow DD) \times \Gamma_{DD}(W) = (M/W) \times \Gamma^{\psi(3770)} \times BF(\psi(3770) \rightarrow DD) \times \Gamma_{DD}(W) = (M/W) \times \Gamma^{\psi(3770)} \times BF(\psi(3770) \rightarrow DD) \times \Gamma_{DD}(W) = (M/W) \times \Gamma^{\psi(3770)} \times BF(\psi(3770) \rightarrow DD) \times \Gamma_{DD}(W) = (M/W) \times \Gamma^{\psi(3770)} \times BF(\psi(3770) \rightarrow DD) \times \Gamma_{DD}(W) = (M/W) \times \Gamma^{\psi(3770)} \times BF(\psi(3770) \rightarrow DD) \times \Gamma_{DD}(W) = (M/W) \times \Gamma_{DD$ $[z_{D0\bar{D}0}(W)\cdot d_{D0\bar{D}0}(W)+z_{D+D-}(W)\cdot d_{D+D-}(W)]/$ $[z_{D0\bar{D}0}(M)\cdot d_{D0\bar{D}0}(M)+z_{D+D-}(M)\cdot d_{D+D-}(M)],$ where d $\propto p_D^3$ in the $\psi(3770)$ center-of-mass system is the Blatt-Weisskopf damping factor.