
Recent results on violation of discrete symmetries in charm decays at BaBar and Belle

Alessandro Pilloni

"Sapienza" Università di Roma – INFN sez. Roma 1

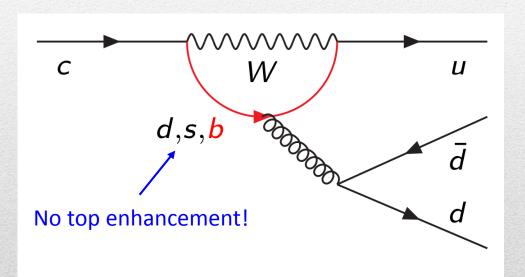
on behalf of the BaBar Collaboration

CHARM 2015 Detroit – May 21st, 2015

Outline

- CPV in charm decays
- Recent BaBar results
 - CPV in $D^+ \rightarrow K^+K^-\pi^+$

```
PRD 87, 052010 (2013) L = 476 \text{ fb}^{-1}
```


• CPV in
$$D^+ \to K_S^0 K^+$$
, $D_S^+ \to K_S^0 K^+$, $D_S^+ \to K_S^0 \pi^+$
PRD 87, 052012 (2013) $L = 469 \; \mathrm{fb}^{-1}$

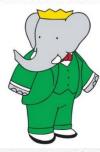
- Recent Belle results
 - Time-dependent analysis of $D^0 o K_S^0 \pi^+ \pi^-$ PRD 89, 091103 (2014) $L=921~{\rm fb}^{-1}$
- Conclusions

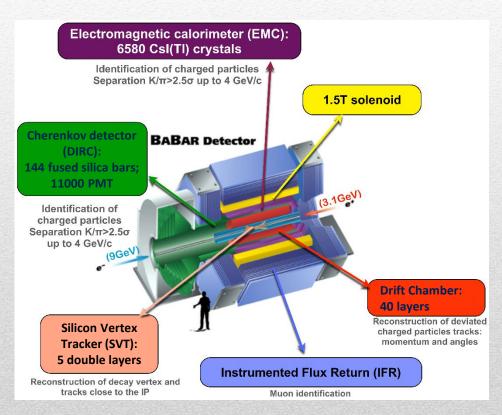
(the use of charge conjugate reactions is implied thourough)

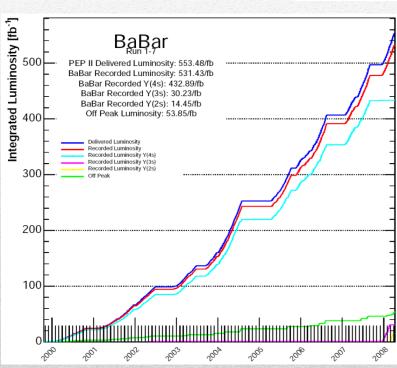
CPV in charm sector

In the SM, CPV in processes involving charm hadrons is expected to be small, at the level of 10^{-3} or less

GIM and CKM suppression

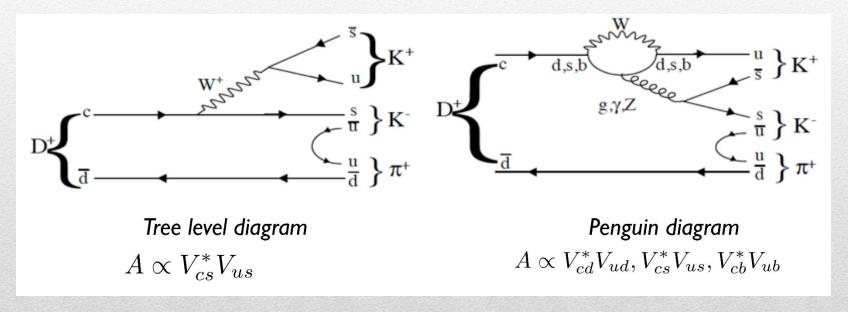

$$A_{CP} \propto \log \frac{m_b}{m_c} \times \lambda^5 = O(10^{-3})$$


Any CPV signal is likely due to New Physics, although sizeable long-distance effects might affect some SM predictions


The BaBar experiment

The Babar detector was located at the interaction point of PEP II at SLAC

Asymmetric e^+e^- collider, mostly at $\sqrt{s} \sim 10.58$ GeV

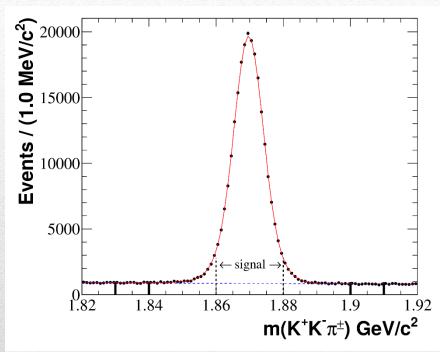


 $\int L dt \sim 517 \text{ fb}^{-1} \text{ close to the } \Upsilon(4S), \Upsilon(2S), \Upsilon(3S) \text{ peaks, } 670 \times 10^6 \text{ } c\bar{c} \text{ pairs}$

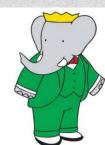
Dalitz plot analysis of $D^+ \to K^+ K^- \pi^+$

Singly Cabibbo-suppressed decays, uniquely sensitive to new physics Probe gluonic penguin and chromomagnetic dipole operators

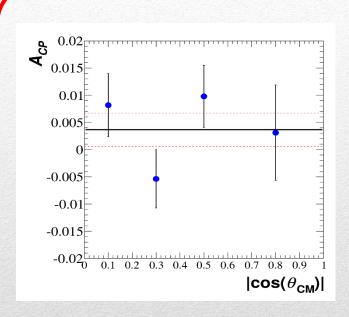
3-body decay allows the search for CP asymmetries in the Dalitz plot


Event selection and signal reconstruction

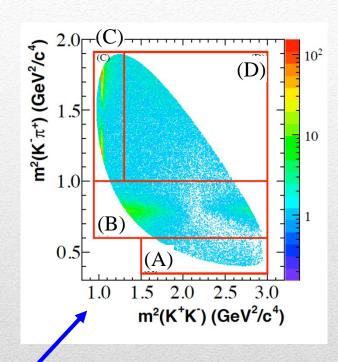
- Two tracks consistent with K hypothesis
- $p_T(\pi) > 300 \text{ MeV/c}$, good track quality
- $p_D \in [2.4, 5.0]$ GeV/c, reject B background
- Background from misidentified $D^{*+} \rightarrow D^0 \pi^+$ removed
- Joint PDF for flight distance and $p_D^{\it CM}$ help in discriminating signal from background


228k D^+ signal yield, 92% purity

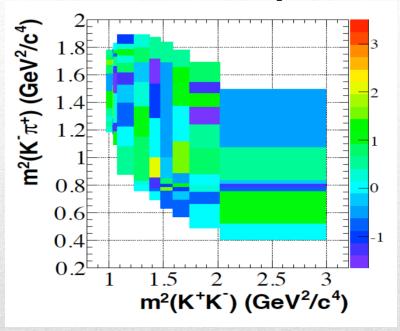
Search for CPV with:

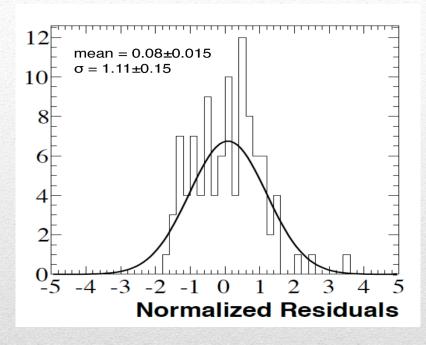

- 1. A_{CP} integrated over the Dalitz plot
- 2. A_{CP} in 4 Dalitz plot regions
- 3. Comparison of binned D^{\pm} Dalitz plot
- 4. Comparison of Legendre polynomial moment distributions for K^+K^- and $K^-\pi^+$ systems
- 5. Comparison of parametrized fits to Dalitz plot (model-dependent)

BaBar coll. PRD 87, 052010 (2013) $L = 476 \text{ fb}^{-1}$



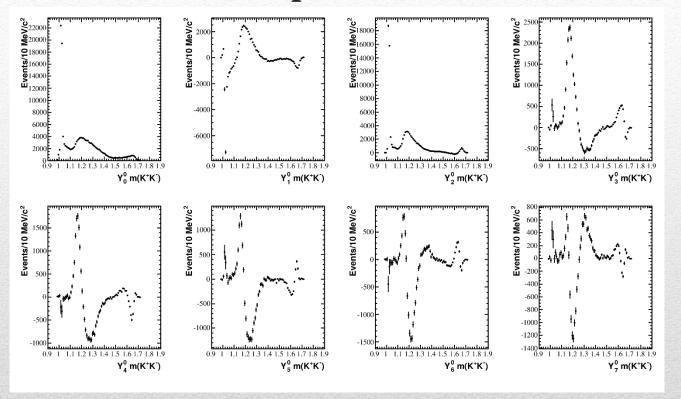
A_{CP} in the Dalitz plot regions


Asymmetry integrated over the Dalitz plot



Dalitz plot region	$N(D^+)$	$\epsilon(D^+)[\%]$	$N(D^-)$	$\epsilon(D^-)[\%]$	$A_{CP}[\%]$
(A) Below $\bar{K}^*(892)^0$	1882 ± 70	7.00	1859 ± 90	6.97	$-0.7 \pm 1.6 \pm 1.7$
$(B) \bar{K}^*(892)^0$	36770 ± 251	7.53	36262 ± 257	7.53	$-0.3 \pm 0.4 \pm 0.2$
$(C) \phi(1020)$	$ 48856 \pm 289 $	8.57	48009 ± 289	8.54	$-0.3 \pm 0.3 \pm 0.5$
(D) Above $\bar{K}^*(892)^0$ and $\phi(1020)$	25616 ± 244	8.01	24560 ± 242	8.00	$1.1 \pm 0.5 \pm 0.3$

Model-independent searches for CPV



Normalized residual analysis
$$\Delta = \frac{n(D^+) - Rn(D^-)}{\sqrt{\sigma^2(D^+) + R^2\sigma^2(D^-)}}$$
 ,

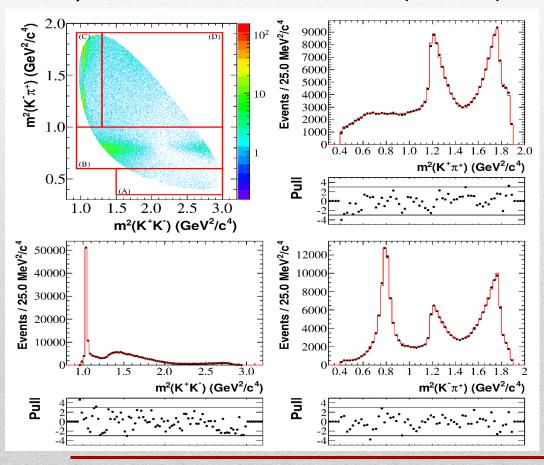
consistent with no CPV at 72% level

$$R = \frac{N(D^{+})/\epsilon^{+}}{N(D^{-})/\epsilon^{-}}$$
$$= 1.020 \pm 0.006$$

Model-independent searches for CPV

Method introduced by Babar coll. PRD 76, 011102 (2007)

Legendre polynomial moment analysis:


Two body mass distributions $m(K^+K^-)$ and $m(K^-\pi^+)$ weighted by $\sqrt{(2l+1)/4\pi} \, P_l(\cos\theta_H)$

$$X_i^l = \frac{W_i^l(D^+) - RW_i^l(D^-)}{\sqrt{\sigma_i^{(l)2}(D^+) + R^2\sigma_i^{(l)2}(D^-)}}, \text{ with } W_i^l \text{ the weighted } i^{\text{th}} \text{ mass bin, and } 0 \leq l \leq 7$$

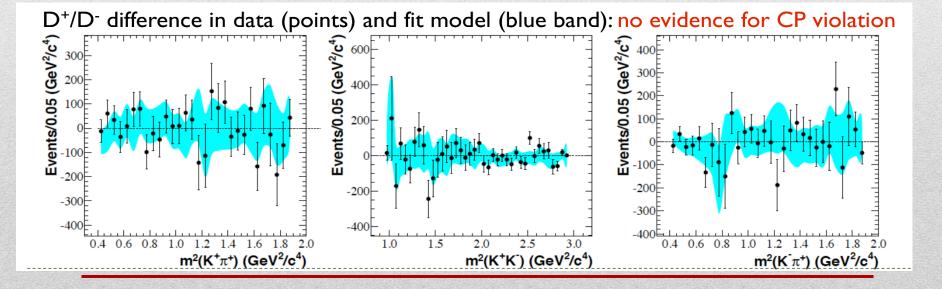
consistent with no CPV at 11% and 13% level

Model-dependent search for CPV

Fit to Dalitz plot using isobar model Firstly to combined D^{\pm} datasets (no CPV)

Resonance	Fraction (%)
$\bar{K}^*(892)^0$	21.15 ± 0.20
$\phi(1020)$	28.42 ± 0.13
$\bar{K}_0^*(1430)^0$	25.32 ± 2.24
NR	6.38 ± 1.82
$\kappa(800)$	7.08 ± 0.63
$a_0(1450)^0$	3.84 ± 0.69
$f_0(980)$	2.47 ± 0.30
$f_0(1370)$	1.17 ± 0.21
$\phi(1680)$	0.82 ± 0.12
$\bar{K}_{1}^{*}(1410)$	0.47 ± 0.37
$f_0(1500)$	0.36 ± 0.08
$a_2(1320)$	0.16 ± 0.03
$f_2(1270)$	0.13 ± 0.03
$\bar{K}_{2}^{*}(1430)$	0.06 ± 0.02
$\bar{K}^*(1680)$	0.05 ± 0.16
$f_0(1710)$	0.04 ± 0.03
$f_2'(1525)$	0.02 ± 0.01
Sum	97.92 ± 3.09

Resonances modeled with RBW $f_0(980)$ with an effective BW

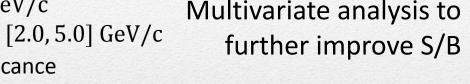

Model-dependent search for CPV

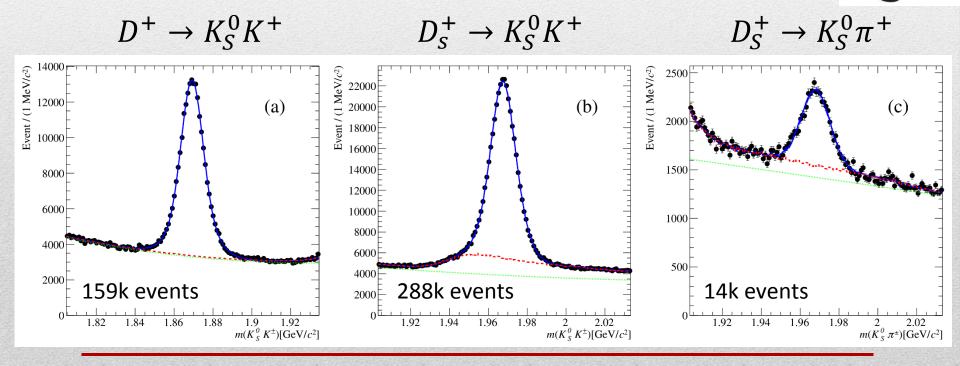
Allow CPV in resonances with at least 1% fit fraction

$$r_{CP} = \frac{|M_r|^2 - |\overline{M_r}|^2}{|M_r|^2 + |\overline{M_r}|^2}, \, \Delta\phi_{CP} = \phi_r - \overline{\phi_r}$$

$$x_r = M_r \cos \phi_r, y_r = M_r \sin \phi_r$$

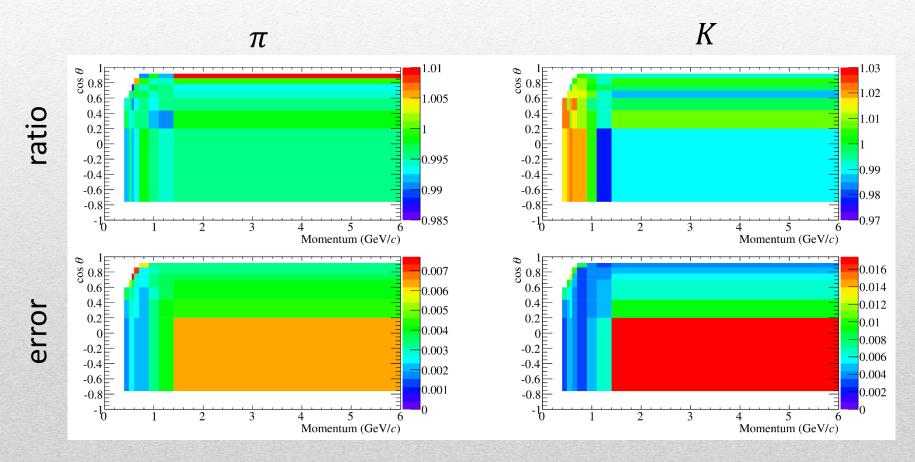
Resonance	r_{CP} (%)	$\Delta\phi$ (°)
$\bar{K}^*(892)^0$	0. (FIXED)	0. (FIXED)
$\phi(1020)$	$0.35^{+0.82}_{-0.82} \pm 0.60$	$7.43^{+3.55}_{-3.50} \pm 2.35$
$\bar{K}_0^*(1430)^0$	$-9.40^{+5.65}_{-5.36} \pm 4.42$	$-6.11^{+3.29}_{-3.24} \pm 1.39$
NR	$-14.30^{+11.67}_{-12.57} \pm 5.98$	$-2.56^{+7.01}_{-6.17} \pm 8.91$
$\kappa(800)$	$2.00^{+5.09}_{-4.96} \pm 1.85$	$2.10^{+2.42}_{-2.45} \pm 1.01$
$a_0(1450)^0$	$5.07^{+6.86}_{-6.54} \pm 9.39$	$4.00^{+4.04}_{-3.96} \pm 3.83$
	Δx	Δy
$f_0(980)$	$-0.199^{+0.106}_{-0.110}\pm0.084$	$-0.231^{+0.100}_{-0.105} \pm 0.079$
$f_0(1370)$	$0.019^{+0.049}_{-0.048} \pm 0.022$	$-0.0045^{+0.037}_{-0.039} \pm 0.016$


Search for CPV in $D_{(s)}^+ \to K_S^0 K^+$, $D_S^+ \to K_S^0 \pi^+$


In the SM A_{CP} expected to be dominated by CPV in $K^0 - \overline{K^0}$ mixing

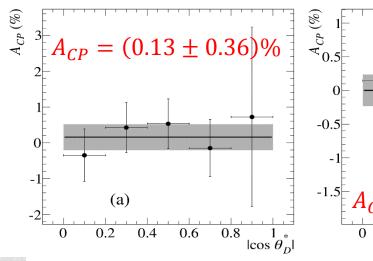
BaBar coll. PRD 87, 052012 $L = 469 \text{ fb}^{-1}$

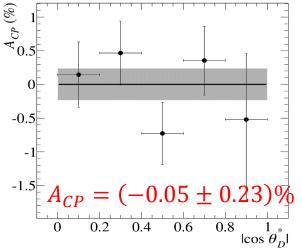
- K^+ and π^+ PID, $p_T > 400 \text{ MeV/c}$
- $p_D \in [2.6, 5.0] \text{ GeV/c}, p_{D_s} \in [2.0, 5.0] \text{ GeV/c}$
- K_S^0 flight length $> 3 \times$ significance

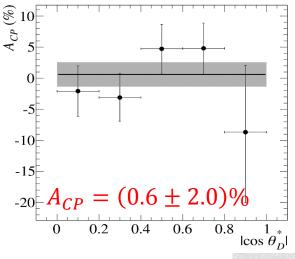

Multivariate analysis to

Analysis of detector-induced asymmetries

A large sample of π and K tracks from $B\bar{B}$ events to estimate detector-induced asymmetries Correction factors have been measured and applied to the signal




A_{CP} results and systematic errors

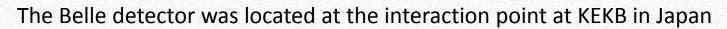

$$D^+ \rightarrow K_S^0 K^+$$

$$D_S^+ \to K_S^0 K^+$$

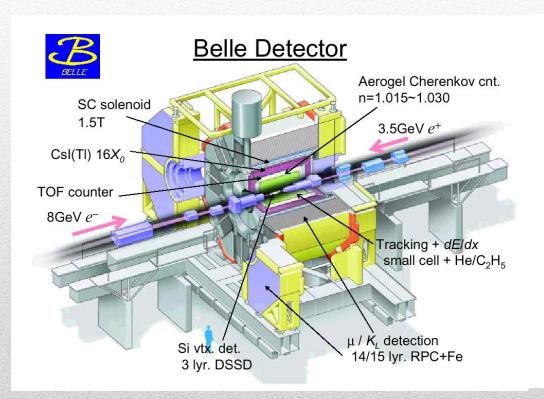
$$D_S^+ \to K_S^0 \pi^+$$

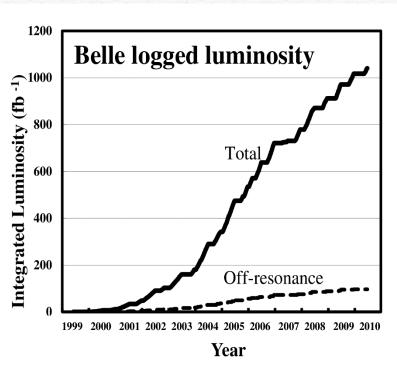
Systematic uncertainty	$D^{\pm} \to K_S^0 K^{\pm}$	$D_s^{\pm} \to K_S^0 K^{\pm}$	$D_s^{\pm} \to K_S^0 \pi^{\pm}$
Efficiency of PID selectors	0.05%	0.05%	0.05%
Statistics of the control sample	0.23%	0.23%	0.06%
Misidentified tracks in the control sample	0.01%	0.01%	0.01%
$\cos \theta_D^*$ interval size	0.04%	0.02%	0.27%
$K^0 - \overline{K}^0$ regeneration	0.05%	0.05%	0.06%
$K_S^0 - K_L^0$ interference	0.015%	0.014%	0.008%
Total	0.25%	0.24%	0.29%

Final A_{CP} results


	$D^{\pm} \to K_S^0 K^{\pm}$	$D_s^{\pm} \to K_S^0 K^{\pm}$	$D_s^{\pm} \to K_S^0 \pi^{\pm}$
A_{CP} value from the fit	$(+0.155 \pm 0.360)\%$	$(0.00 \pm 0.23)\%$	$(+0.6 \pm 2.0)\%$
Correction for the bias from toy MC experiments	+0.013%	-0.01%	_
Correction for the bias in the PID selectors	-0.05%	-0.05%	-0.05%
Correction for the $K_S^0 - K_L^0$ interference (ΔA_{CP})	+0.015%	+0.014%	-0.008%
A_{CP} final value	$(+0.13 \pm 0.36 \pm 0.25)\%$	$(-0.05 \pm 0.23 \pm 0.24)\%$	$(+0.6 \pm 2.0 \pm 0.3)\%$
A_{CP} contribution from $K^0 - \overline{K}^0$ mixing	$(-0.332 \pm 0.006)\%$	$(-0.332 \pm 0.006)\%$	$(+0.332 \pm 0.006)\%$
A_{CP} final value (charm only)	$(+0.46 \pm 0.36 \pm 0.25)\%$	$(+0.28 \pm 0.23 \pm 0.24)\%$	$(+0.3 \pm 2.0 \pm 0.3)\%$

$$\overline{K^0}$$
 produced, – sign


 K^0 produced, + sign


- Results are compatible with SM expectations
- CPV dominated by Kaon mixing
- No evidence of CPV in the ΔC transitions

The Belle experiment

 $\int L dt \sim 977 \text{ fb}^{-1} \text{ close to the } \Upsilon(1S - 5S) \text{ peaks, } 1.3 \times 10^9 \text{ } c\bar{c} \text{ pairs}$

Mixing and CPV in $D^0 \to K_S^0 \pi^+ \pi^-$

Mass eigenstates $|D_{1,2}\rangle = p|D^0\rangle \pm q|\overline{D^0}\rangle$

$$\frac{d\Gamma_{D^0}}{e^{-\Gamma t} dt} \propto \left(\left| A_f \right|^2 + \left| \frac{q}{p} \right|^2 \left| \overline{A_f} \right|^2 \right) \cosh \Gamma yt + \left(\left| A_f \right|^2 - \left| \frac{q}{p} \right|^2 \left| \overline{A_f} \right|^2 \right) \cos \Gamma xt$$

$$+ 2Re \left(\frac{q}{p} \overline{A_f} A_f^* \right) \sinh \Gamma yt - 2Im \left(\frac{q}{p} \overline{A_f} A_f^* \right) \sin \Gamma xt$$

$$\frac{d\Gamma_{\overline{D^0}}}{e^{-\Gamma t} dt} \propto \left(\left| \overline{A_f} \right|^2 + \left| \frac{p}{q} \right|^2 \left| A_f \right|^2 \right) \cosh \Gamma yt + \left(\left| \overline{A_f} \right|^2 - \left| \frac{p}{q} \right|^2 \left| A_f \right|^2 \right) \cos \Gamma xt$$

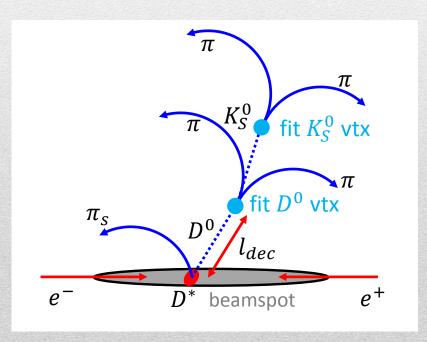
$$+ 2Re \left(\frac{p}{q} A_f \overline{A_f^*} \right) \sinh \Gamma yt - 2Im \left(\frac{p}{q} A_f \overline{A_f^*} \right) \sin \Gamma xt$$

Mixing parameters
$$x = \frac{\Delta m}{\Gamma}$$
, $y = \frac{\Delta \Gamma}{2\Gamma}$

Mixing CPV
$$\left| \frac{q}{p} \right| \neq 1$$

Interference CPV $\arg \frac{q}{p} \neq 0$

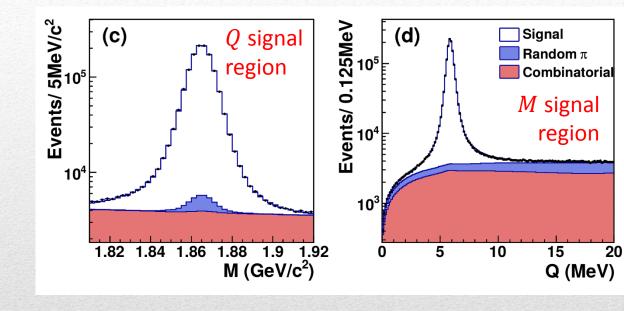
Mixing and CPV in $D^0 \to K_S^0 \pi^+ \pi^-$


Total amplitude parametrized as a sum of quasi two-body resonant amplitudes (isobar model)

$$A_f = \sum_r a_r \, e^{i\phi_r} A_r(m_-^2, m_+^2) \,, \qquad \overline{A_f} = \sum_r \overline{a_r} \, e^{i\overline{\phi_r}} A_r(m_-^2, m_+^2) \,, \qquad m_\pm^2 = m^2 (K_S^0 \pi^\pm)$$

A time-dependent Dalitz plot analysis is needed to extract mixing and CPV parameters

- Reconstruct $D^{*+} \rightarrow D^0 \pi_s^+$
 - Flavor tagging by π_s charge
 - Background suppression
- D^0 proper decay time measurement


•
$$t = \frac{\overrightarrow{l_{dec}}}{c \beta \gamma} \cdot \frac{\overrightarrow{p_{D^0}}}{p_{D^0}}, \ \beta \gamma = \frac{p_{D^0}}{m_{D^0}}$$

Event selection

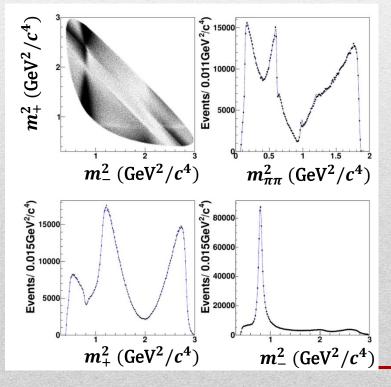
- $p_D > 2.5 \text{ GeV } @\Upsilon(4S)$, $p_D > 3.1 \text{ GeV } @\Upsilon(5S)$,
- Removed events with poorly determined t
- Cuts on M_D and $Q = M_{D^*} M_D M_\pi$

2D fit to M_D and Q, Yield 1.2M, purity 96%

Signal region in $\left| M_D - M_D^{PDG} \right| < 15 \text{ MeV}$ and $Q \in [5.75, 5.95] \text{ MeV}$

$$L = 977 \text{ fb}^{-1}$$

Belle coll. PRD 89, 091103(R) (2014)

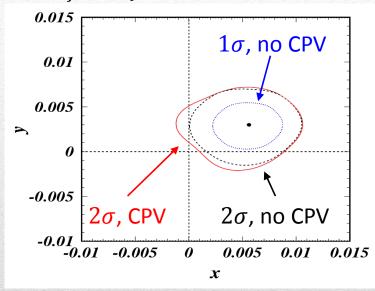

3D analysis of $D^0 \to K_S^0 \pi^+ \pi^-$

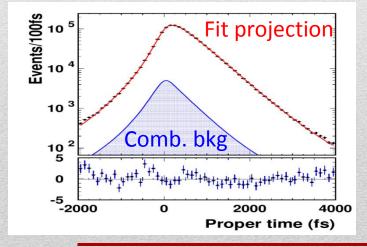
RBW

K matrix

-ASS

- Unbinned ML fit in (m_+, m_-, t)
- Fit model with 16 resonances
- Background estimated from sidebands:
 - Combinatorial: M sideband
 - Random π_s : Q sideband
- Resolution function: 3 Gaussians


Resonance	Amplitude	Phase (deg)	Fit fraction
K*(892)-	1.590 ± 0.003	131.8 ± 0.2	0.6045
$K_0^*(1430)^-$	2.059 ± 0.010	-194.6 ± 1.7	0.0702
$K_2^*(1430)^-$	1.150 ± 0.009	-41.5 ± 0.4	0.0221
$K^*(1410)^-$	0.496 ± 0.011	83.4 ± 0.9	0.0026
$K^*(1680)^-$	1.556 ± 0.097	-83.2 ± 1.2	0.0016
$K^*(892)^+$	0.139 ± 0.002	-42.1 ± 0.7	0.0046
$K_0^*(1430)^+$	0.176 ± 0.007	-102.3 ± 2.1	0.0005
$K_2^*(1430)^+$	0.077 ± 0.007	-32.2 ± 4.7	0.0001
$K^*(1410)^+$	0.248 ± 0.010	-145.7 ± 2.9	0.0007
$K^*(1680)^+$	1.407 ± 0.053	86.1 ± 2.7	0.0013
$\rho(770)$	1 (fixed)	0 (fixed)	0.2000
$\omega(782)$	0.0370 ± 0.0004	114.9 ± 0.6	0.0057
$f_2(1270)$	1.300 ± 0.013	-31.6 ± 0.5	0.0141
$\rho(1450)$	0.532 ± 0.027	80.8 ± 2.1	0.0012
$\pi\pi$ S-wave			0.1288
β_1	4.23 ± 0.02	164.0 ± 0.2	
eta_2	10.90 ± 0.02	15.6 ± 0.2	
β_3	37.4 ± 0.3	3.3 ± 0.4	
β_4	14.7 ± 0.1	-8.9 ± 0.3	
$f_{11}^{ m prod}$	12.76 ± 0.05	-161.1 ± 0.3	
f_{12}^{prod}	14.2 ± 0.2	-176.2 ± 0.6	
$f_{13}^{ m prod}$	10.0 ± 0.5	-124.7 ± 2.1	
$K\pi$ S-wave	Parameters		
$M(MeV/c^2)$	1461.7 ± 0.8		
$\Gamma({ m MeV}/c^2)$	268.3 ± 1.1		
F	0.4524 ± 0.005		
$\phi_F(rad)$	0.248 ± 0.003		
R	1(fixed)		
$\phi_R(rad)$	2.495 ± 0.009		
$a(\text{GeV}/c^{-1})$	0.172 ± 0.006		
$r(\text{GeV}/c^{-1})$	-20.6 ± 0.3		
$K^*(892)$	Parameters		
$M_{K^*(892)}({ m MeV}/c^2)$	893.68 ± 0.04		
$\Gamma_{K^*(892)}(\mathrm{MeV}/c^2)$	47.49 ± 0.06		


$D^0 \to K_S^0 \pi^+ \pi^-$: results

 (a_r,ϕ_r) consistent with $(\overline{a_{\bar{r}}},\overline{\phi_{\bar{r}}})$: no CPV in decay, set $A_{\bar{f}}=\overline{A_f}$ in the fit

Fit type	Parameter	Fit result
No CPV	x(%)	$0.56 \pm 0.19^{+0.03}_{-0.09}^{+0.03}_{-0.09}^{+0.06}$
	y(%)	$0.30 \pm 0.15^{+0.04}_{-0.05}{}^{+0.03}_{-0.06}$
CPV	x(%)	$0.56 \pm 0.19^{+0.04}_{-0.08}{}^{+0.06}_{-0.08}$
	y(%)	$0.30 \pm 0.15^{+0.04}_{-0.05}{}^{+0.03}_{-0.07}$
	q/p	$0.90^{+0.16}_{-0.15}{}^{+0.05}_{-0.04}{}^{+0.06}_{-0.05}$
	$arg(q/p)(^{\circ})$	$-6 \pm 11 \pm 3^{+3}_{-4}$

Third error on DP mode

Mixing significance at 2.5σ

No evidence for CPV

$$\tau = (410.3 \pm 0.6)$$
 fs, to compare with

$$\tau = (410.1 \pm 1.5)$$
 fs (PDG 2014)

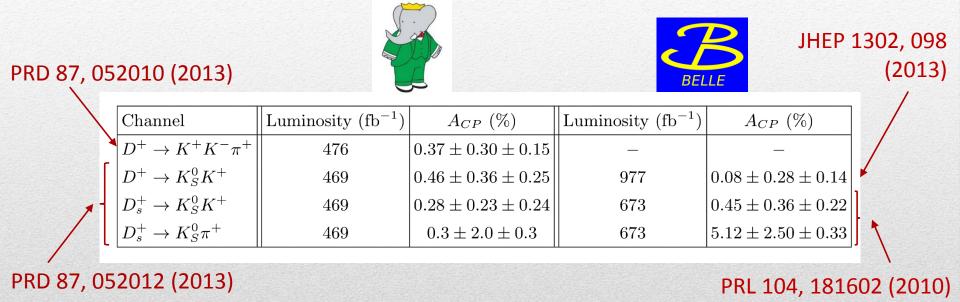

Conclusions

Charm CPV is a powerful tool to search BSM physics!

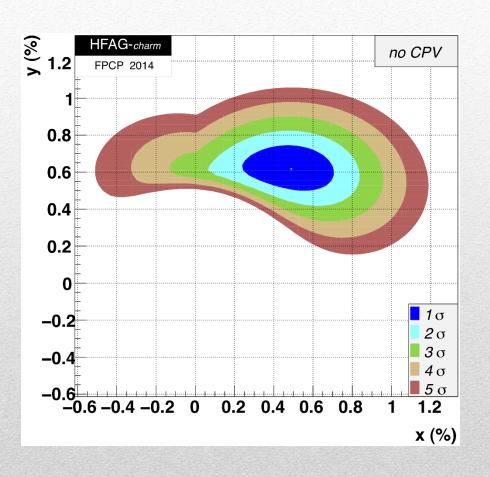
An overview of recent BaBar and Belle results has been presented:

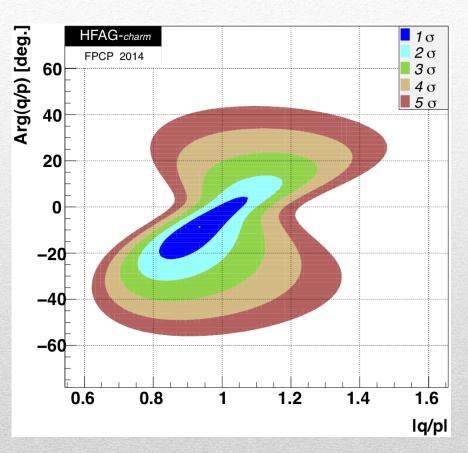
- CP asymmetries in SCS $D^+ \to K^+ K^- \pi^+$ decays at BaBar using different approaches
- CP asymmetries in $D_{(S)}^+ \to K_S^0 K^+$ and $D_S^+ \to K_S^0 \pi^+$ decays at BaBar
- Mixing and CPV parameters in $D^0 \to K_S^0 \pi^+ \pi^-$ at Belle
- (for CPV search in $D^0 \to \pi^0 \pi^0$ at Belle, see T. Nanut's talk)

No evidence of CPV found so far



Thank you!


BACKUP


Direct CPV at Belle/BaBar

(contribution of CP asymmetry of K_S^0 subtracted)

HFAG averages on mixing/CPV

