XYZ radiative transitions at BESIII

Vindhyawasini Prasad (On behalf of the BESIII experiment)

Email: vindy@ihep.ac.cn

Experimental Physics Division Institute of High energy Physics Beijing, 100049, China

CHARM 2015: The 7th International Workshop on Charm Physics

Motivation

qq -gluon hybrid

mesons

- > Many unexpected states have been observed recently above the $D\overline{D}$ threshold (XYZ).
- The features of these states point beyond the QCD models, for instance

Tetraquark Tightly bound diquark & anti-diquark

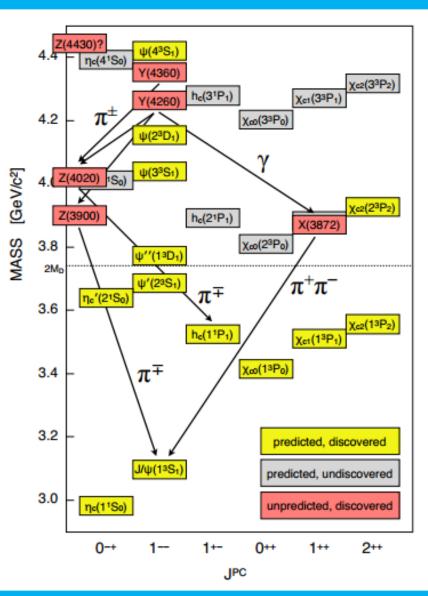
loosely bound mesonantimeson "molecule"

Molecule

[arXiv:1110.1333, 1303.6857]

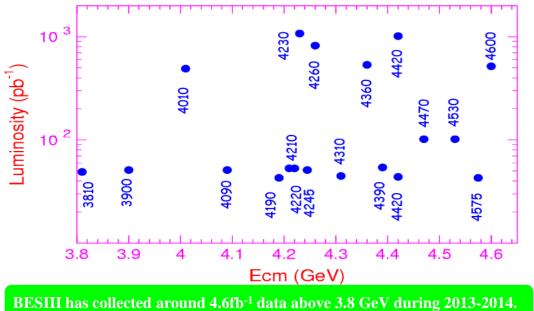
[arXiv:1303.6608, 1304.2882, 1304.1850] [Phys. Rev. D 78, 094504 (2008)

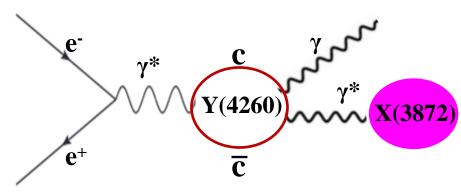
X states:


- ✓ Charmonium-like states with $J^{PC} \neq 1^{--}$.
- ✓ Observed in B decays, $p\overline{p}$ and pp collisions.

Y states:

- ✓ Charmonium-like states with $J^{PC} = 1^{--}$.
- ✓ Observed in direct e⁺e[−] annihilation or in ISR


Z states:


- ✓ Charmonium-like states.
- ✓ Must contain a charm-pair and a light quark-pair.

Motivation

- Radiative transition of the Y(4260) and Y(4360) to lower lying charmonium or charmonium-like state is important to study the features of XYZ states.
- This study is possible at BESIII experiment, which has collected a large amount of data at different center-of-mass (CM) energies above 3.8 GeV.

- This talk includes the results of following analyses:
- ✓ Observation of $e^+e^- \rightarrow \gamma X(3872)$

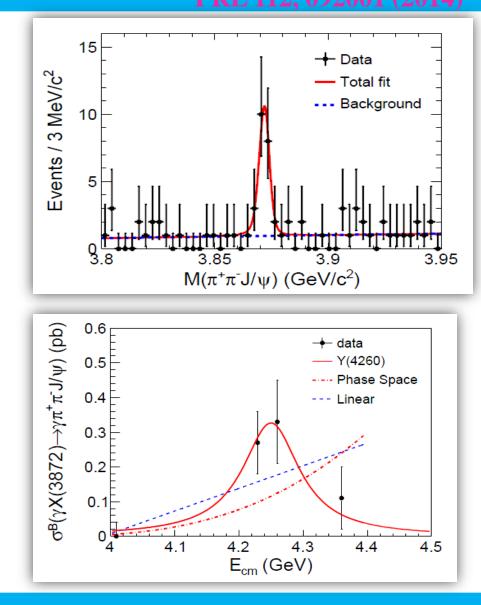
PRL 112, 092001 (2014)

✓ Electronic width of X(3872)

arXiv:1505.02559 (2015)

✓ Search for Y(4140) via $e^+e^- \rightarrow \gamma \phi J/\psi$ PRD 91, 032002 (2015)

Evidence for e⁺e⁻→γχ_{c1,2} [arXiv:1411.6336 (2015)]

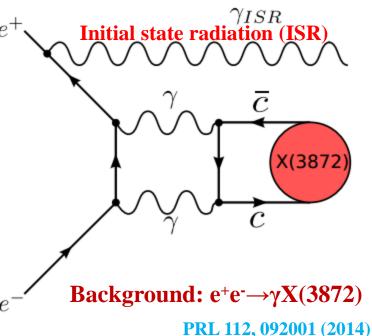

CHARM-2015 conference, Wayne State University

 \checkmark

Observation of e^+e^- $\rightarrow \gamma X(3872)$

- ► Perform a search for X(3872) with $X(3872) \rightarrow \pi^+\pi^- J/\psi$ using the data at the CM energies of 4.23 GeV, 4.26 GeV and 4.36 GeV.
- Summed over all the CM energies to perform the maximum likelihood (ML) fit.
- ➤ Maximum significance is observed to 6.3σ. $m_{X(3872)} = 3871.9 \pm 0.7 \pm 0.2 \text{ MeV/c}^2$
- ➢ Observation supports the existence of the radiative transition of Y(4260) → γ X(3872), but not very conclusive.
- ➤ If X(3832) decays from Y(4260):

 $\frac{B(Y(4260) \to \gamma X(3872))}{B(Y(4260) \to \pi^+ \pi^- J/\psi)} \approx 0.1$


Electronic width of X(3872)

- Electronic width of X(3872) strongly depends on its substructure.
- > Theoretical predictions are under construction.
- More precise value of electronic width may rule out some models for structure.
- Production via a two-photon box diagram.
- ➢ Decay mode:

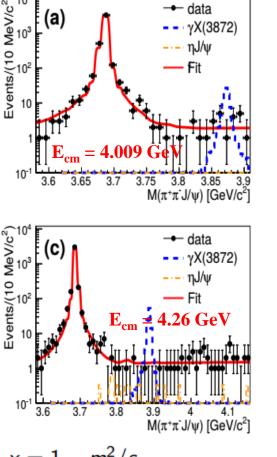
 $e^+e^- \longrightarrow X(3872)\gamma_{ISR} \longrightarrow \pi^+\pi^- J/\psi\gamma_{ISR}$

$$\longrightarrow \pi^+ \pi^- \ell^+ \ell^- \gamma_{ISR} \quad , \qquad \ell = \mu, e$$

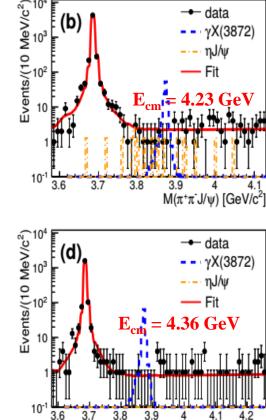
- → Absolute value of the cosine of ISR photon is required to be greater than 0.95 to avoid any background from radiative $e^+e^- \rightarrow \gamma X(3872)$.
- ≥ 2 constraint (2C) kinematic fit: $m_{\gamma}^{mis} = 0$, $m_{l^+l^-} = m_{J/\psi}$
- ▶ Use the data at the CM energies of 4.009 GeV, 4.23 GeV, 4.26 GeV and 4.36 GeV.

Electronic width of X(3872)

No significant peak of X(3872) is found at any of the four CM energies.


➢ Set an upper limit for the electronic width of X(3872).

Calculation of Γ_{ee}


The number of observed X(3872) is given by

$$\frac{dN_A^{\text{obs}}}{dx} = \mathcal{L}\varepsilon_A W(s, x) \sigma^A(m(s, x)) \mathcal{B}(A \to f)$$
$$\Rightarrow N_A^{\text{obs}} = \varepsilon_A \mathcal{L}\Gamma_{ee}^A \mathcal{B}(A \to f) I_A$$

- for $A = X(3872), \psi(2S)$.
- ε_A is the reconstruction efficiency
- $I_A = \int b_A(m(s,x))W(s,x)dx$
- W(s, x) is the radiator function
- b_A(m) is the relativistic Breit-Wigner function over Γ^A_{ee}

$$x = 1 - m^2/s$$

[Rev. Mod. Phys. 83, 1545 (2011)]

 $M(\pi^+\pi^-J/\psi)$ [GeV/c²]

Electronic width of X(3872)

Electronic width:

$$\Gamma^{A}_{ee}\mathcal{B}(A \to \pi^{+}\pi^{-}J/\psi) = \frac{N_{A}}{\varepsilon_{A}\mathcal{L}I_{A}\mathcal{B}(J/\psi \to \ell^{+}\ell^{-})}$$

c.m. energy [GeV]	4.009	4.230	4.260	4.360
$\mathcal{L}\left[\mathrm{pb}^{-1} ight]$	482	1092	826	540
$I_{\psi(3686)} \mathrm{[pb/keV]}$	310	172	161	133
$I_{X(3872)} \left[\mathrm{pb/keV} \right]$	671	247	225	174
$arepsilon_{\psi(3686)}$	0.303	0.286	0.286	0.282
$\varepsilon_{X(3872)}$	0.314	0.324	0.325	0.327
$N^{\psi(2S)}$	4168 ± 65	5026 ± 71	3547 ± 60	1846 ± 43
$\Gamma^{\psi(3686)}_{ee} [\mathrm{eV}]$	2198 ± 34	2232 ± 32	2223 ± 38	2176 ± 51
$\Gamma_{ee}^{X(3872)} \mathcal{B}(X(3872) \to \pi^+ \pi^- J/\psi) \text{ at } 90\% \text{ C.L. [eV]}$	0.630	0.314	0.319	0.646

> Use a weighted average method to compute the final value of the electronic width of $\psi(3686)$.

 $\Gamma_{ee}^{\psi(3686)} = 2213 \pm 18_{stat} \pm 99_{syst}$ eV

Combined all the likelihoods to X(3872) to compute the final value of $\Gamma_{ee}^{X(3872)}$

 $\Gamma_{aa}^{X(3872)}B(X(3872) \rightarrow \pi^+\pi^- J/\psi) < 0.13$ eV at the 90% C.L.

This measurement improves upon the current existing limit 6.2 eV [Phys. Rev. D 71, 052001 (2005)] by a factor of 46.

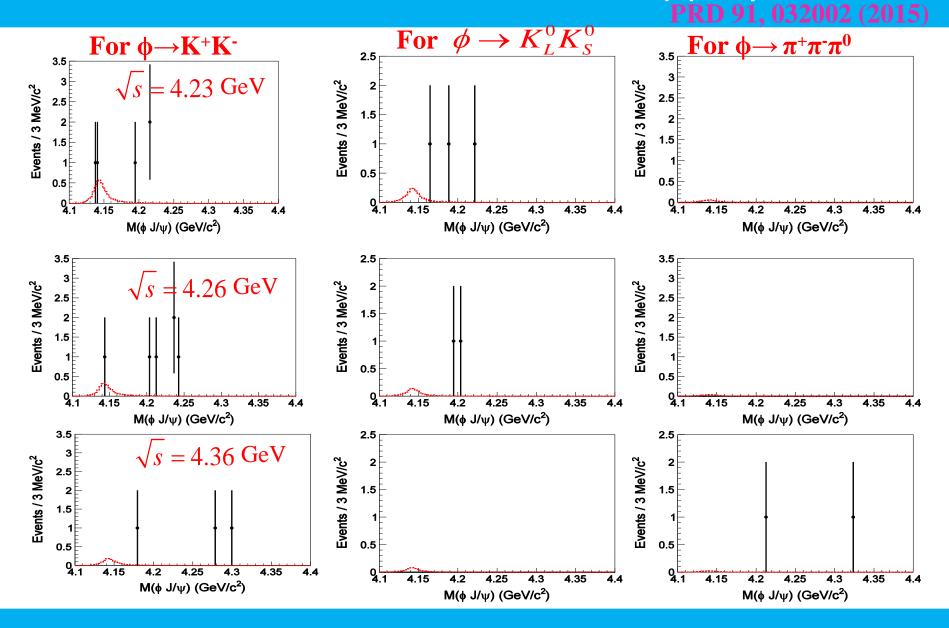
Mystery of Y(4140):

- ➤ The CDF experiment first reported the evidence for a new state called Y(4140) in the decay process of B⁺ $\rightarrow \phi J/\psi K^+$ [Phys. Rev Lett. **102**, 242002 (2009); arXiv:1101.6058].
- ➢ Belle experiment has reported null results in the same decay process and two photon production [Phys. Rev Lett. 104, 112004 (2010)].
- ► LHCb has also reported negative results for the decay process of $B^+ \rightarrow \phi J/\psi K^+$ [Phys. Rev D **85**, 091103 (2012)].
- CMS and D0 collaborations have recently confirmed the observation CDF experiment in the same decay process [Phys. Lett. B 734, 261 (2014), Phys. Rev D 89, 0912004 (2014)].
- ➢ BaBar has also investigated the same decay mode and found no evidence of Y(4140) production [Phys. Rev D 91, 012003 (2012)].

This particle is considered to be a good candidate for $D_s^* \overline{D_s^*}$ molecular. [Phys. Rev D 80, 05409 (2009)]

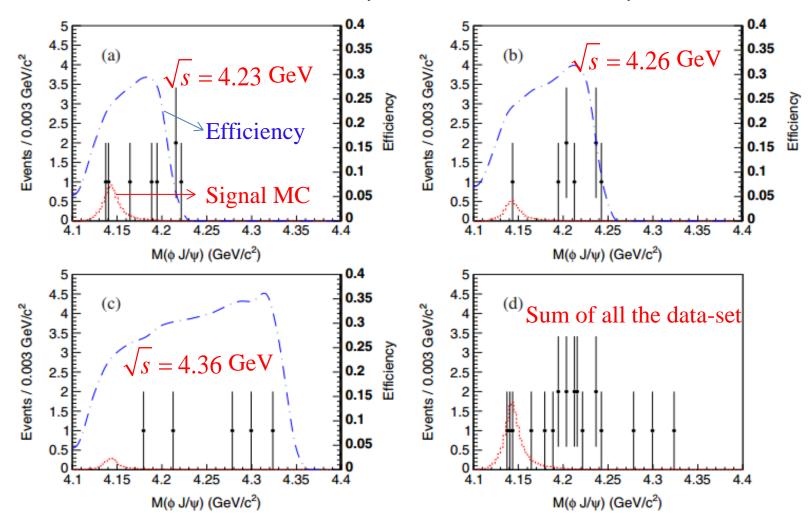
Event selection for $e^+e^- \rightarrow \gamma \phi J/\psi$; $J/\psi \rightarrow e^+e^-/\mu^+\mu^-$

***** For $\phi \rightarrow K^+K^-$


Partial reconstruction, only one K is required to be reconstructed.

$\bigstar \text{ For } \phi \to K_L^0 K_S^0$

Partial reconstruction, only K_S is required to be reconstructed, but K_L is considered as a missing track


***** For $\phi \rightarrow \pi^+ \pi^- \pi^0$

Fully reconstructed the decay process.

5/19/2015

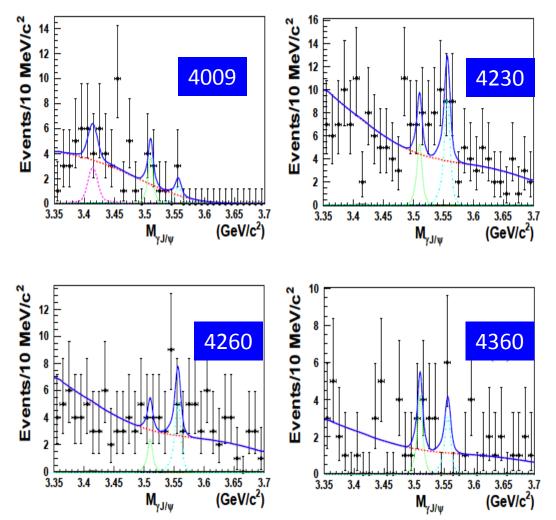
Combine 6 modes (3 ϕ modes \otimes 2 J/ ψ modes)

- > No evidence of Y(4140) signal is found in any of the three CM energies.
- ► Set the 90% C.L. upper limit for $\sigma^B \cdot \mathcal{B} = \sigma(e^+e^- \rightarrow \gamma Y(4140)) \cdot \mathcal{B}(Y(4140) \rightarrow \phi J/\psi)$.

\sqrt{s} (GeV)	Luminosity (pb ⁻¹)	$(1 + \delta)$	n ^{prod}	$\sigma^B \cdot \mathcal{B} (pb)$
4.23	1094	0.840	< 339	< 0.35
4.26	827	0.847	< 207	< 0.28
4.36	545	0.944	< 179	< 0.33

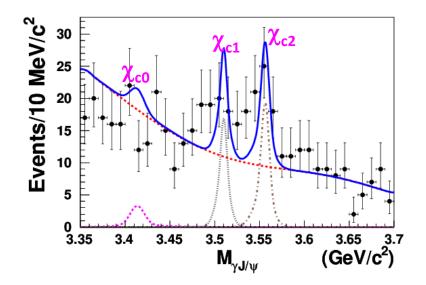
Where, $(1 + \delta)$ is the radiative correction obtained from the QED calculation. [Yad. Fiz. 41, 733 (1985)]

The upper limits can be compared with the X(3872) production rate $\sigma^B(e^+e^- \rightarrow \gamma X(3872)) \times \mathcal{B}(X(3872) \rightarrow \pi^+\pi^- J/\psi)$ PRL 112, 092001 (2014)

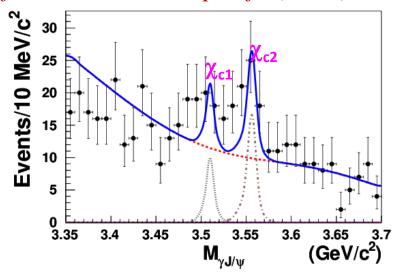

Take $\mathcal{B}(X(3872) \to \pi^+ \pi^- J/\psi) = 5\%$. arXiv: 0910.3138 And $\mathcal{B}(Y(4140) \to \phi J/\psi) = 30\%$, molecular calculation, PRD 80, 054019.

 $\frac{\sigma^B(e^+e^- \to \gamma Y(4140)}{\sigma(e^+e^- \to \gamma X(3872))} \le 0.1 \text{ at } \sqrt{s} = 4.23 \text{ and } 4.26 \text{ GeV}.$

Evidence for $e^+e^- \rightarrow \gamma \chi_{c1,2}$ [arXiv:1411.6336 (2015)

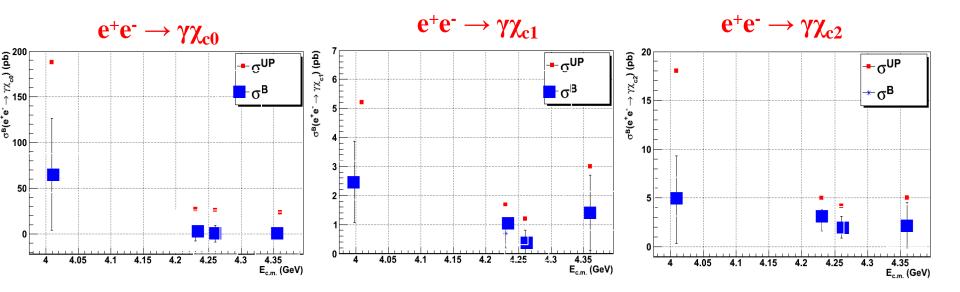

- \succ Reconstruct the χ_{cJ} by its $\gamma J/\psi$ decay mode, where J/ψ decays to $\mu^+\mu^-$ in the final state.
- Perform a 5C kinematic fit with two charged track and two photon candidates with a constraint that the di-muon invariant mass distribution must peak at J/\u03c6 mass position.
- > Perform the ML fit to the $M_{\gamma J/\psi}$ distribution to extract the signal events.
- **Signal**: a double-Gaussian with shape parameters determined from MC at 4260 MeV

Background: radiative dimu MC shape


Evidence for $e^+e^- \rightarrow \gamma \chi_{c1,2}$

Perform the ML fit after combining all the four CM energies of data

The statistical significance values are observed to 1.2σ , 3.0σ , 3.4σ for χ_{c0} , χ_{c1} and χ_{c2} resonances, respectively.


A simultaneous fit to $M(\gamma J/\psi)$ at 4 CM energy points *with* <u>assuming the</u> <u>production</u> $\sigma(e^+e^- \rightarrow \gamma \chi_{cJ})$ at different \sqrt{s} <u>follows the lineshape of Y(4260)</u>

The statistical significance values are observed to 0σ , 2.4 σ , 4.0 σ for χ_{c0} , χ_{c1} and χ_{c2} resonances, respectively.

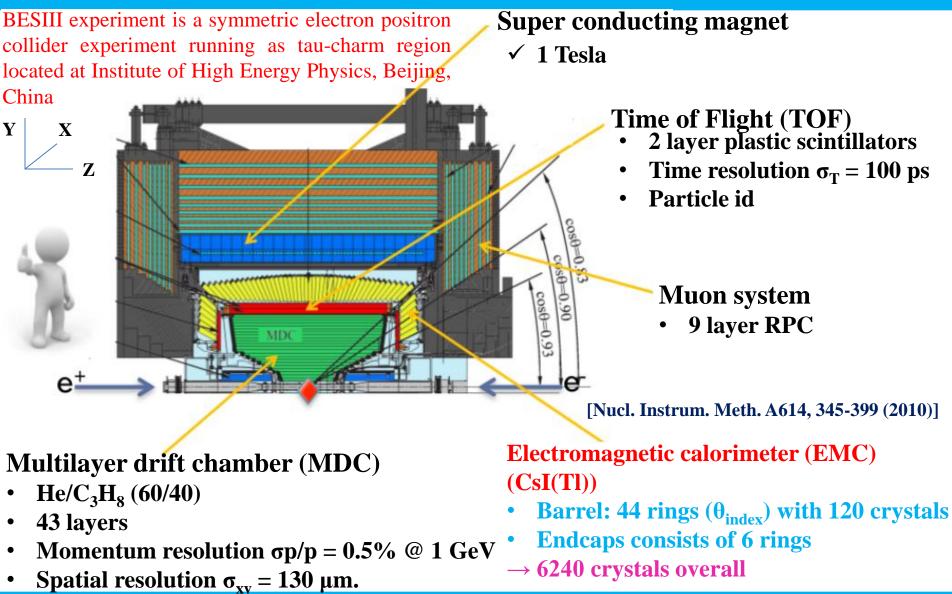
Evidence for $e^+e^- \rightarrow \gamma \chi_{c1,2}$ [arXiv:1411.6336 (2015)]

The measured Born corss-section $\sigma(e^+e^- \rightarrow \gamma \chi_{cJ})$

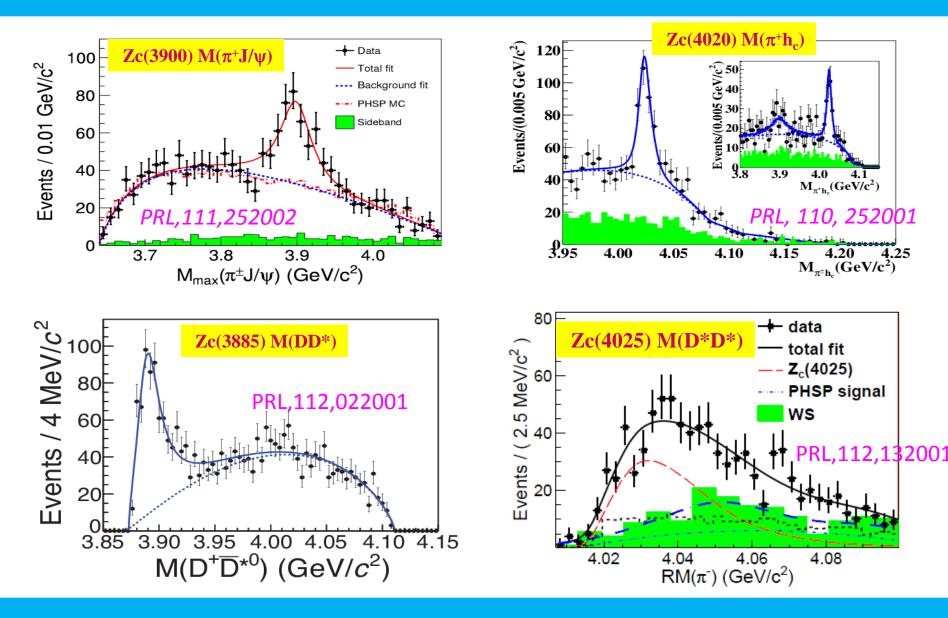
The upper limits on the cross section of $e^+e^- \rightarrow \gamma \chi_{cJ}$ are compatible with the theoretical predication. [arXiv:1310.8597]

Summary

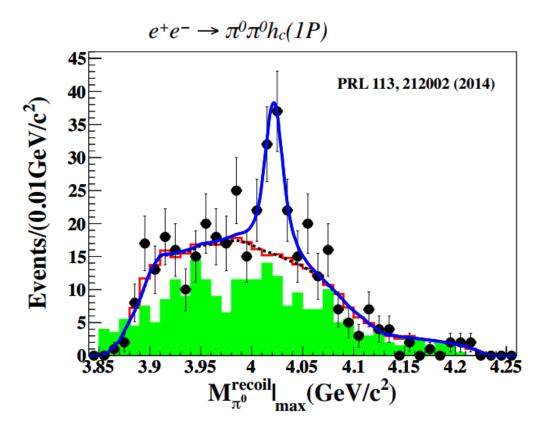
- ► BESIII has observed the process of $e^+e^- \rightarrow \gamma X(3872)$ first time with a statistical significance of 6.3 σ for $\sqrt{s} > 4$ GeV. The measurements are consistent with the expectation for the radiive transition process of Y(4260) $\rightarrow \gamma X(3872)$.
- An improved 90% C.L. upper limit for the electronic width times the branching fraction of $\Gamma_{ee}^{X(3872)}B(X(3872) \rightarrow \pi^+\pi^- J/\psi)$ is observed to be 0.13 eV, which is 46 times better than previous measurements.
- ► No evidence of Y(4140) is found in the decay process of $e^+e^- \rightarrow \gamma \phi J/\psi$.
- → We find the evidence for $e^+e^- \rightarrow \gamma \chi_{c1}$ and $e^+e^- \rightarrow \gamma \chi_{c2}$ with statistical significance of 3.0 and 3.4 σ , respectively for $\sqrt{s} > 4$ GeV.
- ➢ We are still analyzing the data and looking forward to produce more exciting results in near future.


Thank you!

5/19/2015


Back up Slide

5/19/2015


BESIII Experiment

Some of the important BESIII results

Some of the important BESIII results

 $M = 4023.9 \pm 2.2 \pm 3.8 \text{ MeV/c}^2$

width fixed to the charged $Z_c'(4020)$

significance > 5σ