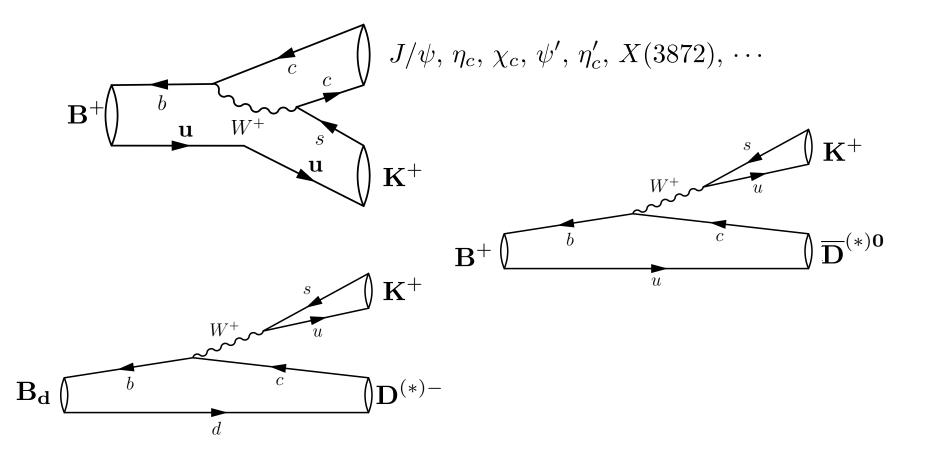
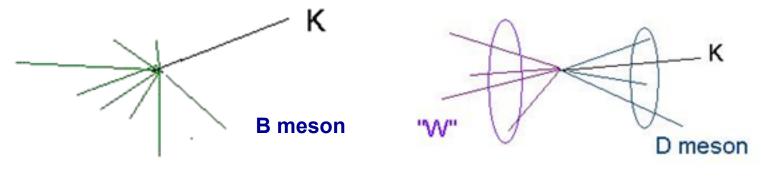
Measurements of charmonium states inclusive production in the two body decays B \rightarrow X_{cc} + K, and more.

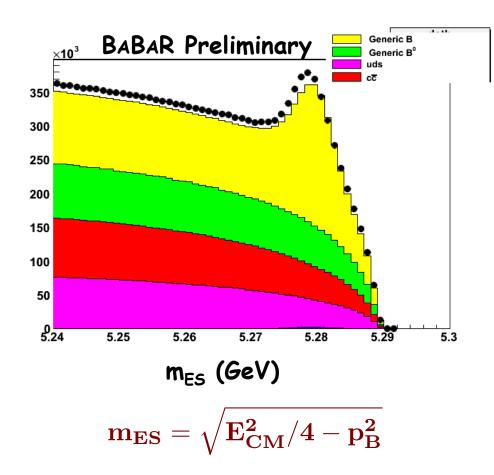

Michael D. Sokoloff University of Cincinnati on behalf of the BABAR Collaboration

Fully reconstructing a B in $e^+e^- \rightarrow \Upsilon(4S)$ allows one to study the recoil (missing mass) spectrum of $B \rightarrow K, X$ decays (charge conjugation implicit). This provides measurements absolute B \rightarrow (K, charmonium) branching fractions. In addition to probing charmonium production, the same technique allows one to study exclusive $B \rightarrow K, D^{(*)}$ production. Results from BaBar's 424 fb⁻¹ sample are reported. In particular, we observe production of a $D^{**0}(2680)$ resonance.


Feynmann Diagrams for the Amplitudes

Michael D Sokoloff

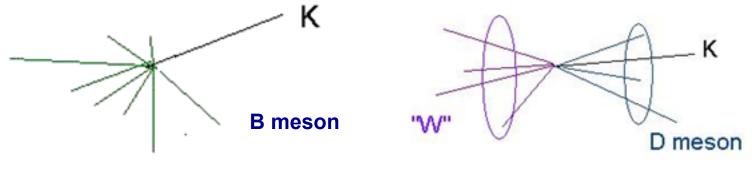
Some Key Ideas


- Recoil (missing mass) spectra measure "inclusive" B → K,X branching fractions. They are democratic as they do not depend on the decays of their daughters.
- Alternatively, exclusive $B \rightarrow K, X$ final states can be fully reconstructed for specific decays, including specific final states for the daughter states. For example X = $X(3872) \rightarrow J/\psi, \pi^-, \pi^+$.
- $B \rightarrow K, X$ daughter kaons characteristically differ from B $\rightarrow D, X; D \rightarrow K, Y$ kaons:

May 18, 2015

Inclusive B⁺ Sample

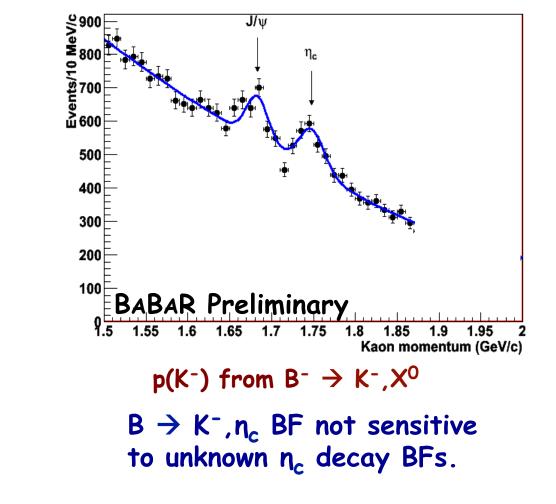
•



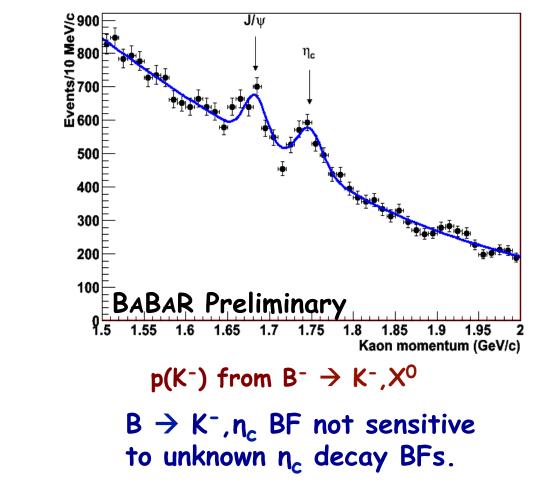
- $1.67 \text{ M} \pm 4230 \text{ B}^{\pm}$
- Train a neural net to accept 80% of signal, remove 90% of bkgd.
- Remaining sample is ~1.3 M B[±] (shown on left)

May 18, 2015

Selecting Kaons from $B \rightarrow K, X$


- Most kaons produced in B-decays are daughters of Dmesons, not daughters of the B-mesons themselves.
- Another neural net is trained to discriminate between daughter and grand-daughter kaons:
 - Use MC to avoid bias;
 - Train separately for 1 GeV < p_K < 1.5 GeV and for 1.5 GeV < p_K < 2.0 GeV;
 - 15 discriminating variables chosen carefully not to depend on particular decay topology of recoil system.

"Combination" Neural Nets

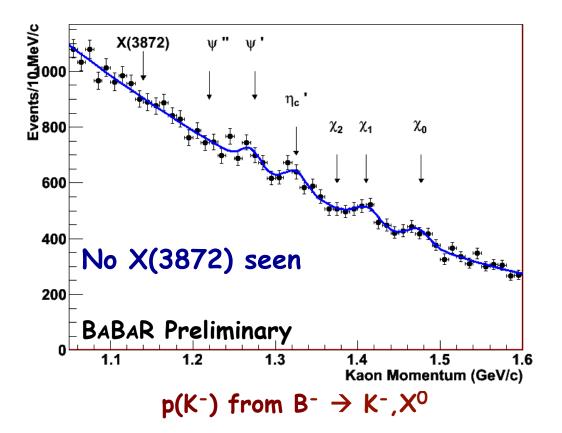

- The separate B and K neural nets are combined to further optimize S²/(S+B)
- This "super-NN" is trained separately for 1.5 GeV < p_K < 1.8 GeV and for 1.2 GeV < p_K < 1.5 GeV (higher charmonium mass)
- These optimized super-NNs retain 55% of signal and reject background 3x in the X(3872) region, 2.5x in the J/ψ region.

Lower Mass Charmonium Region

May 18, 2015

Lower Mass Charmonium Region

May 18, 2015


Higher Mass Charmonium Region

Spectrum is fit with PDG widths convoluted with detector resolution for 8 signal peaks [that labeled χ_1 is a combination of χ_{c1} and h_c] and a third degree polynomial background shape.

May 18, 2015

Higher Mass Charmonium Region

Spectrum is fit with PDG widths convoluted with detector resolution for 8 signal peaks [that labeled χ_1 is a combination of χ_{c1} and h_c] and a third degree polynomial background shape.

May 18, 2015

Full Charmonium Mass Region

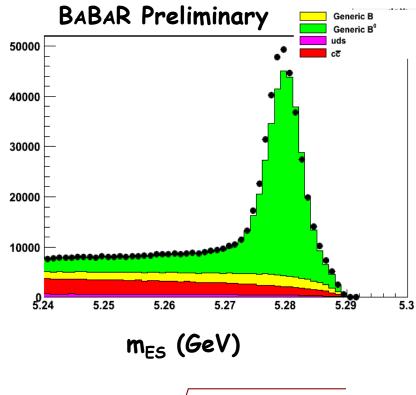

J/ψ η_c Events/10 MeV/c 051 052 100 50 0 -50 **BABAR Preliminary** 1.1 1.2 1.3 1.4 1.6 1.7 1.9 1.5 1.8 Kaon Momentum (GeV/c) $p(K^{-})$ from $B^{-} \rightarrow K^{-}, X^{0}$

Spectrum is fit with PDG widths convoluted with detector resolution for 10 signal peaks, after background subtraction. (BF tables will be presented later.)

May 18, 2015


Lower Mass, Neutral D^(*), Recoil Region

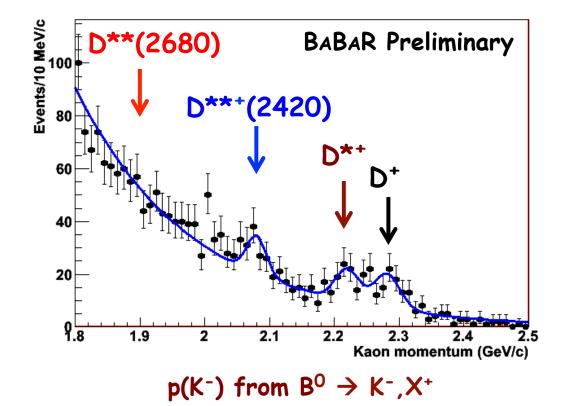
The statistical significance of the $D^{**0}(2680) \sim 3.3\sigma$. Its mass is measured to be (2.680 ± 0.003) GeV. The K⁻, D⁰ and K⁻, D^{*0} branching fractions are consistent with PDG 2014 values.


May 18, 2015

Very High Mass Charmonium Region

Sensitive to narrow peaks ($\Gamma < 20 \text{ MeV}$). The only structure "observed" ($p_K = 1.0425 \text{ GeV}$, $m_{recoil} = 3.990 \text{ GeV}$) has a statistical significance < 3σ when considering the "look elsewhere" effect. Not sensitive to Y(4260) due to its width ($\Gamma \sim 100 \text{ MeV}$) May 18, 2015 Michael D Sokoloff 13

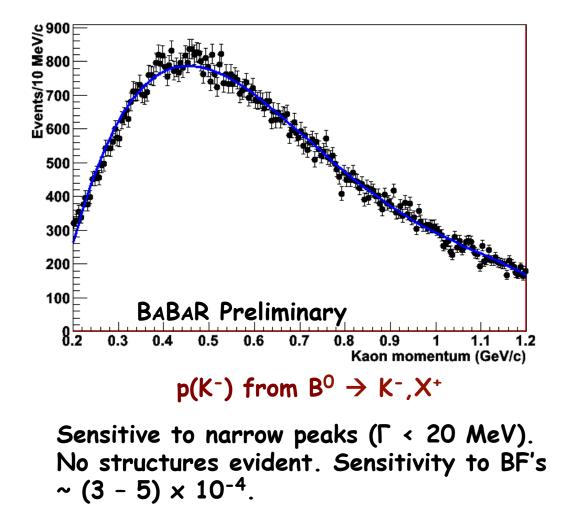
Inclusive B⁰ Sample



 Only very clean tagging B⁰-decays, and tighter cuts than for B[±], so fewer events and better S:B.

$$\mathbf{m_{ES}} = \sqrt{E_{\mathbf{CM}}^2/4 - p_{\mathbf{B}}^2}$$

May 18, 2015


Lower Mass, Charged D^(*), Recoil Region

No evidence for a $D^{**+}(2680)$ although D^+ , D^{*+} , and D^{**+} signals are seen. The K^-, D^+ and K^-, D^{*+} branching fractions are consistent with PDG 2014 values.

May 18, 2015

Higher Mass, Charged Recoil Region

May 18, 2015

Charmonium Results

Particle	Yield	Peak Position	Width	$BF(10^{-4})$
J/ψ	516 ± 67			$9.6 \pm 1.2 (sta) \pm 0.8 (sys)$
η_c	655 ± 77	2982 ± 5	<43	$13.3 \pm 1.8 (\text{stat}) \pm 0.4 (\text{sys}) \pm 0.3 (\text{ref})$
χ_{c0}	218 ± 76			4.4 ± 0.9
χ_{c1}	192 ± 35			$7.0 \pm 1.3 (\text{stat}) \pm 1.0 (\text{sys})$
χ_{c2}	$0{\pm}32$			<1.2
$\eta_c (2S)$	283 ± 94	3632 ± 7	<33	$6.0 \pm 2.1 (\text{stat}) \pm 0.4 (\text{sys})$
ψ'	293 ± 90			$6.2 \pm 2 (\text{stat}) \pm 0.6 (\text{sys})$
$\psi(3770)$	$0{\pm}49$			<2.0
X(3872)	75 ± 81			$1.4 \pm 1.5 \text{ or } < 4.4$

BABAR Preliminary

Results from the fits of the K momentum spectrum in the charmonium mass region for 1.67 M reconstructed B[±] events. (Peak positions and widths in MeV; upper limits are 90% CL)

May 18, 2015

D-meson Results

Particle	Yield	Peak Position	$BF(10^{-4})$	PDG 2014
D^0	126 ± 20		$3.5\pm0.5(\mathrm{sta})\pm0.3(\mathrm{sys})$	$3.7{\pm}0.17$
D^{*0}	126 ± 21		$3.5 \pm 0.5 (\text{stat}) \pm 0.3 (\text{sys})$	4.2 ± 0.34
D^{**0}	97 ± 25		$2.1 \pm 0.5 (\text{stat})) \pm 0.3 (\text{sys})$	-
$D^{**0}(2680)$	95 ± 29	$2.68{\pm}0.003$	$2.1 \pm 0.6 (\text{stat}) \pm 0.3 (\text{sys})$	-
D^{\pm}	44 ± 10		$3.3 \pm 0.8 (sta) \pm 0.3 (sys)$	$2.0{\pm}0.21$
$D^{*\pm}$	40 ± 10		$3.0 \pm 0.8 (\text{stat}) \pm 0.3 (\text{sys})$	$2.1{\pm}0.16$
$D^{**}(2420)^{\pm}$	52 ± 13		$3.9 \pm 1.0(\text{stat})) \pm 0.3(\text{sys})$	-

BABAR Preliminary

Results from the fits of the K momentum spectra in the D region mass, performed for B^{\pm} and B^{0} samples of 1.67 M and 0.8 M reconstructed B events, respectively. (Peak position reported in GeV)

Summary and Outlook

- BABAR has measured exclusive B → K,X final state branching fractions for a series of X = charmonium and D^(*) channels.
- Because these measurements are inclusive, they can be used in conjunction with exclusive final state measurements to determine absolute charmonium and $D^{(*)}$ branching fractions, particularly for the η_c and $\eta_c(2S)$. They also provide lower bounds for observed X(3872) modes. With the 100x statistics anticipated from Belle-II, the precision of BF measurements will become a few percent.
- We observe a new D**⁰ at a mass of (2680 ± 3) MeV with 3.3σ significance. We do not observe the charged analogue.

May 18, 2015