PROBING THE NATURE OF Z⁽¹⁾ STATES VIA THE MCP DECAY

Angelo Esposito Columbia University CHARM 2015, Wayne State University, Detroit

Based on: A.E., A.L. Guerrieri, A. Pilloni - PLB30983 (2015) arXiv:1409:3551 [hep-ph]

OUTLINE

Introduction and motivation

• The formalism

- I. The compact tetraquark model
- 2. The molecular model
- Results and comparison
- Conclusions

INTRO AND MOTIVATION Exotic resonances

- The past 12 years witnessed the discovery of many unexpected charmonium-like resonances (and two bottomonium-like)
- Some of them are manifestly exotic 4-quark states:

 Z_c(3900)⁺/Z'_c(4020)⁺ → cc̄ud̄
 Z(4430)⁺ → cc̄ud̄
 Z_b(10610)⁺/Z'_b(10650)⁺ → bb̄ud̄
- Many <u>phenomenological models</u> have been developed to describe the internal structure of these states (compact tetraquark, meson molecule, hybrid, hadro-charmonium,...)
- So far, no unified/accepted description of their nature has been found
- It would be extremely useful to have a **clear discriminant** between the different ideas...

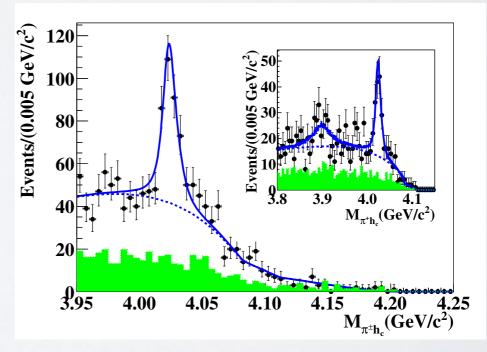
State	M (MeV)	Γ (MeV)	J^{PC}	Process (mode)	Experiment $(\#\sigma)$
X(3823)	3823.1 ± 1.9	< 24	27-	$B \rightarrow K(\chi_{c1}\gamma)$	Belle (4.0)
X(3872)	3871.68 ± 0.17	< 1.2	1^{++}	$B \rightarrow K(\pi^+\pi^- J/\psi)$	Belle (>10), BABAR (8.6
				$p\bar{p} \rightarrow (\pi^+\pi^- J/\psi) \dots$	CDF (11.6), D0 (5.2)
				$pp \rightarrow (\pi^+\pi^- J/\psi) \dots$	LHCb (np)
				$B \rightarrow K(\pi^+\pi^-\pi^0 J/\psi)$	Belle (4.3), BABAR (4.0
				$B \rightarrow K(\gamma J/\psi)$	Belle (5.5), BAB4R (3.5
					LHCb (> 10)
				$B \rightarrow K(\gamma \psi(2S))$	BABAR (3.6), Belle (0.2
					LHCb (4.4)
				$B \rightarrow K(D\bar{D}^*)$	Belle (6.4), BAB4R (4.9
$Z_c(3900)^+$	3888.7 ± 3.4	35 ± 7	1^{+-}	$Y(4260) \rightarrow \pi^{-}(D\bar{D}^{*})^{+}$	BES III (np)
				$Y(4260) \rightarrow \pi^{-}(\pi^{+}J/\psi)$	BES III (8), Belle (5.2
					CLEO data (>5)
$Z_c(4020)^+$	4023.9 ± 2.4	10 ± 6	1^{+-}	$Y(4260) \rightarrow \pi^{-}(\pi^{+}h_{c})$	BES III (8.9)
				$Y(4260) \rightarrow \pi^{-}(D^{*}\bar{D}^{*})^{+}$	BES III (10)
Y(3915)	3918.4 ± 1.9	20 ± 5	0^{++}	$B \rightarrow K(\omega J/\psi)$	Belle (8), BABAR (19)
				$e^+e^- \rightarrow e^+e^-(\omega J/\psi)$	Belle (7.7), BABAR (7.6
Z(3930)	3927.2 ± 2.6	24 ± 6	2^{++}	$e^+e^- \rightarrow e^+e^-(DD)$	Belle (5.3), BABAR (5.8
X(3940)	3942^{+9}_{-8}	37^{+27}_{-17}	2^{2+}	$e^+e^- \rightarrow J/\psi (D\bar{D}^*)$	Belle (6)
Y(4008)	3891 ± 42	255 ± 42	1	$e^+e^- \rightarrow (\pi^+\pi^- J/\psi)$	Belle (7.4)
$Z(4050)^+$	4051^{+24}_{-43}	82^{+51}_{-55}	??+	$\bar{B}^0 \rightarrow K^-(\pi^+\chi_{c1})$	Belle (5.0), BABAR (1.1
Y(4140)	4145.6 ± 3.6	14.3 ± 5.9	27+	$B^+ \rightarrow K^+(\phi J/\psi)$	CDF (5.0), Belle (1.9)
(((-),-)	LHCb (1.4), CMS (>5
					DØ (3.1)
X(4160)	4156^{+29}_{-25}	$\substack{139\substack{+113\\-65}\\370\substack{+99\\-110}$	27+	$e^+e^- \rightarrow J/\psi (D^*\overline{D}^*)$	Belle (5.5)
$Z(4200)^+$	4196_{-30}^{+33}	370^{+99}	1+-	$\bar{B}^0 \rightarrow K^-(\pi^+ J/\psi)$	Belle (7.2)
Y(4220)	4196^{+35}_{-30}	39 ± 32	1	$e^+e^- \rightarrow (\pi^+\pi^-h_e)$	BES III data (4.5)
Y(4230)	4230 ± 8	38 ± 12	1	$e^+e^- \rightarrow (\chi_{c1}\omega)$	BES III (>9)
$Z(4250)^+$	4248^{+185}_{-45}	177^{+321}_{-72}	27+	$\bar{B}^0 \rightarrow K^-(\pi^+\chi_{c1})$	Belle (5.0), BABAR (2.0
Y(4260)	4250 ± 9	108 ± 12	i	$e^+e^- \rightarrow (\pi \pi J/\psi)$	BaBar (8), CLEO (11
1 (4200)	4200 ± 0	100 1 12		e e -> (nxoj¢)	Belle (15), BES III (np
				$e^+e^- \rightarrow (f_0(980)J/\psi)$	BABAR (np), Belle (np
				$e^+e^- \rightarrow (\pi^- Z_c(3900)^+)$	BES III (8), Belle (5.2
				$e^+e^- \rightarrow (\gamma X(3872))$	BES III (5.3)
Y(4290)	4293 ± 9	222 ± 67	1	$e^+e^- \rightarrow (\pi^+\pi^-h_c)$	BES III data (np)
X(4350)	$4350.6^{+4.6}_{-5.1}$	13^{+18}_{-10}	$0/2^{?+}$	$e^+e^- \rightarrow e^+e^-(\phi J/\psi)$	Belle (3.2)
Y(4360)	4354 ± 11	78 ± 16	1	$e^+e^- \rightarrow (\pi^+\pi^-\psi(2S))$	Belle (8), BABAR (np)
Z(4430)+	4478 ± 17	180 ± 31	1+-	$\bar{B}^0 \rightarrow K^-(\pi^+\psi(2S))$	Belle (6.4), BABAR (2.4
22(4400)	1110 1 11	100 1 01		$D \rightarrow R (n \psi(20))$	LHCb (13.9)
				$\bar{B}^0 \rightarrow K^-(\pi^+ J/\psi)$	Belle (4.0)
Y(4630)	4634^{+9}_{-11}	92^{+41}_{-32}	1	$e^+e^- \rightarrow (\Lambda_e^+ \bar{\Lambda}_e^-)$	Belle (8.2)
Y(4660)	4665 ± 10	53 ± 14	1	$e^+e^- \rightarrow (\pi^+\pi^-\psi(2S))$	Belle (5.8), BABAR (5)
Z _b (10610) ⁺	10607.2 ± 2.0	18.4 ± 2.4	1+-	$\Upsilon(5S) \rightarrow \pi(\pi\Upsilon(nS))$	Belle (>10)
29(10010)	1000112 ± 210	10/4 1 2/4		$\Upsilon(5S) \rightarrow \pi^{-}(\pi^{+}h_{b}(nP))$ $\Upsilon(5S) \rightarrow \pi^{-}(\pi^{+}h_{b}(nP))$	Belle (16)
				$\Upsilon(5S) \rightarrow \pi^-(B\bar{B}^*)^+$	Belle (8)
$Z_b(10650)^+$	10652.2 ± 1.5	11.5 ± 2.2	1+-	$\Upsilon(5S) \rightarrow \pi^{-}(\pi^{+}\Upsilon(nS))$	Belle (>10)
29(10000)	1000112 1 110	11.0 1.2.2		$\Upsilon(5S) \rightarrow \pi^-(\pi^+h_b(nP))$	Belle (16)
				$\Upsilon(5S) \rightarrow \pi^-(B^*\bar{B}^*)^+$	Belle (6.8)
				$1(00) \rightarrow \pi^{-}(D^{-}D^{-})^{-}$	Dene (0.8)

INTRO AND MOTIVATION The $Z_c^{(\prime)} ightarrow \eta_c \rho$ decay channel

- So far, no clear analysis of the decay of the $Z_c^{(\prime)}$ into $\eta_c
 ho$ has been made
- We studied the previous processes by means of both the compact tetraquark (type-I and type-II paradigms) and loosely bound meson molecule models
- These channels might provide an essential hint to experimentally distinguish between the two models.



[BESIII Coll. PRL 111 (2013) arXiv:1309.1896]



[BESIII Coll. PRL 110 (2013) arXiv:1303.5949]

THE FORMALISM Compact Tetraquark

- In the (compact) tetraquark model the four constituents are considered as being tightly bound to each other in a diquark-antidiquark configuration: $[cq_1]_{\bar{\mathbf{3}}_c}[\bar{c}\bar{q}_2]_{\mathbf{3}_c}$
- The ground state tetraquarks are taken as eigenstates of the color-spin Hamiltonian:

$$H = \sum_{i} m_{i} - 2 \sum_{i < j} \kappa_{ij} \mathbf{S}_{i} \cdot \mathbf{S}_{j}$$

- Two possibile <u>ansatz</u> on the κ_{ij} coefficients:
 - I. Tetraquark type-I: the couplings are similar to those appearing in ordinary particles. All the κ_{ij} are extracted from known meson and baryon masses. [Maiani et al. PRD71 (2005) arXiv:hep-ph/0412098]
 - 2. Tetraquark type-II: the dominant color-spin interactions are those within the diquarks. All the couplings are neglected except for $\kappa_{cq} = \kappa_{\bar{c}\bar{q}}$. [Maiani et al. PRD89 (2014) arXiv:1405.1551]
- Depending on the chosen ansatz, the physical states will be different combinations of the Hamiltonian eigenstates
 - Our interest is on the $Z_c(3900)$ and $Z_c'(4020)$ with $J^{PC} = 1^{+-}$

•

•

THE FORMALISM **Compact Tetraquark**

One relies on Heavy Quark Spin Symmetry to write the transition matrix elements to charmonia:

$$\psi_{[cq]} = \chi_c \otimes \phi_{[cq]}(\mathbf{r}_c, \mathbf{r}_q, s_q) + \mathcal{O}\left(\frac{\Lambda_{QCD}}{m_c}\right) \qquad \Longrightarrow \qquad \mathcal{A} = \underbrace{\langle \chi_{c\bar{c}} | \chi_c \otimes \chi_{\bar{c}} \rangle}_{\text{transition matrix element}} + \underbrace{\mathcal{O}\left(\frac{\Lambda_{QCD}}{m_c}\right)}_{\text{transition matrix element}} + \underbrace{\mathcal{O}\left(\frac{\Lambda_{QCD}}{m_c}\right)}_{\text{t$$

In our case, the transition matrix elements for the decays of interest are:

$$\langle J/\psi(\eta,p)\pi(q)|Z(\lambda,P)\rangle = g_{Z\psi\pi}\lambda\cdot\eta \qquad \langle \eta_c(p)\rho(\epsilon,q)|Z(\lambda,P)\rangle = g_{Z\eta_c\rho}\lambda\cdot\epsilon \\ \langle h_c(p,\eta)\pi(q)|Z(\lambda,P)\rangle = \frac{g_{Zh_c\pi}}{M_Z^2}\epsilon^{\mu\nu\rho\sigma}\lambda_\mu\eta_\nu P_\rho q_\sigma$$

- The strong couplings, g, are unknown a-priori.
- To test the degree of model dependence of our estimate, we used two models: •
 - **No internal dynamics:** the spatial dependence of the wave function is ignored and the couplings to different charmonia are universal. The differences are only of kinematical nature.
 - 2. A model of internal dynamics included: the tetraquark is considered as a diquark-antidiquark pair interacting with a Cornell potential and moving away from each other. The couplings squared are proportional to the charmonia probability density at the maximum diquark-antidiquark

Separation. [Brodsky et al. - PRL113 (2014) arXiv:1406.7281]

Angelo Esposito — Columbia University

6

CHARM 2015 — Detroit, May 19th

RESULTS Compact Tetraquark

- We computed the decay branching ratios by using both the **type-I** and **type-II** models and both with and without the internal dynamical description
 - Computing the maximum diquark-antidiquark separation and knowing the charmonia probability densities, **the ratios between the strong couplings** can be estimated to be:

$$g_{c\bar{c}}^2 \propto |\psi_{c\bar{c}}(r_Z)|^2 \Longrightarrow g_{Z\eta_c\rho}^2 / g_{Z\psi\pi}^2 = 0.68^{+0.15}_{-0.12}; \quad g_{Z'\eta_c\rho}^2 / g_{Z'h_c\pi}^2 = \left(5.7^{+24.4}_{-4.5}\right) \times 10^{-2}$$

	Kinematic	s only	Dynamics included		
	type I	type II	type I	type II	
$\frac{\mathcal{BR}\left(Z_c \to \eta_c\right)}{\mathcal{BR}\left(Z_c \to J/\psi\right)}$	— I I 3 3 ' C 1 X 10"	$0.41^{+0.96}_{-0.17}$	$(2.3^{+3.3}_{-1.4}) \times 10^2$	$0.27^{+0.40}_{-0.17}$	
$\frac{\mathcal{BR}\left(Z_{c}^{\prime} \to \eta_{c} \rho\right)}{\mathcal{BR}\left(Z_{c}^{\prime} \to h_{c} \pi\right)}$		$(1.2^{+2.8}_{-0.5}) \times 10^2$		$6.6^{+56.8}_{-5.8}$	

The final results for the quantities of interest are:

Angelo Esposito — Columbia University

•

THE FORMALISM Meson Molecule

- In the **molecular model** the exotic states are seen as loosely bound states of two open-charm mesons.
- Predictions on decay rates can be made using the so-called Non Relativistic Effective Field Theory (NREFT). It describes the interaction between the charmonia, exotic, light and heavy mesons by means of Heavy Quark Effective Theory and Chiral Effective Theory [see e.g. Cleven et al. PRD87 (2013) arXiv:1301.6461 [hep-ph]]

• The terms of the effective Lagrangian that we are going to need are:
Unknown
$$\mathcal{L}_{Z_{c}^{(\prime)}} = \frac{z^{\prime\prime}}{2} \left\langle \mathcal{Z}_{\mu,ab}^{(\prime)} \bar{H}_{2b} \gamma^{\mu} \bar{H}_{1a} \right\rangle + h.c. \longrightarrow \text{Exotic + Heavy Mesons}$$

$$\mathcal{L}_{c\bar{c}} = \frac{g_{2}}{2} \left\langle \bar{\Psi} H_{1a} \gamma^{\mu} \overleftrightarrow{\partial}_{\mu} H_{2a} \right\rangle + \frac{g_{1}}{2} \left\langle \bar{\chi}_{\mu} H_{1a} \gamma^{\mu} H_{2a} \right\rangle + h.c. \longrightarrow \text{Charmonia + Heavy Mesons}$$

$$\mathcal{L}_{\rho DD^{*}} = i\beta \left\langle H_{1b} v^{\mu} (\mathcal{V}_{\mu} - \rho_{\mu})_{ba} \bar{H}_{1a} \right\rangle + i\lambda \left\langle H_{1b} \sigma^{\mu\nu} F_{\mu\nu} (\rho)_{ba} \bar{H}_{1a} \right\rangle + h.c. \longrightarrow \text{Heavy Mesons + Light Mesons}$$

$$g_{1} = (-2.09 \pm 0.16) \text{ GeV}^{-1/2}; \quad g_{2} = (1.16 \pm 0.04) \text{ GeV}^{-3/2}; \quad \beta = 0.9 \pm 0.1 \quad \lambda = (0.56 \pm 0.07) \text{ GeV}^{-1}$$

$$[\text{Colangelo et al. - PRD69 (2004) arXiv:hep-ph/0310084]} \quad [\text{Isola et al. - PRD68 (2003) arXiv:hep-ph/0307367]}$$

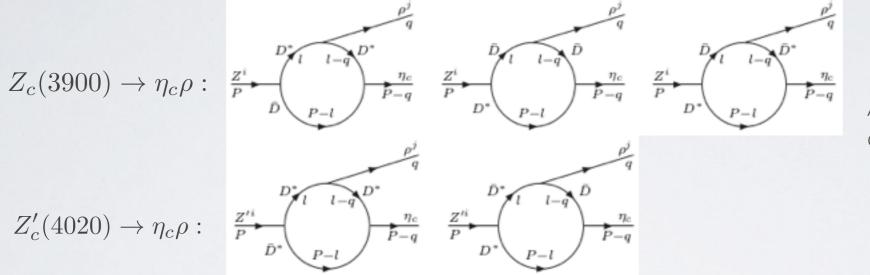
- **Key ingredient:** Assuming the exotic mesons to be molecular bound states implies that they only couple to their open-charm constituents: $Z_c \rightarrow DD^*$; $Z'_c \rightarrow D^*D^*$
- **Consequence:** The decays of meson molecules into final states different from their constituents can only proceed via <u>heavy meson loops</u>

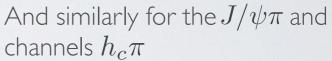
Angelo Esposito — Columbia University

•

THE FORMALISM Meson Molecule

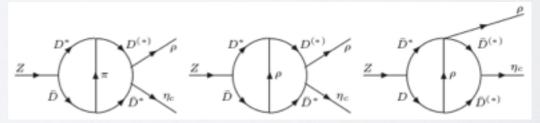
The one-loop diagrams we need to compute for our processes are:





Since these molecules are assumed to be very close to threshold, the typical velocities of the heavy mesons, $v \simeq \sqrt{|M_X - 2M_D|/M_D}$, are going to be small. This allows a power counting procedure to estimate the relevance of higher order loop diagrams. [see e.g. Cleven et al. - PRD87 (2013) arXiv:1301.6461 [hep-ph]]

In our case, higher order contributions look like:



• We estimated a 15% theoretical uncertainty on the single amplitudes

•

RESULTS

Meson Molecule

I. First result:

$$\frac{\mathcal{BR}(Z_c \to \eta_c \rho)}{\mathcal{BR}(Z_c \to J/\psi\pi)} = (4.6^{+2.5}_{-1.7}) \times 10^{-2}; \quad \frac{\mathcal{BR}(Z'_c \to \eta_c \rho)}{\mathcal{BR}(Z'_c \to h_c \pi)} = (1.0^{+0.6}_{-0.4}) \times 10^{-2};$$

2. <u>Second result:</u>

• If we assume the decay channels for the $Z_c^{(\prime)}$ to be saturated by the $D^{(*)}D^*$, $\eta_c\rho$, $h_c\pi$, $J/\psi\pi$, $\psi(2S)\pi$ channels, then we can fit the couplings $z^{(\prime)}$ from the experimental total widths:

$$|z| = (1.26^{+0.14}_{-0.14}) \text{ GeV}^{-1/2}; |z'| = (0.58^{+0.22}_{-0.19}) \text{ GeV}^{-1/2}.$$

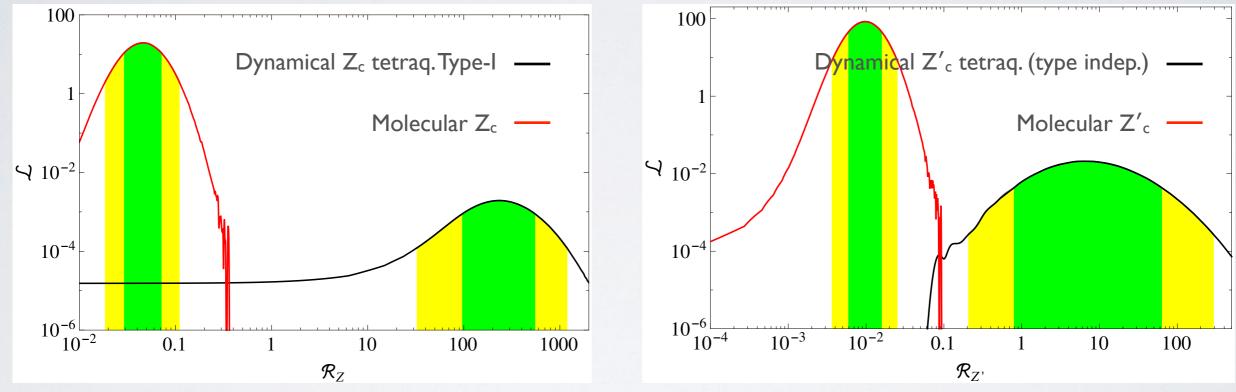
• This allows to compute the following branching fractions:

$$\frac{\mathcal{BR}(Z_c \to h_c \pi)}{\mathcal{BR}(Z'_c \to h_c \pi)} = 0.34^{+0.21}_{-0.13}; \quad \frac{\mathcal{BR}(Z_c \to J/\psi\pi)}{\mathcal{BR}(Z'_c \to J/\psi\pi)} = 0.35^{+0.49}_{-0.21}.$$

- Both these decay widths should be of the same order of magnitude for the $Z_c(3900)$ and the $Z'_c(4020)$
- It seems in contrast with the experimental data: in the $J/\psi\pi$ channel no hint of Z'_c has been observed

COMPARISON A neat difference

• A direct comparison of the likelihoods for the decays in $\eta_c \rho$ for the two models is:



• The tetraquark type-I (both dynamical and non-dynamical) for the Z_c is **clearly distinguished** (>2 σ) from the meson molecule for the $\mathcal{BR}(Z_c \to \eta_c \rho)/\mathcal{BR}(Z_c \to J/\psi\pi)$ ratio

- The tetraquark type-I and II (both dynamical and non-dynamical) for the Z'_c is also **clearly distinguished** from the meson molecule for $\mathcal{BR}(Z'_c \to \eta_c \rho)/\mathcal{BR}(Z'_c \to h_c \pi)$
- The type-II tetraquark for the Z_c does not provide a neat difference

CONCLUSIONS

- Searching for a clear discriminant between the possible compact tetraquark and meson molecule interpretations of the manifestly exotic $Z_c^{(\prime)}$ states we looked at their decays into the $\eta_c \rho$ final state.
- For the Z_c the predictions from tetraquark type-I and meson molecule are **different** with more than 95% C.L.
- For the Z'_c the predictions from both tetraquark type-I/II and meson molecule are different with more than 95% C.L.
- The same conclusions hold both with and without including a model for internal tetraquark dynamics
- The study of the $\eta_c \rho$ final state might provide an essential information to distinguish between a <u>compact tetraquark</u> and a loosely bound <u>meson molecule</u> structure
- Also, the molecular picture predicts both $Z_c^{(\prime)}$ to be similarly visible in the $J/\psi\pi$ channel. This seems at odds with experimental data

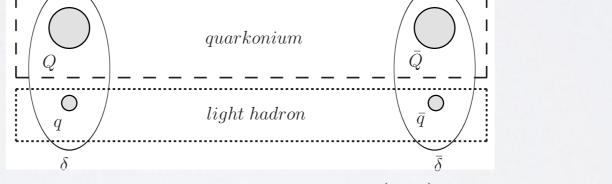
BACK UP

A POSSIBLE MODEL FOR INTERNAL 4-QUARK DYNAMICS

- In a recent paper by Brodsky, Hwang and Lebed a possible description of the internal dynamics of tetraquarks has been proposed [Brodsky et al. - PRL113 (2014) arXiv:1406.7281]
- In this model the fundamental constituents are the diquark and antidiquark which interact via a spinless Cornell potential: $4 \alpha_s$

$$V(r) = -\frac{4}{3}\frac{\alpha_s}{r} + br$$

• After the diquark and antidiquark are produced they keep moving away \longrightarrow at a distance r_Z the (classical turning point) the tetraquark decays into charmonium + light meson \longrightarrow the decay into a certain charmonium will be more likely the larger the overlap between its wave function and the $Q\bar{Q}$ wave function in the diquark-antidiquark pair:



- To compute the max. diquark-antidiquark distance one imposes: $V(r_Z) = M_Z 2m_{[cq]}$
- Once the distance is know one can say: $g_{car{c}}^2 \propto |\psi_{car{c}}(r_Z)|^2$

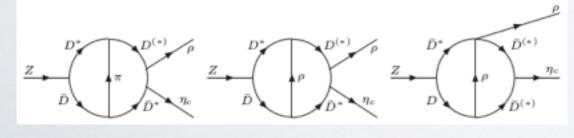
MORE ON NON-RELATIVISTIC POWER COUNTING

- The meson molecule are considered to be very near threshold ----> typical velocities are small ----> non-• relativistic approximation
- Main ingredients: •
 - I. Heavy meson velocities relevant in the production/decay of some heavy particle X is: $v_X \sim \sqrt{|M_X 2M_D|/M_D}$
 - 2. Meson loops count as: $v_X^5/(4\pi)^2$

 - 3. Substitute the heavy meson propagator with: $\frac{i}{p^2 m_D^2 + i\epsilon} \rightarrow \frac{1}{2m_D} \frac{i}{p^0 \frac{\mathbf{p}^2}{2m_D} m_D + i\epsilon}$ 4. The propagators then count as: $1/v_X^2$
 - 5. If derivative on the vertices are present we have an addition power of v_X or of the external momentum q
- In our case the <u>one-loop diagrams</u> count as:

$$\underbrace{z^{i}}_{P \to D^{*}} \underbrace{z^{i}}_{P-l} \underbrace{z^{i}}_{P-q} \underbrace{z^{i}}_{P-q} \underbrace{z^{i}}_{P \to Q^{*}} \underbrace{z^{i}}_{P-q} \underbrace{z^{i$$

The two-loop diagrams, instead, are:



$$\begin{aligned} \frac{v_Z^5}{(4\pi)^2} \frac{1}{v_Z^4} \frac{v_\eta^5}{(4\pi)^2} \frac{1}{v_\eta^4} \frac{1}{M_D^2 v_\eta^2} \frac{g^2 \beta g_V}{F_\pi^2 m_\rho} q^4 M_D \simeq 3 \times 10^{-5} \\ \frac{v_Z^5}{(4\pi)^2} \frac{1}{v_Z^4} \frac{v_\eta^5}{(4\pi)^2} \frac{1}{v_\eta^4} \frac{1}{M_D^2 v_\eta^2 + m_\rho^2} \frac{\lambda \beta g_V^3}{m_\rho} q^4 M_D \simeq 7 \times 10^{-6} \\ \frac{v_Z^5}{(4\pi)^2} \frac{1}{v_Z^4} \frac{v_\eta^5}{(4\pi)^2} \frac{1}{v_\eta^4} \frac{M_D^2}{M_D^2 v_\eta^2 + m_\rho^2} \lambda \beta g_V^3 \frac{q^2}{m_\rho} \simeq 2 \times 10^{-4} \end{aligned}$$
Conservative error on amplitudes is 15%