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INTRO AND MOTIVATION 
Exotic resonances

• The past 12 years witnessed the discovery of many 
unexpected charmonium-like resonances (and two 
bottomonium-like)

• Some of them are manifestly exotic 4-quark states:
1. 
2. 
3.  

• Many phenomenological models have been 
developed to describe the internal structure of 
these states (compact tetraquark, meson molecule, 
hybrid, hadro-charmonium,…)

• So far, no unified/accepted description of their 
nature has been found

• It would be extremely useful to have a clear 
discriminant between the different ideas…
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INTRO AND MOTIVATION 
The   Z->ηcρ  decay channel 

• So far, no clear analysis of the decay of the Zc  into ηcρhas been made

• We studied the previous processes by means of both the compact tetraquark 
(type-I and type-II paradigms) and loosely bound meson molecule models

• These channels might provide an essential hint to experimentally distinguish 
between the two models.
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THE FORMALISM 
Compact Tetraquark

• In the (compact) tetraquark model the four constituents are considered as being tightly bound to 
each other in a diquark-antidiquark configuration:

• The ground state tetraquarks are taken as eigenstates of the color-spin Hamiltonian:

• Two possibile ansatz on the       coefficients:
1. Tetraquark type-I: the couplings are similar to those appearing in ordinary particles. All the       

are extracted from known meson and baryon masses. 
2. Tetraquark type-II: the dominant color-spin interactions are those within the diquarks. All the 

couplings are neglected except for                   . 

• Depending on the chosen ansatz, the physical states will be different combinations of the Hamiltonian 
eigenstates

• Our interest is on the                and                with    
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• One relies on Heavy Quark Spin Symmetry to write the transition matrix elements to charmonia:

• In our case, the transition matrix elements for the decays of interest are:

• The strong couplings, g, are unknown a-priori.  

• To test the degree of model dependence of our estimate, we used two models:
1. No internal dynamics: the spatial dependence of the wave function is ignored and the couplings 

to different charmonia are universal. The differences are only of kinematical nature.
2. A model of internal dynamics included: the tetraquark is considered as a diquark-antidiquark 

pair interacting with a Cornell potential and moving away from each other. The couplings squared 
are proportional to the charmonia probability density at the maximum diquark-antidiquark 
separation.
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THE FORMALISM 
Compact Tetraquark
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• We computed the decay branching ratios by using both the type-I and type-II models and both 
with and without the internal dynamical description

• Computing the maximum diquark-antidiquark separation and knowing the charmonia probability 
densities, the ratios between the strong couplings can be estimated to be:

• The final results for the quantities of interest are:
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RESULTS 
Compact Tetraquark
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2
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2
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THE FORMALISM 
Meson Molecule

• In the molecular model the exotic states are seen as loosely bound states of two open-charm mesons.

• Predictions on decay rates can be made using the so-called Non Relativistic Effective Field Theory (NREFT). It 
describes the interaction between the charmonia, exotic, light and heavy mesons by means of Heavy Quark Effective 
Theory and Chiral Effective Theory [see e.g. Cleven et al. - PRD87 (2013) arXiv:1301.6461 [hep-ph]]

• The terms of the effective Lagrangian that we are going to need are:

• Key ingredient: Assuming the exotic mesons to be molecular bound states implies that they only couple to their 
open-charm constituents:

• Consequence: The decays of meson molecules into final states different from their constituents can only proceed 
via heavy meson loops
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• The one-loop diagrams we need to compute for our processes are:

• Since these molecules are assumed to be very close to threshold, the typical velocities of the heavy mesons, 
tuamadretuamadre        , are going to be small.  This allows a power counting procedure to estimate the relevance of 
higher order loop diagrams.  [see e.g. Cleven et al. - PRD87 (2013) arXiv:1301.6461 [hep-ph]]

• In our case, higher order contributions look like:

• We estimated a 15% theoretical uncertainty on the single amplitudes
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THE FORMALISM 
Meson Molecule
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1. First result:  

2. Second result: 

• If we assume the decay channels for the       to be saturated by the                                               
channels, then we can fit the couplings       from the experimental total widths:

• This allows to compute the following branching fractions:

• Both these decay widths should be of the same order of magnitude for the              and the 

• It seems in contrast with the experimental data: in the         channel no hint of     has been observed
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RESULTS 
Meson Molecule
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COMPARISON 
A neat difference

• A direct comparison of the likelihoods for the decays in        for the two models is:

• The tetraquark type-I (both dynamical and non-dynamical) for the     is clearly distinguished 
(>2σ) from the meson molecule for the                                                     ratio 

• The tetraquark type-I and II (both dynamical and non-dynamical) for the     is also clearly 
distinguished from the meson molecule for

•  The type-II tetraquark for the     does not provide a neat difference 
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CONCLUSIONS
• Searching for a clear discriminant between the possible compact tetraquark and meson 

molecule interpretations of the manifestly exotic       states we looked at their decays into 
the       final state.

• For the      the predictions from tetraquark type-I and meson molecule are different 
with more than 95% C.L.

• For the      the predictions from both tetraquark type-I/II and meson molecule are 
different with more than 95% C.L. 

• The same conclusions hold both with and without including a model for internal 
tetraquark dynamics

• The study of the        final state might provide an essential information to distinguish 
between a compact tetraquark and a loosely bound meson molecule structure

• Also, the molecular picture predicts both       to be similarly visible in the          channel. 
This seems at odds with experimental data
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A POSSIBLE MODEL FOR 
INTERNAL 4-QUARK DYNAMICS
• In a recent paper by Brodsky, Hwang and Lebed a possible description of the internal dynamics of tetraquarks has 

been proposed

• In this model the fundamental constituents are the diquark and antidiquark which interact via a spinless Cornell 
potential:

• After the diquark and antidiquark are produced they keep moving away            at a distance      the (classical turning 
point) the tetraquark decays into charmonium + light meson           the decay into a certain charmonium will be 
more likely the larger the overlap between its wave function and the       wave function in the diquark-antidiquark 
pair :

• To compute the max. diquark-antidiquark distance one imposes:

• Once the distance is know one can say: 
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MORE ON NON-RELATIVISTIC 
POWER COUNTING

• The meson molecule are considered to be very near threshold         typical velocities are small         non-
relativistic approximation

• Main ingredients:
1. Heavy meson velocities relevant in the production/decay of some heavy particle X is:
2. Meson loops count as:             
3. Substitute the heavy meson propagator with:                                     
4. The propagators then count as:
5. If derivative on the vertices are present we have an addition power of      or of the external momentum

• In our case the one-loop diagrams count as:

• The two-loop diagrams, instead, are:
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