

Study of $B \rightarrow \chi_{cJ}$ X at Belle (J=1,2)

Vishal Bhardwaj

University of South Carolina

(for Belle Collaboration)

18-23 May 2015

CHARM 2015: The 7th International Workshop on Charm Physics

Outline

- Measurement of $\mathcal{C}(B \rightarrow \chi_{cJ} X)$
- Differential branching fraction in bins of $p^*_{\chi_{cl}}$
- Exclusive reconstruction of χ_{cJ} in B decays
- Search for exotics in exclusive decays.

1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/

General purpose detector, built to test Standard Model mechanism for CP violation in B decays to charmonium ($B^0 \rightarrow [J/\Psi, \Psi', \chi_{c1}]K^0$). Contribution to charmonium (-like) states: $\eta_c(2S), X(3823), X(3872), Z(3895)^+, X(3915), Y(3940), Z(3930), X(3940), Y(4260), X(4350), X(4630), Y(4660), Z(4430)^+, Z_1(4050)^+, Z_2(4250)^+ ...3$

Naïve expectation: χ_{c2} yield similar in inclusive decay mode ?

Branching fraction as a function of $p^*_{\chi_{cJ}}$ (momentum, GeV/c) $p^*_{\chi_{cJ}}$ of B[±] $\rightarrow \chi_{c2}$ K[±]

 χ_{c2} appears to come from 3-4 body processes and there may be some exotic mechanism behind this decay.

Exotic mechanism means : some intermediate state (normal charmonium or charmonium-like state).

 $B \rightarrow$ (unknown) $K^{(*)}$

 χ_{c2} π, χ_{c2} ππ, χ_{c2} ? Multibody or some resonance ?

- One can further try to study difference in production mechanism of χ_{c2} and χ_{c1} in B decays.
- Worth revisiting inclusive J/Ψγ with 25 times more data.^{711 fb⁻¹}

Reconstruction

```
\begin{array}{l} \chi_{c1,c2} \mbox{ reconstructed in J/} \psi\gamma\mbox{ mode} \\ |dz| < 3.5\mbox{ cm} |dr| < 1.0\mbox{ cm} \\ R_2 < 0.5 \\ J/\Psi\mbox{ reconstruction} \\ 3.07(3.05) < \mbox{ M}_{\mu\mu}\mbox{ (M}_{ee\gamma}) < 3.13\mbox{ GeV/} c^2 \\ \gamma \mbox{ s added within 0.5\mbox{ mrad to J/} \Psi \rightarrow e^+e^-\mbox{ mode} \end{array}
```

 E_{γ} > 100 MeV π^{0} veto to reject γ from π^{0} ; new veto leads to simpler background.

 $M_{J/\psi \gamma}$ to identify χ_{c1} and χ_{c2} . Mass-constrained fit to J/ Ψ and χ_{cJ} candidates to improve resolution

Exclusive reconstruction

Combine with K and πs to reconstruct the decay mode of interest

$$M_{bc} = \sqrt{E_{beam}^2 - p_B^2}$$

$$\Delta E = E_B - E_{beam}$$
To identify the signal

$$M_{bc} > 5.27 \text{ GeV/c}^2$$

7

$J/\Psi\gamma$ inclusive spectrum

772 x 10⁶ N_{BB}

Measured $\mathscr{C}(B \rightarrow \chi_{cJ} X)$

	B→	χ _{c1} Χ	Β→χ _{c2} Χ	
	Yield	8 , 10 ⁻³	Yield	<i>8,</i> 10 ⁻³
Fit	51353±614		9651±446	
Continuum subtraction	50261±623	3.33±0.04	8928±458	0.98±0.05
Ψ' →χ _{cJ} γ feed down subtraction	-	3.03±0.04	-	0.70±0.05

 $\mathcal{E}(B \rightarrow \chi_{c1} X) = [3.03 \pm 0.04(stat.) \pm 0.21(syst.)] \times 10^{-3}$ $\mathcal{E}(B \rightarrow \chi_{c2} X) = [0.70 \pm 0.05(stat.) \pm 0.07(syst.)] \times 10^{-3}$

Major systematics : Efficiency, $\mathcal{B}_{secondary}$, $PDF_{for\chi_{c2}}$

 $\mathcal{E}(B \rightarrow \chi_{c1} X) = (2.60 \pm 0.17 \pm 0.23) \times 10^{-3}$ $\mathcal{E}(B \rightarrow \chi_{c2} X) = (0.97^{+0.16} + 0.13) \times 10^{-3}$

Belle, PRL 89, 011803(2002) (Belle previous result after scaling)

- > Nice agreement with previous Belle measurement.
- $\succ \mathcal{B}(B \rightarrow \chi_{c2}X)$ lower than expected.

Scaling refers to secondary branching ratios Equal production of B⁺ and B⁰ at Y(4S)

preliminary

*compare $\mathscr{B}(B \rightarrow \chi_{cJ} + anything)$ 9

- Possible χ_{c2} production mechanisms: a) Multi body *B* decays.
- b) Some intermediate exotic state.

Exclusive reconstruction

After χ_{c1} (χ_{c2}) is identified as 3.467 GeV < $M_{J/\psi\gamma}$ < 3.535 GeV (3.535 GeV < $M_{J/\psi\gamma}$ < 3.579 GeV), mass is constrained to improve the resolution; then χ_{c1} and χ_{c2} are combined with π and K, in the six following 3-body decays and 4-body decays :

 $B^{0} \rightarrow \chi_{c1} \pi^{-} K^{+}, B^{0} \rightarrow \chi_{c2} \pi^{-} K^{+}, B^{+} \rightarrow \chi_{c1} \pi^{+} K_{S}^{0}, B^{+} \rightarrow \chi_{c2} \pi^{+} K_{S}^{0}, B^{+} \rightarrow \chi_{c1} \pi^{0} K^{+} \text{ and } B^{+} \rightarrow \chi_{c2} \pi^{0} K^{+}$ $B^{+} \rightarrow \chi_{c1} \pi^{+} \pi^{-} K^{+}, B^{+} \rightarrow \chi_{c2} \pi^{+} \pi^{-} K^{+}, B^{0} \rightarrow \chi_{c1} \pi^{+} \pi^{-} K^{0}_{S}, B^{0} \rightarrow \chi_{c2} \pi^{+} \pi^{-} K^{0}_{S}, B^{0} \rightarrow \chi_{c1} \pi^{-} \pi^{0} K^{+} \text{ and } B^{0} \rightarrow \chi_{c2} \pi^{-} \pi^{0} K^{+}$

Background subtracted $M(\chi_{cJ}\pi)$ distribution

preliminary

- To search for narrow resonance and to study the production dynamics.
 - Fit ΔE in the bins of M($\chi_{cJ}\pi$) to get background subtracted distribution.
- All B→ χ_{c1} πK decay modes show similar M(χ_{c1} π) distribution.
 - B⁰→χ_{c1}π⁻K⁺ results consistent with the two charged Z states from a previous Belle study. PRD78, 072004 (2008)
- The M(χ_{c2}π) distribution appears to be different in B→χ_{c2}π⁺K decays.
 ➢ No narrow resonance is seen.

Background subtracted $M_{K\pi}$ distribution

preliminary

- Similarly, fit ΔE in the bins of $M_{K\pi}$ to get background subtracted distribution.
- K*(892) and higher resonance
 K*(1430) can be seen in the decay modes
- ✤ B→ $\chi_{c2}\pi K$ decay modes show clearly different behavior in comparison to B→ $\chi_{c1}\pi K$ decay modes

 - ➤ All previous studies of B→ χ_{c2} K* limited themselves to K*(892)⁰.
 - χ_{c2} seems to be produced more often with higher mass K*'s.

Fit ΔE in each bin

preliminary

No narrow resonance is seen with current statistics !

Reflection coming from $B \rightarrow K \pi \Psi' (\rightarrow \chi_{cJ} \gamma)$ decay mode Same effect also seen in MC background study

preliminary

Search for X(3872)
$$/\chi_{c1}'$$
 in $B^+ \rightarrow \chi_{c1} \pi^+ \pi^- K^+$

Recent measurements of the X(3872) definitively identify J^{PC} as 1^{++} . Interpretation :

- > Admixture of DD* molecule with $c\bar{c}$ state, if so then χ_{c1}
- > If χ_{c1}' is not X(3872), then one can expect to observe it decaying into $\chi_{c1}\pi^+\pi^-$

 $\chi_{c1}' \rightarrow \chi_{c1} \pi^+ \pi^-$ similar to $\Psi' \rightarrow J/\Psi \pi^+ \pi^-$ Mass prediction ~ 3920 MeV/c²

In both scenarios, X(3872) $\rightarrow \chi_{c1}\pi^+\pi^-$ Not forbidden !

Observation of signal will help in understanding cc̄ and exotic state [mainly X(3872)]

No signal with current data set

Mode	Yield ^{U.L.}	ε(%)	<i>8</i> ^{∪.L.} (x 10 ⁻⁶)	
X(3872)	< 2.6	5.6	<1.4	
χ_1'	< 30.3	8.9	<1.0	

PRD 69, 074005 (2004) PRD 77, 094013(2008)

X(3872) as admixture state of $D\bar{D}^*$ molecule and χ_{c1} more plausible^{*}

$M_{\pi(\pi K)}$ distribution for 4 body decays

 χ_{c2} production is different $% \chi_{c2}$ in comparison to χ_{c1}

Prefers to decay with higher K* !

preliminary

Branching fraction measurements

Decay	Yield (Y)	$\mathcal{S}(\sigma)$	$\epsilon(\%)$	${\cal B}~(10^{-4})$	$\mathcal{R}_{\mathcal{B}}$	
$B^0 \rightarrow j$	$\chi_{cJ}\pi^-K^+$				0.14 ± 0.02	
χ_{c1}	2774 ± 66	66.7	18.0	$4.93 \pm 0.12 \pm 0.27$	-	
χ_{c2}	206 ± 25	8.7	16.3	$0.72 \pm 0.09 \pm 0.05$		$ = \underline{\mathcal{B}} (B \to \chi_{c2} X) $
$B^+ \rightarrow$	$\chi_{cJ}\pi^+K^0$				0.20 ± 0.04	$\mathcal{R}_{\mathcal{B}} = \frac{1}{\mathcal{B}(B \to \chi_{c1}X)}$
χ_{c1}	770 ± 35	33.7	8.7	$5.68 \pm 0.26 \pm 0.31$		
χ_{c2}	76.4 ± 14.7	4.6	7.5	$1.16 \pm 0.22 \pm 0.12$		
$B^+ \rightarrow$	$\chi_{cJ}\pi^0 K^+$				< 0.21	Increases
χ_{c1}	803 ± 70	15.6	8.0	$3.24 \pm 0.28 \pm 0.19$		
χ_{c2}	17.5 ± 28.4	0.4	7.0	< 0.62		
$B^+ \rightarrow$	$\chi_{cJ}\pi^+\pi^-K^+$				0.36 ± 0.05	
χ_{c1}	1502 ± 70	19.2	13.0	$3.72 \pm 0.17 \pm 0.24$	4) 	
χ_{c2}	269 ± 34	8.4	11.5	$1.32 \pm 0.17 \pm 0.08$		•
$B^0 \rightarrow j$	$\chi_{cJ}\pi^+\pi^-K^0$				< 0.61	
χ_{c1}	268 ± 30	7.1	5.5	$3.11 \pm 0.34 \pm 0.31$		
χ_{c2}	37.8 ± 14.2	1.8	4.8	< 1.70		
$B^0 \rightarrow j$	$\chi_{cJ}\pi^0\pi^-K^+$				< 0.25	
χ_{c1}	545 ± 81	6.5	5.0	$3.51 \pm 0.52 \pm 0.24$		
χ_{c2}	-76.7 ± 42.0	-	4.3	< 0.74		

Using these measurements⁺, we are able to saturate the inclusive \mathscr{C} measurement by (57±5)% and (34±5)% for $B \rightarrow \chi_{c1} X$ and $B \rightarrow \chi_{c2} X$, respectively.

⁺Assume $\mathscr{C}(B^+ \rightarrow \chi_{cJ} nX) = \mathscr{C}(B^0 \rightarrow \chi_{cJ} nX),$

Summary

 $B \rightarrow \chi_{c2} K$ is barely seen due to suppression of tensor in B decay. Able to saturate inclusive $\mathscr{B}(B \rightarrow \chi_{c1} X)$ by (57±5)% and $\mathscr{B}(B \rightarrow \chi_{c2} X)$ by (34±5)%

Thank you