Lattice perspective on leptonic and semileptonic decays

Elvira Gámiz

Universidad de Granada / CAFPE

• The 7th International Workshop on Charm Physics, Wayne State University, 18-22 May 2015 •

Contents

- 1. Introduction
- 2. Leptonic *D* decays.
- **3**. Semileptonic *D* decays.
- **4.** $|V_{cd}|$, $|V_{cs}|$: CKM unitarity in the second row.
- 5. Conclusions and outlook.

1. Introduction

Goals in the study of leptonic and semileptonic D decays

* Precise determination of CKM matrix elements ($|V_{cd,cs}|$)

 $\mathsf{Experiment} = (\mathsf{known\,factors}) \times (V_{CKM}) \times (\underline{\mathsf{hadronic\,matrix\,elements}})$

lattice QCD

- * Check Standard Model
 - ** Consistency of different determinations of CKM matrix elements
 - ** Test unitarity of CKM matrix.
 - ** Comparison of shape of form factors with experimental data.

1. Introduction

Goals in the study of leptonic and semileptonic D decays

* Precise determination of CKM matrix elements $(|V_{cd,cs}|)$

 $\mathsf{Experiment} = (\mathsf{known\,factors}) \times (V_{CKM}) \times (\underline{\mathsf{hadronic\,matrix\,elements}})$

lattice QCD

- * Check Standard Model
 - ** Consistency of different determinations of CKM matrix elements
 - ****** Test unitarity of CKM matrix.
 - ** Comparison of shape of form factors with experimental data.
- * Validate lattice QCD techniques to use in B physics

1. Introduction

Goals in the study of leptonic and semileptonic D decays

* Precise determination of CKM matrix elements $(|V_{cd,cs}|)$

 $\mathsf{Experiment} = (\mathsf{known\,factors}) \times (V_{CKM}) \times (\mathsf{hadronic\,matrix\,elements})$

lattice QCD

- * Check Standard Model
 - ****** Consistency of different determinations of CKM matrix elements
 - ****** Test unitarity of CKM matrix.
 - ** Comparison of shape of form factors with experimental data.
- * Validate lattice QCD techniques to use in B physics
- * Constraining possible NP models

Fajfer, Nisandzic and Rojec, 1502.07748, Barranco et al., 1303.3896, 1404.0454

** Correlated signals of NP in leptonic and semileptonic decays.

1. Introduction: Lattice QCD

Lattice QCD: Numerical evaluation of QCD path integral (rely only on first principles).

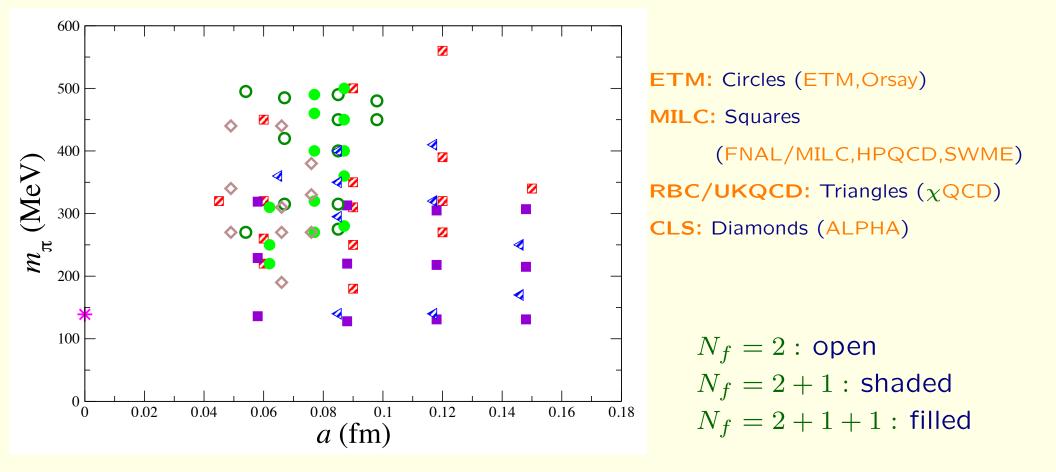
•

1. Introduction: Lattice QCD

Lattice QCD: Numerical evaluation of QCD path integral (rely only on first principles).

Goal: Precise calculations ($\leq 5\%$ error)

- * Control over systematic errors:
 - ** Unquenched calculations: $N_f = 2$, $N_f = 2 + 1$ or $N_f = 2 + 1 + 1$.


** Discretization: improved actions + simulations at several a's \rightarrow continuum limit.

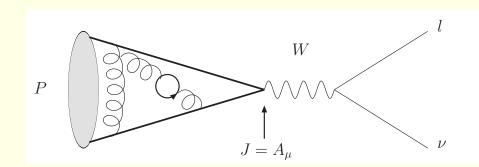
- ** Chiral extrapolation: simulate at several m_{π} and extrapolate to $m_{\pi}^{\rm phys}$ using ChPT.
- ** Renormalization: non-perturbative, perturbative.
- ** Tuning lattice scale and masses
- ** Finite volume, isospin effects, electromagnetic effects, ...

Systematically improvable

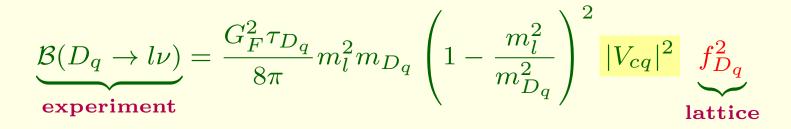
1. Introduction: Overview of simulations parameters

Several $N_f = 2 + 1$ and even $N_f = 2 + 1 + 1$, and physical quark masses.

plot by A. El-Khadra,


First results with simulations with physical light quark masses (BMW, PACS-CS, MILC, RBC/UKQCD, ETMC)

1. Introduction: Averaging lattice QCD results


- # Flavor Lattice Averaging Group (FLAG-2): 28 people representing all big lattice collaborations.
 - Advisory Board: S. Aoki, C. Bernard, C. Sachrajda
 - Editorial Board: G. Colangelo, H. Leutwyler, T. Vladikas, U. Wenger
 - Working Groups:
 - u, d and s quark masses: L. Lellouch, T. Blum, V. Lubicz
 - $|V_{us}|, |V_{ud}|$: A. Jüttner, T. Kaneko, S. Simula
 - LEC's: S. Dürr, H. Fukaya, S. Necco
 - B_K : H. Wittig, J. Laiho, S. Sharpe
 - α_s : R. Sommer, R. Horsley, T. Onogi
 - $f_{B_{(s)}}, f_{D_{(s)}}, \hat{B}_B$: A. El Khadra, Y. Aoki, M. Della Morte
 - B, D semileptonic and radiative decays: R. Van de Water, E.
 Lunghi, C. Pena

http://itpwiki.unibe.ch/flag/

arXiv:1310.8555 (last version: August 2014).

 $\begin{array}{l} \mathcal{B}(D_q \rightarrow l\nu) \ \sim 4.5 - 3.5\% \\ \\ \tau_{D_q} \ < 1.5\% \\ \\ f_{D_q}^2 \ \sim 1\% \\ \\ others \ < 0.4\% \end{array}$

(with q = d, s and $D_q = D^+, D_s$)

Simple matrix element $\langle 0|\bar{c}\gamma_{\mu}\gamma_{5}q|D_{q}(p)\rangle = if_{D_{q}}p_{\mu} \rightarrow$ precise calculations

or, if using the same action for light and charm valence quarks, $(m_c + m_q)\langle 0|\bar{c}\gamma_5 q|D_{(s)}(p=0)\rangle = f_{D_q}M_{D_q}^2$ (no need of renormalization) Reduction of error: use relativistic (improved) formulations for c.

2. Leptonic D decays: New results (> 2013)

 $\# N_f = 2$:

* TWQCD, 1404.3648: $a \sim 0.06 fm$ and $m_{\pi} \leq 260 \text{ MeV}$

 $f_D = 202.3(3.4) \,\mathrm{MeV}$ $f_{D_s} = 258.7(3.1) \,\mathrm{MeV}$ $f_{D_s}/f_D = 1.279(26)$

2. Leptonic D decays: New results (> 2013)

 $\# N_f = 2$:

* TWQCD, 1404.3648: $a \sim 0.06 fm$ and $m_{\pi} \leq 260 \text{ MeV}$

 $f_D = 202.3(3.4) \,\mathrm{MeV}$ $f_{D_s} = 258.7(3.1) \,\mathrm{MeV}$ $f_{D_s}/f_D = 1.279(26)$

 $\# N_f = 2 + 1$:

* χ QCD, 1410.3343: Different set of configurations (RBC/UKQCD) and valence quark formulation (overlap) than previous calculations: two lattice spacings.

$$f_{D_s} = 254(2)(4) \,\mathrm{MeV}$$

2. Leptonic D decays: New results (> 2013)

 $\# N_f = 2 + 1 + 1$:

* FNAL/MILC, 1407.3772: highly improved action, MILC configurations with phys. quark masses and small lattice spacing (4 a's, smallest $a \approx 0.06$ fm)

2. Leptonic *D* **decays:** New results (> 2013) # $N_f = 2 + 1 + 1$:

* FNAL/MILC, 1407.3772: highly improved action, MILC configurations with phys. quark masses and small lattice spacing (4 a's, smallest $a \approx 0.06$ fm)

$$f_{D^+} = 212.6^{+1.1}_{-1.2} \,\mathrm{MeV}$$
 $f_{D_s} = 249.0^{+1.3}_{-1.5} \,\mathrm{MeV}$ $f_{D_s}/f_{D^+} = 1.1712^{+31}_{-34}$

** \sim 0.5% error dominated by continuum extrapolation error

** They calculate the difference between f_{D^+} and the isospin limit value, f_D :

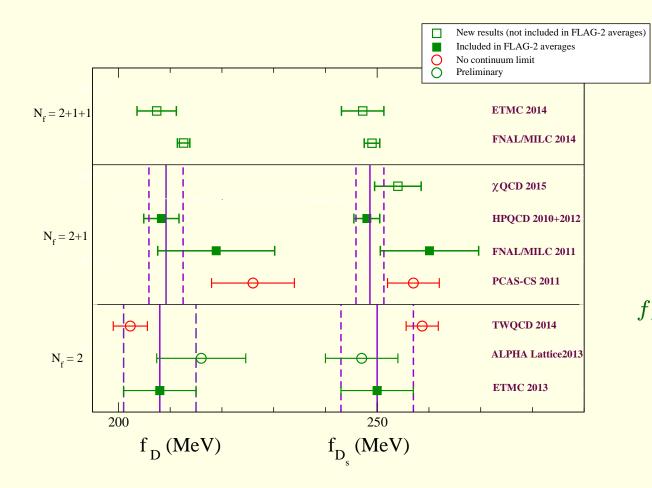
$$f_{D^+} - f_D = 0.47^{+11}_{-5} \,\mathrm{MeV}$$

2. Leptonic *D* **decays:** New results (> 2013) # $N_f = 2 + 1 + 1$:

* FNAL/MILC, 1407.3772: highly improved action, MILC configurations with phys. quark masses and small lattice spacing (4 a's, smallest $a \approx 0.06$ fm)

$$f_{D^+} = 212.6^{+1.1}_{-1.2} \,\mathrm{MeV}$$
 $f_{D_s} = 249.0^{+1.3}_{-1.5} \,\mathrm{MeV}$ $f_{D_s}/f_{D^+} = 1.1712^{+31}_{-34}$

** \sim 0.5% error dominated by continuum extrapolation error


** They calculate the difference between f_{D^+} and the isospin limit value, f_D :

$$f_{D^+} - f_D = 0.47^{+11}_{-5} \,\mathrm{MeV}$$

* ETMC, 1411.7908: ETMC configurations with 3 a's (smallest $a \approx 0.06$ fm), $m_{\pi} \geq 210$ MeV

 $f_D = 207.2(3.8) \,\mathrm{MeV}$ $f_{D_s} = 247.2(4.1) \,\mathrm{MeV}$ $f_{D_s}/f_D = 1.192(22)$

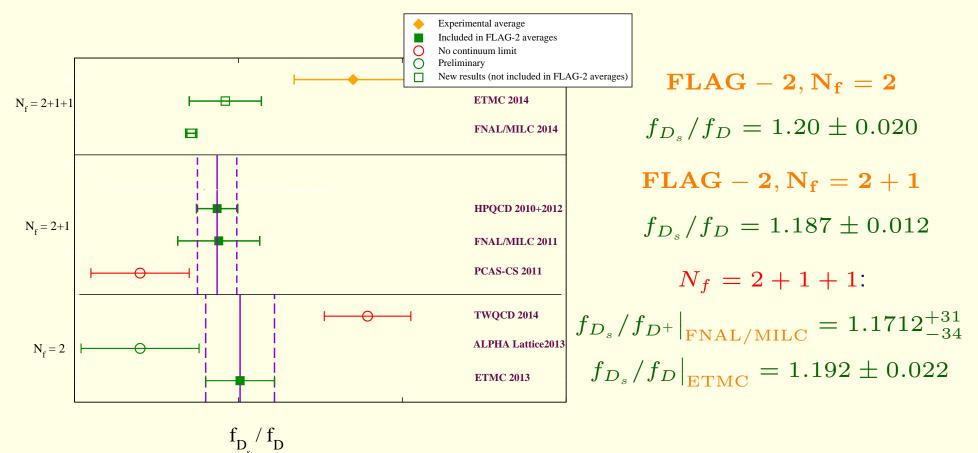
** Error dominated by stat.+ chiral extrapolation error

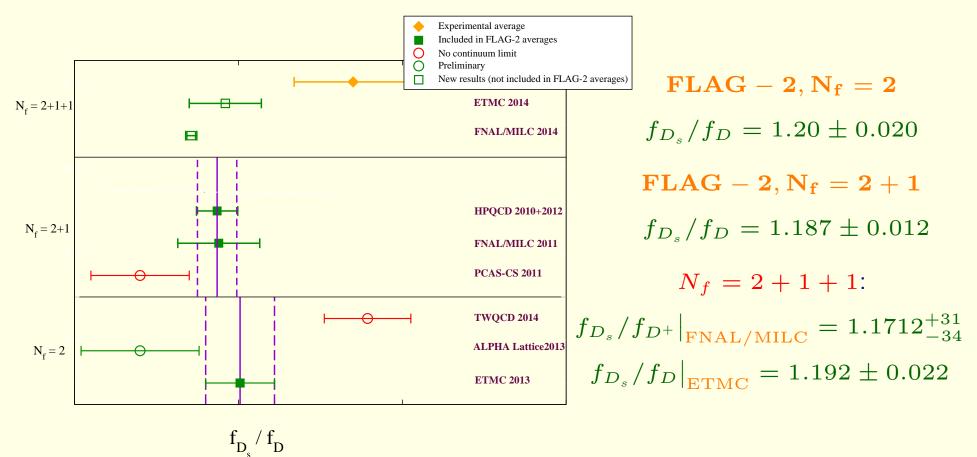
$$FLAG - 2, N_{f} = 2$$

$$f_{D} = (208 \pm 7) MeV$$

$$f_{D_{s}} = (250 \pm 7) MeV$$

$$FLAG - 2, N_{f} = 2 + 1$$


$$D = (209.2 \pm 3.3) MeV$$


$$f_{D_{s}} = (248.6 \pm 2.7) MeV$$

FNAL/MILC $N_f = 2 + 1 + 1$

f

$$f_{D^+} = 212.6^{+1.1}_{-1.2} \,\mathrm{MeV} \qquad f_{D_s} = 249.0^{+1.3}_{-1.5} \,\mathrm{MeV}$$

Experiment: Average from **G.** Rong, CKM2014, 1411.3868 and unitarity values $|V_{cs}| = 0.97343 \pm 0.00015$, $|V_{cd}| = 0.22522 \pm 0.00061$ from PDG2014:

$$\left. f_{D_s} / f_{D^+} \right|_{\text{exp.}} = 1.270 \pm 0.036$$

2.7 σ larger than $N_f = 2 + 1 + 1$ FNAL/MILC result and 2.3 σ larger than $N_f = 2 + 1$ FLAG-2 average

2. Leptonic *D* decays: $N_f = 2 + 1$ calculations in progress

* **RBC/UKCD**, 1502.00845: plans to calculate several charm physics observables (and extrapolate to am_b).

2. Leptonic *D* decays: $N_f = 2 + 1$ calculations in progress

- * **RBC/UKCD**, 1502.00845: plans to calculate several charm physics observables (and extrapolate to am_b).
- * FNAL/MILC, 1501.01991: Fermilab c + asqtad (relativistic) s, u = d calculation with 5 a's and high statistics

** Estimated total error: $f_D \sim 2.1\%$, $f_{D_s} \sim 1.8\%$, $f_{D_s}/f_D \sim 1\%$

(larger error is heavy-quark mass tunning for $f_{D_{(s)}}$)

** Errors reduced by a factor of ~ 2.5 , now comparable to HPQCD

** Use same action for b and $c \rightarrow$ precise calculations of ratios f_B/f_D and f_{B_s}/f_{D_s} (many systematics cancel)

2. Leptonic decays: Charm-light and charm-charm vector

mesons

$$\langle 0|V_i|M^*(\vec{0},\lambda)\rangle = f_{M*}m_{M*}e_i^{\lambda}$$

where e_i^{λ} is the polarization vector of the meson M^* .

2. Leptonic decays: Charm-light and charm-charm vector mesons

$$\langle 0|V_i|M^*(\vec{0},\lambda)\rangle = f_{M*}m_{M*}e_i^{\lambda}$$

where e_i^{λ} is the polarization vector of the meson M^* .

Predictions for f_{D^*} and $f_{D^*_s}$ (using relativistic action for c)

* $N_f = 2$ on **ETM** configurations

 $f_{D_s^*}/f_{D_s} = 1.26(3)$ $f_{D^*}/f_D = 1.208(27)$

Becirevic et al, 1201.4039 Becirevic et al, 1407.1019

* $N_f = 2 + 1$ calculation by **HPQCD**, 1312.5264

$$f_{D_s^*}/f_{D_s} = 1.10(2) \rightarrow f_{D_s^*} = 274(6) \text{ MeV}$$

2. Leptonic decays: Charm-light and charm-charm vector mesons

$$\langle 0|V_i|M^*(\vec{0},\lambda)\rangle = f_{M*}m_{M*}e_i^{\lambda}$$

where e_i^{λ} is the polarization vector of the meson M^* .

Predictions for f_{D^*} and $f_{D^*_s}$ (using relativistic action for c)

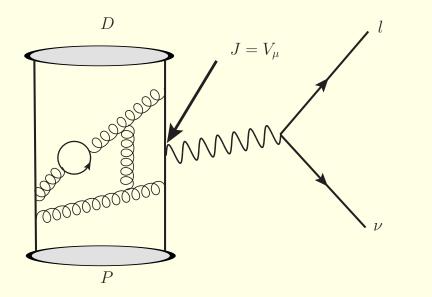
* $N_f = 2$ on **ETM** configurations

 $f_{D_s^*}/f_{D_s} = 1.26(3)$ $f_{D^*}/f_D = 1.208(27)$

Becirevic et al, 1201.4039 Becirevic et al, 1407.1019

* $N_f = 2 + 1$ calculation by **HPQCD**, 1312.5264

$$f_{D_s^*}/f_{D_s} = 1.10(2) \rightarrow f_{D_s^*} = 274(6) \text{ MeV}$$


Calculations of $f_{J/\Psi}$ (experimental value $f_{J/\Psi}^{exp} = 407(5)$ MeV)

* Calculation on $N_f = 2$ ETM configurations by Becirevic and Sanfilippo, 1206.1445 :

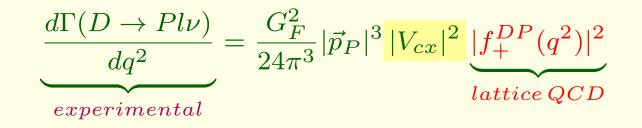
$$f_{J/\Psi} = 414 \pm 8^{+9}_{-0} \text{ MeV}$$

* $N_f = 2 + 1$ calculation by HPQCD, 1208.2855: $f_{J/\Psi} = 405(6)(2)$ MeV

3. Semileptonic *D* decays

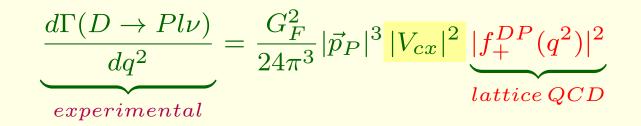
$$P = \pi, K$$

x = d, s daughter light quark $q = (p_D - p_P)$ (momentum of lepton pair)


$$\frac{d\Gamma(D \to P l \nu)}{dq^2} = \frac{G_F^2}{24\pi^3} \frac{(q^2 - m_l^2)^2 \sqrt{E_P^2 - m_P^2}}{q^4 m_D^2} |V_{cx}|^2 \\ \left[\left(1 + \frac{m_l^2}{2q^2} \right) m_D^2 (E_P^2 - m_P^2) \underbrace{|f_+(q^2)|^2}_{lattice QCD} + \frac{3m_l^2}{8q^2} (m_D^2 - m_P^2)^2 \underbrace{|f_0(q^2)|^2}_{lattice QCD} \right]$$

With vector and scalar form factors $f_+(q^2)$ and $f_0(q^2)$ defined by

$$\langle P(p_P)|V_{\mu}|D(p_D)\rangle = \left(p_{P\mu} + p_{D\mu} - \frac{m_D^2 - m_P^2}{q^2}q_{\mu}\right)f_+(q^2) + \frac{m_D^2 - m_P^2}{q^2}q_{\mu}f_0(q^2)$$


3. Semileptonic *D* decays

For $l = e, \mu$ the contribution from $f_0(q^2)$ can be neglected and

3. Semileptonic *D* decays

For $l = e, \mu$ the contribution from $f_0(q^2)$ can be neglected and

The errors on those studies are still dominated by errors in the calculation of the relevant form factors.

$$\frac{d}{dq^2} \Gamma(D \to K(\pi) l\nu) \propto |V_{cs(cd)}|^2 |f_+^{D \to K(\pi)}(q^2)|^2$$

1.1(2.8)% error 5(8.7)% error

Two main strategies to eliminate the need of renormalize the lattice currents

Double ratios of 3-point correlators Becirevic, Haas, Mescia 0710.1741 (get the form factors from linear combinations of the double ratios)

Two main strategies to eliminate the need of renormalize the lattice currents

- # Double ratios of 3-point correlators Becirevic, Haas, Mescia 0710.1741 (get the form factors from linear combinations of the double ratios)
- # Use the Ward identity ($S = \bar{x}c$) HPQCD, Phys.Rev.D82:114506(2010)

$$q^{\mu} \langle P | V_{\mu}^{cont.} | D \rangle = (m_c - m_x) \langle P | S^{cont} | D \rangle$$

that relates matrix elements of vector and scalar currents. In the lattice

$$q^{\mu} \langle P | V_{\mu}^{lat.} | D \rangle Z = (m_c - m_x) \langle P | S^{lat.} | D \rangle$$

Two main strategies to eliminate the need of renormalize the lattice currents

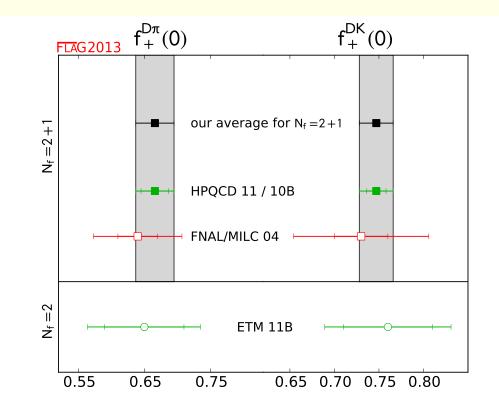
- # Double ratios of 3-point correlators Becirevic, Haas, Mescia 0710.1741 (get the form factors from linear combinations of the double ratios)
- # Use the Ward identity ($S = \bar{x}c$) HPQCD, Phys.Rev.D82:114506(2010)

$$q^{\mu} \langle P | V_{\mu}^{cont.} | D \rangle = (m_c - m_x) \langle P | S^{cont} | D \rangle$$

that relates matrix elements of vector and scalar currents. In the lattice

$$q^{\mu} \langle P | V_{\mu}^{lat.} | D \rangle Z = (m_c - m_x) \langle P | S^{lat.} | D \rangle$$

 \rightarrow replace the V_{μ} with an S current in the 3-point function


$$f_0^{DP}(q^2) = \frac{m_c - m_x}{m_D^2 - m_P^2} \langle P|S|D \rangle_{q^2} \Longrightarrow \int_{+}^{PD} f_0(0) = f_0^{PD}(0) = \frac{m_c - m_x}{m_D^2 - m_P^2} \langle S \rangle_{q^2=0}$$

Important reduction of errors in the lattice determination of the form factors $f_+^{D\pi(K)}(0)$ by the HPQCD Collaboration, Phys.Rev.D82:114506(2010), due mainly to

* Use a relativistic action, HISQ, to describe light and charm quarks.

* Absolutely normalized current

HPQCD, 1008.4562, 1109.1501 $f_{+}^{D\pi}(0) = 0.666(29)$ $f_{+}^{DK}(0) = 0.747(19)$

Work in progress: $N_f = 2 + 1 + 1$ FNAL/MILC, 1411.1651 with physical quark masses.

Determination of $|V_{cs}|$ from $D \rightarrow K l \nu$ at non-zero momentum transfer HPQCD, 1305.1462


Calculation of $f_0^{DK}(q^2)$ (using Ward identity method) and $f_+^{DK}(q^2)$ (using its definition)

* Global fit to available experimental data (using z-expansion) \rightarrow extraction of $|V_{cs}|$ using all experimental q^2 bins.

Determination of $|V_{cs}|$ from $D \rightarrow K l \nu$ at non-zero momentum transfer HPQCD, 1305.1462

Calculation of $f_0^{DK}(q^2)$ (using Ward identity method) and $f_+^{DK}(q^2)$ (using its definition)

* Global fit to available experimental data (using z-expansion) \rightarrow extraction of $|V_{cs}|$ using all experimental q^2 bins.

$$|V_{cs}| = 0.963(5)_{exp}(14)_{lat}$$

Unitarity value PDG2014: $|V_{cs}| = 0.97343 \pm 0.00015$

Work in progress $(N_f = 2)$:

* ETM: Preliminary results in PoSLattice 2013, 391 (2013)

Work in progress $(N_f = 2 + 1)$:

* FNAL/MILC: Preliminary results in 1211.4964. Fermilab charm and staggered light, four lattice spacings, $m_{\pi} \geq 180$ MeV.

** Same actions used for $B \to \pi l \nu$ form factors calculation \to can calculate accurately $\left| \frac{f_{+}^{B\pi}}{f_{+}^{D\pi}} \right| \to \text{alternative calculation of } |V_{ub}| \text{ (see A. Oyanguren talk)}$

Work in progress $(N_f = 2 + 1 + 1)$:

* ETM, Lattice2014: Twisted mass, three lattice spacings, $m_{\pi} \geq 210~{
m MeV}$

* FNAL/MILC: relativistic action for c, physical quark masses, four lattice spacings.

3. Semileptonic D decays: beyond gold-platted quantities

Alternative determination of $|V_{cs}|$: $D_s \rightarrow \phi l \nu$ HPQCD, 1311.6669

More challenging: five form factors (vector meson), unstable meson ...

* Treat ϕ as stable and estimate the error.

3. Semileptonic D decays: beyond gold-platted quantities

Alternative determination of $|V_{cs}|$: $D_s \rightarrow \phi l \nu$ HPQCD, 1311.6669

More challenging: five form factors (vector meson), unstable meson ...

* Treat ϕ as stable and estimate the error.

* q^2 and angular distributions agree with **BaBar** data.

 $|V_{cs}| = 1.017(44)_{lat}(35)_{exp}(30)_{K\bar{K}}$

- * Expected reduction of exper. errors at $BESIII \rightarrow$ need improvement of theor. calculation (lattice error dominated by statistical error)
- * Are the heavy meson form factors at a given q^2 insensitive to the spectator m_q ? (compare $D_s \to \phi$ and $D \to K^*$).

3. Semileptonic *D* decays: beyond gold-platted quantities

Alternative determination of $|V_{cs}|$: $D_s \rightarrow \phi l \nu$ HPQCD, 1311.6669

More challenging: five form factors (vector meson), unstable meson ...

* Treat ϕ as stable and estimate the error.

* q^2 and angular distributions agree with BaBar data.

 $|V_{cs}| = 1.017(44)_{lat}(35)_{exp}(30)_{K\bar{K}}$

- * Expected reduction of exper. errors at $BESIII \rightarrow$ need improvement of theor. calculation (lattice error dominated by statistical error)
- * Are the heavy meson form factors at a given q^2 insensitive to the spectator m_q ? (compare $D_s \to \phi$ and $D \to K^*$).

Exploratory $N_f = 2 + 1$ calculation of $D \rightarrow \eta^{(')} l \nu$ G. Bali et al, 1406.5449

* Calculate $\eta - \eta'$ mixing angles and disconnected contributions

3. Semileptonic D decays: correlations with leptonic

decays

Cancel CKM matrix elements building ratios of semileptonic and leptonic decay widths

* $N_f = 2 + 1$ HPQCD calculation

$$\left[\frac{f_{\pm}^{D\pi}(0)}{f_D}\right]_{lat} = (3.20 \pm 0.15) \,\mathrm{GeV}^{-1}$$

* Using HPQCD $f_{+}^{D\pi}(0)$ and $N_{f}=2+1+1$ FNAL/MILC $f_{D^{+}}$

$$\left[\frac{f_{\pm}^{D\pi}(0)}{f_{D^{\pm}}}\right]_{lat} = (3.13 \pm 0.14) \,\mathrm{GeV^{-1}}$$

3. Semileptonic D decays: correlations with leptonic

decays

Cancel CKM matrix elements building ratios of semileptonic and leptonic decay widths

* $N_f = 2 + 1$ HPQCD calculation

$$\left[\frac{f_{\pm}^{D\pi}(0)}{f_D}\right]_{lat} = (3.20 \pm 0.15) \,\mathrm{GeV^{-1}}$$

* Using HPQCD $f_{+}^{D\pi}(0)$ and $N_{f}=2+1+1$ FNAL/MILC $f_{D^{+}}$

$$\left[\frac{f_{\pm}^{D\pi}(0)}{f_{D^{\pm}}}\right]_{lat} = (3.13 \pm 0.14) \,\mathrm{GeV^{-1}}$$

 $\left\lfloor \frac{f_{\pm}^{D\pi}(0)}{f_{D^{\pm}}} \right\rfloor_{exp} = (3.11 \pm 0.08) \,\text{GeV}^{-1} \qquad \text{G. Rong et al}, \, 1410.3232$

Good agreement experiment-theory

3. Semileptonic D decays: correlations with leptonic

decays

Cancel CKM matrix elements building ratios of semileptonic and leptonic decay widths

* $N_f = 2 + 1$ HPQCD calculation

$$\left[\frac{f_{\pm}^{D\pi}(0)}{f_D}\right]_{lat} = (3.20 \pm 0.15) \,\mathrm{GeV^{-1}}$$

* Using HPQCD $f_{+}^{D\pi}(0)$ and $N_{f}=2+1+1$ FNAL/MILC $f_{D^{+}}$

$$\left[\frac{f_{\pm}^{D\pi}(0)}{f_{D^{\pm}}}\right]_{lat} = (3.13 \pm 0.14) \,\mathrm{GeV^{-1}}$$

 $\left\lfloor \frac{f_{\pm}^{D\pi}(0)}{f_{D^{\pm}}} \right\rfloor_{exp} = (3.11 \pm 0.08) \,\text{GeV}^{-1} \qquad \text{G. Rong et al}, \, 1410.3232$

Good agreement experiment-theory

Several $N_f = 2 + 1$ and $N_f = 2 + 1 + 1$ calculations in progress.

4. $|V_{cd}|$, $|V_{cs}|$: CKM unitarity in the second row # Extracting CKM matrix elements $|V_{cd(cs)}|$ from leptonic decays Experimental averages: BaBar, Belle, CLEO-c, BESIII $f_{D_s}|V_{cs}| = (252.0 \pm 3.7 \pm 1.8) \text{ MeV}$ $f_{D^+}|V_{cd}| = (45.92 \pm 1.04 \pm 0.15) \text{ MeV}$ Y. Fang et al, 1409.8049 G. Rong et al, 1410.3232

Decay constant errors $\sim 0.5\% \rightarrow$ need EM effects when combining with experiment

4. $|V_{cd}|$, $|V_{cs}|$: CKM unitarity in the second row # Extracting CKM matrix elements $|V_{cd(cs)}|$ from leptonic decays Experimental averages: BaBar, Belle, CLEO-c, BESIII $f_{D_s}|V_{cs}| = (252.0 \pm 3.7 \pm 1.8) \text{ MeV}$ $f_{D^+}|V_{cd}| = (45.92 \pm 1.04 \pm 0.15) \text{ MeV}$ Y. Fang et al, 1409.8049 G. Rong et al, 1410.3232 Decay constant errors ~ 0.5% \rightarrow need EM effects when combining with experiment Following FNAL/MILC, 1407.3772

- * Universal long-distance EM: $\downarrow \sim 2.5\%$ Kinoshita, PRL2, 1959
- * Universal short-distance EM: $\uparrow \sim 1.8\%$ Sirlin, NPB196, 1982
- * Hadronic structure dependent EM effects: rough estimate $\sim 0.6\%$.

(phenomelogical estimates available only in the K sector)

4. $|V_{cd}|$, $|V_{cs}|$: CKM unitarity in the second row # Extracting CKM matrix elements $|V_{cd(cs)}|$ from leptonic decays Experimental averages: BaBar, Belle, CLEO-c, BESIII $f_{D_s}|V_{cs}| = (252.0 \pm 3.7 \pm 1.8) \text{ MeV}$ $f_{D^+}|V_{cd}| = (45.92 \pm 1.04 \pm 0.15) \text{ MeV}$ Y. Fang et al, 1409.8049 G. Rong et al, 1410.3232 Decay constant errors ~ 0.5% \rightarrow need EM effects when combining with experiment

Following FNAL/MILC, 1407.3772

- * Universal long-distance EM: $\downarrow \sim 2.5\%$ Kinoshita, PRL2, 1959
- * Universal short-distance EM: $\uparrow \sim 1.8\%$ Sirlin, NPB196, 1982
- * Hadronic structure dependent EM effects: rough estimate $\sim 0.6\%$.

(phenomelogical estimates available only in the K sector)

 $|V_{cd}| = 0.220 \pm 0.004_{lat} \pm 0.005_{exp} \pm 0.001_{EM}$

 $|V_{cs}| = 1.017 \pm 0.011_{lat} \pm 0.017_{exp} \pm 0.006_{EM}$ FLAG-2 $N_f = 2 + 1$

4. $|V_{cd}|$, $|V_{cs}|$: CKM unitarity in the second row # Extracting CKM matrix elements $|V_{cd(cs)}|$ from leptonic decays Experimental averages: BaBar, Belle, CLEO-c, BESIII $f_{D_s}|V_{cs}| = (252.0 \pm 3.7 \pm 1.8) \text{ MeV}$ $f_{D^+}|V_{cd}| = (45.92 \pm 1.04 \pm 0.15) \text{ MeV}$ Y. Fang et al, 1409.8049 G. Rong et al, 1410.3232 Decay constant errors ~ 0.5% \rightarrow need EM effects when combining with experiment

Following FNAL/MILC, 1407.3772

- * Universal long-distance EM: $\downarrow \sim 2.5\%$ Kinoshita, PRL2, 1959
- * Universal short-distance EM: $\uparrow \sim 1.8\%$ Sirlin, NPB196, 1982
- * Hadronic structure dependent EM effects: rough estimate $\sim 0.6\%$.

(phenomelogical estimates available only in the K sector)

 $|V_{cd}| = 0.217 \pm 0.001_{lat} \pm 0.005_{exp} \pm 0.001_{EM}$

 $|V_{cs}| = 1.016 \pm 0.005_{lat} \pm 0.017_{exp} \pm 0.006_{EM}$ FNAL/MILC, $N_f = 2 + 1 + 1$

Extracting CKM matrix elements $|V_{cd(cs)}|$ from semileptonic decays **Experimental averages:**

 $f_{\pm}^{DK}(0)|V_{cs}| = 0.717 \pm 0.004 \qquad \qquad f_{\pm}^{D\pi}(0)|V_{cd}| = 0.143 \pm 0.002$

Y. Fang et al, 1409.8049 G. Rong et al, 1410.3232

(not included Babar, Phys.Rev.D 91 052022 (2015)

 $|V_{cd}|f_{+}^{D\pi}(0) = 0.1374 \pm 0.0038 \pm 0.0022 \pm 0.0009$, talk by A. Oyanguren)

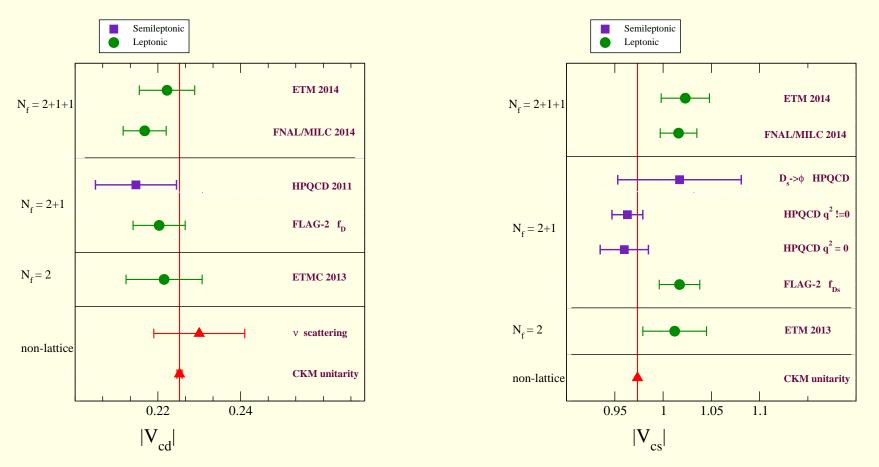
- Experimental averages for neutral and charged D do not remove corrections from Coulomb attraction between charged FS particles in neutral mode $\sim 1\%$
 - → Needed when lattice errors are reduced (forthcoming calculations from FNAL/MILC, ETM, RBC/UKQCD, ...)

Extracting CKM matrix elements $|V_{cd(cs)}|$ from semileptonic decays **Experimental averages**:

 $f_{+}^{DK}(0)|V_{cs}| = 0.717 \pm 0.004$ $f_{+}^{D\pi}(0)|V_{cd}| = 0.143 \pm 0.002$

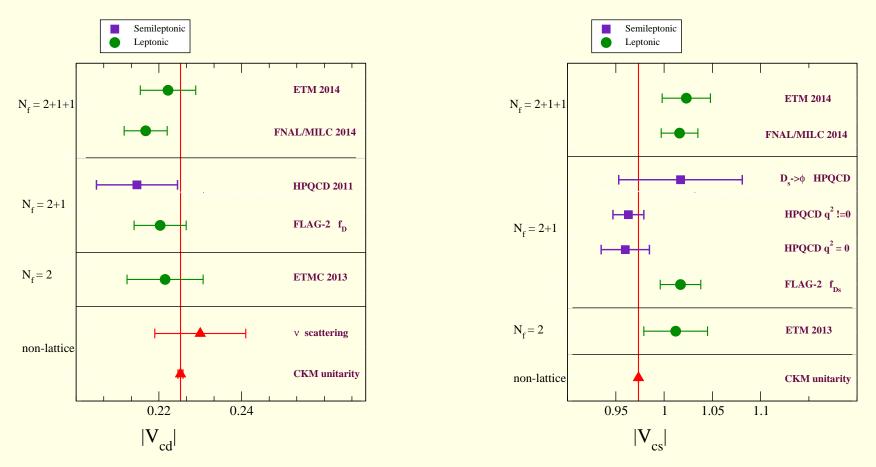
Y. Fang et al, 1409.8049

G. Rong et al, 1410.3232


(not included Babar, Phys.Rev.D 91 052022 (2015)

 $|V_{cd}|f_{\pm}^{D\pi}(0) = 0.1374 \pm 0.0038 \pm 0.0022 \pm 0.0009$, talk by A. Oyanguren)

- * Experimental averages for neutral and charged D do not remove corrections from Coulomb attraction between charged FS particles in neutral mode $\sim 1\%$
 - → Needed when lattice errors are reduced (forthcoming calculations from **FNAL/MILC, ETM, RBC/UKQCD, ...**)


 $|V_{cd}| = 0.215 \pm 0.009_{lat} \pm 0.003_{exp} \qquad |V_{cs}| = 0.960 \pm 0.024_{lat} \pm 0.005_{exp}$

(with HPQCD, $N_f = 2 + 1 f_+^{D\pi}(0) = 0.666(29)$ and $f_+^{DK}(0) = 0.747(19)$)

* $|V_{cd}|$: Pretty good agreement between different determinations, but some tension $N_f = 2 + 1 + 1$ FNAL/MILC leptonic-unitarity.

* $|V_{cs}|$: Slight tensions leptonic-semileptonic $(D \rightarrow K l \nu)$ and leptonic-unitarity.

Using the most precise leptonic numbers ($N_f = 2 + 1 + 1$ FNAL/MILC)

$$1 - |V_{cd}|^2 - |V_{cs}|^2 - |V_{cb}|^2 = -0.07(4)$$

Using $N_f = 2 + 1$ FLAG-2 averages for decay constants

$$1 - |V_{cd}|^2 - |V_{cs}|^2 - |V_{cb}|^2 = -0.08(4)$$

Relativistic description of charm \rightarrow important reduction of lattice QCD errors in decay constants and semileptonic form factors ...

Error $f_{D_{(s)}} \sim 0.5\%$ Error $f_{+}^{DK(\pi)} \sim 2.5 - 4.3\%$

... still theory errors are dominant in $|V_{cd(cs)}|$ extractions from semileptonic decays.

- * Several on-going calculations of the shape of $f_{+(0)}(q^2)$ will further reduce errors FNAL/MILC (with two different decriptions of the c), ETM, HPQCD ...
 - ** Need experimental results reported in a model independent way, i.e., in q^2 bins (including full covariance matrix).
- * Physical quark masses also important in the reduction of errors, especially for D^+ quantities.

At current level of precision we need to include subdominant effects:

* **EM effects** \rightarrow Eventually will do QCD+QED simulations.

- N. Tantalo, 1311.2797, Divitiis et al, 1303.4896, A. Portelli, plenary talk at Lattice 2014, N. Carrasco et al, 1502.00257
- * Include charm in the sea
- * Strong isospin breaking effects: leading order corrections included via tuning light valence quarks (effects of degenerate sea are NNLO in CHPT).

At current level of precision we need to include subdominant effects:

* **EM effects** \rightarrow Eventually will do QCD+QED simulations.

- N. Tantalo, 1311.2797, Divitiis et al, 1303.4896, A. Portelli, plenary talk at Lattice 2014, N. Carrasco et al, 1502.00257
- * Include charm in the sea
- * Strong isospin breaking effects: leading order corrections included via tuning light valence quarks (effects of degenerate sea are NNLO in CHPT).
- # Currently there are some tensions in the unitarity of the second row, and between leptonic and semileptonic determinations of $|V_{cs}|$.
 - * Interesting to improve theory error in $D_s \rightarrow \phi l \nu$ (upcoming improvement of experimental error by **BESIII**)

At current level of precision we need to include subdominant effects:

* **EM effects** \rightarrow Eventually will do QCD+QED simulations.

- N. Tantalo, 1311.2797, Divitiis et al, 1303.4896, A. Portelli, plenary talk at Lattice 2014, N. Carrasco et al, 1502.00257
- * Include charm in the sea
- * Strong isospin breaking effects: leading order corrections included via tuning light valence quarks (effects of degenerate sea are NNLO in CHPT).
- # Currently there are some tensions in the unitarity of the second row, and between leptonic and semileptonic determinations of $|V_{cs}|$.
 - * Interesting to improve theory error in $D_s \rightarrow \phi l \nu$ (upcoming improvement of experimental error by **BESIII**)
- # Extend the same techniques to B physics

2. Leptonic D decays: New results (> 2013)

Reduction of errors in f_D and f_{D_s} mainly due to the use of relativistic actions, and using the same action for light and charm quarks.

 $\# N_f = 2 + 1 + 1$:

* FNAL/MILC, 1407.3772: highly improved action, MILC configurations with phys. quark masses and small lattice spacing (smallest $a \approx 0.06$ fm)

$$f_{D_s} = 249.0 \pm 0.3_{stat} \left. \begin{array}{c} +0.1 \\ -1.4 \end{array} \right|_{a^2 \ extr.} \pm 0.2_{FV} \pm 0.1_{em} \pm 0.4_{f_{\pi}} \ \text{MeV}$$

$$f_{D^+} = 212.6 \pm 0.4_{stat} \left. \begin{array}{c} +0.9 \\ -1.1 \end{array} \right|_{a^2 \ extr.} \pm 0.3_{FV} \pm 0.1_{em} \pm 0.3_{f_{\pi}} \ \text{MeV}$$