Charm and Boltom quark masses off the Lattice

Vicent Maleu

universität wien

In collaboration with A. Hoang and B. Dehnadi (U. Vienna), JHEP09 (2013) 103 + 1504.07638 ('15)

7th international workshop on charm physics

22-05-2015

Oulline

- @ Introduction
- @ Recent determinations
- o Theory review
- @ Sum rule mass determinations
 - o charm
 - o bollom
- @ Conclusions and Outlook

Introduction

Confinement: m_q not a physical observable

Parameter in QCD Lagrangian \longrightarrow formal definition (as for α_s)

$$\mathcal{L}_{\text{QCD}} = \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a + \sum_f \bar{q}_f (\not\!\!D - \not\!\!m_f) q_f$$

Confinement: m_q not a physical observable

Parameter in QCD Lagrangian \longrightarrow formal definition (as for α_s)

$$\mathcal{L}_{\text{QCD}} = \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a + \sum_f \bar{q}_f (\not\!\!D - \not\!\!m_f) q_f$$

Renormalization and scheme dependent object

In general running mass

(RG evolution)

position of pole of propagator

$$m_{\rm pole} = \frac{m_{\rm short-distance}}{\delta m}$$

mass in short distance scheme

 δm defines the scheme and running

position of pole of propagator

$$m_{\text{pole}} = m_{\text{short-distance}} + \delta m$$

does not suffer
from $\mathcal{O}(\Lambda_{\text{QCD}})$
ambiguity
$$\delta m = \mu \sum_{n=1} \alpha_s^{n+1} 2^n \beta_0^n n!$$

Contains renormalon

 δm defines the scheme and running

infinitely many schemes !!!

Some schemes better than others...

best choice: process dependent

position of pole of propagator

 δm defines the scheme and running

infinitely many schemes !!!

Some schemes better than others...

 $\overline{\mathrm{MS}}$ scheme

- Short-distance scheme
- Standard mass for comparison $\overline{m}_q(\overline{m}_q)$
- And free from renormalon ambiguities

best choice: process dependent

Short-distance masses in general have an ambiguity ~ $O\left(\frac{\Lambda_{QCD}^2}{m_q}\right)$ top 0.5 - 1 MeV bottom 20 - 50 MeV charm 60 - 150 MeV provably better in \overline{MS} scheme

Recent charm and bottom mass determinations

Charm mass determinations

Charm mass determinations

Bottom mass determinations

Relativist sum rules give the most accurate results

There seems to be a tension with Borel determination (heavy to light)

Bottom mass determinations

Relativist sum rules give the most accurate results

There seems to be a tension with Borel determination (heavy to light)

Sum rules: Theoretical framework

Total hadronic cross section

$$R(s) = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

Total hadronic cross section

$$R(s) = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

- Some smearing is necessary for perturbation theory to have any chance to describe data
- We also need to design the observable to be maximally sensitive to the heavy quark mass

Total hadronic cross sectionMoments of the cross section $R(s) = \frac{\sigma(e^+e^- \rightarrow \text{hadrons})}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)}$ $M_n = \int_{4m^2}^{\infty} \frac{\mathrm{d}s}{s^{n+1}} R(s)$

- Some smearing is necessary for perturbation theory to have any chance to describe data
- We also need to design the observable to be maximally sensitive to the heavy quark mass

Total hadronic cross section

 $R(s) = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)}$

$$I_n = \int_{4m^2}^{\infty} \frac{\mathrm{d}s}{s^{n+1}} R(s) = \frac{1}{(4m^2)^n} \int_1^{\infty} \frac{\mathrm{d}z}{z^{n+1}} R(z)$$

change of variables

- Some smearing is necessary for perturbation theory to have any chance to describe data
- We also need to design the observable to be maximally sensitive to the heavy quark mass

Total hadronic cross sectionMoments of the cross section $R(s) = \frac{\sigma(e^+e^- \rightarrow \text{hadrons})}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)}$ $M_n = \int_{4m^2}^{\infty} \frac{\mathrm{d}s}{s^{n+1}} R(s) = \frac{1}{(4m^2)^n} \int_{1}^{\infty} \frac{\mathrm{d}z}{z^{n+1}} R(z)$

- Some smearing is necessary for perturbation theory to have any chance to describe data
- We also need to design the observable to be maximally sensitive to the heavy quark mass

Total hadronic cross sectionMoments of the cross section $R(s) = \frac{\sigma(e^+e^- \rightarrow \text{hadrons})}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)}$ $M_n = \int_{4m^2}^{\infty} \frac{\mathrm{d}s}{s^{n+1}} R(s) = \frac{1}{(4m^2)^n} \int_1^{\infty} \frac{\mathrm{d}z}{z^{n+1}} R(z)$

Vacuum polarization function

Vector current (electromagnetic)

$$(q^2 g_{\mu\nu} - q_{\mu}q_{\nu})\Pi(q^2) = -i \int dx \, e^{ix \cdot q} \langle 0 | \mathrm{T} j_{\mu}(x) j^{\mu}(0) | 0 \rangle$$

 $J_{\mu}(x) = \bar{q}(x)\gamma_{\mu}q(x)$

Optical theorem electric charge

$$R(s) = 12 \pi Q^2 \operatorname{Im} \Pi(s + i \, 0^+)$$

Allernative perturbative expansions

One can use four different expansion methods, equivalent in perturbation theory, to test the convergence of the series expansion

All perturbative methods should give similar results when determining the charm and bottom mass (within theoretical uncertainties)

We use different renormalization scales for α_s (denoted by μ_{α}) and \overline{m}_q (denoted by μ_m)

Fixed order $M_n^{\text{pert}} = \frac{1}{(4\overline{m}_c^2(\mu_m))^n} \sum_{i,a,b} \left(\frac{\alpha_s(\mu_\alpha)}{\pi}\right)^i C_{n,i}^{a,b} \ln^a \left(\frac{\overline{m}_c^2(\mu_m)}{\mu_m^2}\right) \ln^b \left(\frac{\overline{m}_c^2(\mu_m)}{\mu_\alpha^2}\right)$ expansion

Fixed order
expansion
$$M_n^{\text{pert}} = \frac{1}{(4\overline{m}_c^2(\mu_m))^n} \sum_{i,a,b} \left(\frac{\alpha_s(\mu_\alpha)}{\pi}\right)^i C_{n,i}^{a,b} \ln^a \left(\frac{\overline{m}_c^2(\mu_m)}{\mu_m^2}\right) \ln^b \left(\frac{\overline{m}_c^2(\mu_m)}{\mu_\alpha^2}\right)$$

Linearized
expansion
$$\left(M_n^{\text{th,pert}} \right)^{1/2n} = \frac{1}{2\overline{m}_c(\mu_m)} \sum_{i,a,b} \left(\frac{\alpha_s(\mu_\alpha)}{\pi} \right)^i \tilde{C}_{n,i}^{a,b} \ln^a \left(\frac{\overline{m}_c^2(\mu_m)}{\mu_m^2} \right) \ln^b \left(\frac{\overline{m}_c^2(\mu_m)}{\mu_\alpha^2} \right)$$

Fixed order $M_n^{\text{pert}} = \frac{1}{(4\overline{m}_c^2(\mu_m))^n} \sum_{i,a,b} \left(\frac{\alpha_s(\mu_\alpha)}{\pi}\right)^i C_{n,i}^{a,b} \ln^a \left(\frac{\overline{m}_c^2(\mu_m)}{\mu_m^2}\right) \ln^b \left(\frac{\overline{m}_c^2(\mu_m)}{\mu_\alpha^2}\right)$ expansion

Linearized expansion $\left(M_n^{\text{th,pert}}\right)^{1/2n} = \frac{1}{2\overline{m}_c(\mu_m)} \sum_{i,a,b} \left(\frac{\alpha_s(\mu_\alpha)}{\pi}\right)^i \tilde{C}_{n,i}^{a,b} \ln^a \left(\frac{\overline{m}_c^2(\mu_m)}{\mu_m^2}\right) \ln^b \left(\frac{\overline{m}_c^2(\mu_m)}{\mu_\alpha^2}\right)$

$$\overline{m}_{c}^{(0)} = \frac{1}{2\left(M_{n}^{\text{th,pert}}\right)^{1/2n}} \tilde{C}_{n,0}^{0,0}$$

$$\overline{m}_{c}(\mu_{m}) = \overline{m}_{c}^{(0)} \sum_{i,a,b} \left(\frac{\alpha_{s}(\mu_{\alpha})}{\pi}\right)^{i} \hat{C}_{n,i}^{a,b} \ln^{a} \left(\frac{\overline{m}_{c}^{(0)\,2}}{\mu_{m}^{2}}\right) \ln^{b} \left(\frac{\overline{m}_{c}^{(0)\,2}}{\mu_{\alpha}^{2}}\right)$$

Iterative linearized expansion

Solve analytically for mass, always has a solution

Fixed order $M_n^{\text{pert}} = \frac{1}{(4\overline{m}_c^2(\mu_m))^n} \sum_{i,a,b} \left(\frac{\alpha_s(\mu_\alpha)}{\pi}\right)^i C_{n,i}^{a,b} \ln^a \left(\frac{\overline{m}_c^2(\mu_m)}{\mu_m^2}\right) \ln^b \left(\frac{\overline{m}_c^2(\mu_m)}{\mu_\alpha^2}\right)$ expansion

Linearized
expansion
$$\left(M_n^{\text{th,pert}}\right)^{1/2n} = \frac{1}{2\overline{m}_c(\mu_m)} \sum_{i,a,b} \left(\frac{\alpha_s(\mu_\alpha)}{\pi}\right)^i \tilde{C}_{n,i}^{a,b} \ln^a \left(\frac{\overline{m}_c^2(\mu_m)}{\mu_m^2}\right) \ln^b \left(\frac{\overline{m}_c^2(\mu_m)}{\mu_\alpha^2}\right)$$

$$\overline{m}_{c}^{(0)} = \frac{1}{2\left(M_{n}^{\text{th,pert}}\right)^{1/2n}} \tilde{C}_{n,0}^{0,0}$$

$$\overline{m}_{c}(\mu_{m}) = \overline{m}_{c}^{(0)} \sum_{i,a,b} \left(\frac{\alpha_{s}(\mu_{\alpha})}{\pi}\right)^{i} \hat{C}_{n,i}^{a,b} \ln^{a} \left(\frac{\overline{m}_{c}^{(0)\,2}}{\mu_{m}^{2}}\right) \ln^{b} \left(\frac{\overline{m}_{c}^{(0)\,2}}{\mu_{\alpha}^{2}}\right)$$

Solve analytically for mass, always has a solution

Contour improved expansion

$$M_n^{c,pert} = \frac{6\pi Q_q^2}{i} \oint_{\mathcal{C}} \frac{\mathrm{d}s}{s^{n+1}} \Pi[s, \alpha_s(\mu_\alpha^c(s, \overline{m}_c^2)), \overline{m}_c(\mu_m), \mu_\alpha^c(s, \overline{m}_c^2), \mu_m]$$

$$(\mu_{\alpha}^{c})^{2}(s,\overline{m}_{c}^{2}) = \mu_{\alpha}^{2} \left(1 - \frac{s}{4\overline{m}_{c}^{2}(\mu_{m})}\right)$$

 $M_n^{\text{pert}} = \frac{1}{(4\overline{m}_c^2(\mu_m))^n} \sum_{i,a,b} \left(\frac{\alpha_s(\mu_\alpha)}{\pi}\right)^i C_{n,i}^{a,b} \ln^a \left(\frac{\overline{m}_c^2(\mu_m)}{\mu_m^2}\right) \ln^b \left(\frac{\overline{m}_c^2(\mu_m)}{\mu_\alpha^2}\right)$ Fixed order expansion Linearized

expansion

$$M_n^{\text{th,pert}}\Big)^{1/2n} = \frac{1}{2\overline{m}_c(\mu_m)} \sum_{i,a,b} \left(\frac{\alpha_s(\mu_\alpha)}{\pi}\right)^i \tilde{C}_{n,i}^{a,b} \ln^a \left(\frac{\overline{m}_c^2(\mu_m)}{\mu_m^2}\right) \ln^b \left(\frac{\overline{m}_c^2(\mu_m)}{\mu_\alpha^2}\right)$$

Iterative linearized expansion

$$\overline{m}_{c}^{(0)} = \frac{1}{2\left(M_{n}^{\text{th,pert}}\right)^{1/2n}} \tilde{C}_{n,0}^{0,0}$$

$$\overline{m}_{c}(\mu_{m}) = \overline{m}_{c}^{(0)} \sum_{i,a,b} \left(\frac{\alpha_{s}(\mu_{\alpha})}{\pi}\right)^{i} \hat{C}_{n,i}^{a,b} \ln^{a} \left(\frac{\overline{m}_{c}^{(0)\,2}}{\mu_{m}^{2}}\right) \ln^{b} \left(\frac{\overline{m}_{c}^{(0)\,2}}{\mu_{\alpha}^{2}}\right)$$

 μ_{α} - and μ_m -independent

Contour improved expansion

$$M_{n}^{c,pert} = \frac{6\pi Q_{q}^{2}}{i} \oint_{\mathcal{C}} \frac{\mathrm{d}s}{s^{n+1}} \Pi[s, \alpha_{s}(\mu_{\alpha}^{c}(s, \overline{m}_{c}^{2})), \overline{m}_{c}(\mu_{m}), \mu_{\alpha}^{c}(s, \overline{m}_{c}^{2}), \mu_{m}]$$

$$(\mu_{\alpha}^{c})^{2}(s,\overline{m}_{c}^{2}) = \mu_{\alpha}^{2} \left(1 - \frac{s}{4\overline{m}_{c}^{2}(\mu_{m})}\right)$$

Fixed order expansion $M_n^{\text{pert}} = \frac{1}{(4\overline{m}_c^2(\mu_m))^n} \sum_{i,a,b} \left(\frac{\alpha_s(\mu_\alpha)}{\pi}\right)^i C_{n,i}^{a,b} \ln^a \left(\frac{\overline{m}_c^2(\mu_m)}{\mu_m^2}\right) \ln^b \left(\frac{\overline{m}_c^2(\mu_m)}{\mu_\alpha^2}\right)$ Linearized $(a \text{ th pert})^{1/2n} = 1 \sum_{i,a,b} \left(\frac{\alpha_s(\mu_\alpha)}{\pi}\right)^i \tilde{c}_{a,b} \ln^a \left(\frac{\overline{m}_c^2(\mu_m)}{\mu_m^2}\right) \ln^b \left(\frac{\overline{m}_c^2(\mu_m)}{\mu_\alpha^2}\right)$

Linearized
expansion
$$\left(M_n^{\text{th,pert}}\right)^{1/2n} = \frac{1}{2\overline{m}_c(\mu_m)} \sum_{i,a,b} \left(\frac{\alpha_s(\mu_\alpha)}{\pi}\right)^* \tilde{C}_{n,i}^{a,b} \ln^a \left(\frac{\overline{m}_c^2(\mu_m)}{\mu_m^2}\right) \ln^b \left(\frac{\overline{m}_c^2(\mu_m)}{\mu_\alpha^2}\right)$$

$$\overline{m}_{c}^{(0)} = \frac{1}{2\left(M_{n}^{\text{th,pert}}\right)^{1/2n}} \tilde{C}_{n,0}^{0,0}$$

$$\overline{m}_{c}(\mu_{m}) = \overline{m}_{c}^{(0)} \sum_{i,a,b} \left(\frac{\alpha_{s}(\mu_{\alpha})}{\pi}\right)^{i} \hat{C}_{n,i}^{a,b} \ln^{a} \left(\frac{\overline{m}_{c}^{(0)\,2}}{\mu_{m}^{2}}\right) \ln^{b} \left(\frac{\overline{m}_{c}^{(0)\,2}}{\mu_{\alpha}^{2}}\right)$$

residual dependence on μ_{lpha} and μ_m due to truncation of series in $lpha_s$

Contour improved expansion

$$M_n^{c,pert} = \frac{6\pi Q_q^2}{i} \oint_{\mathcal{C}} \frac{\mathrm{d}s}{s^{n+1}} \Pi[s, \alpha_s(\mu_\alpha^c(s, \overline{m}_c^2)), \overline{m}_c(\mu_m), \mu_\alpha^c(s, \overline{m}_c^2), \mu_m]$$

$$(\mu_{\alpha}^{c})^{2}(s,\overline{m}_{c}^{2}) = \mu_{\alpha}^{2} \left(1 - \frac{s}{4\overline{m}_{c}^{2}(\mu_{m})}\right)$$

Status of computations

Moments

- For n = 1, 2, 3 the $C_n^{0,0}$ coefficients are known at $\mathcal{O}(\alpha_s^3)$
- For $n \ge 4$, $C_n^{0,0}$ are known in a semi-analytic approach (Padé)
- The rest of $C_n^{a,b}$ can be deduced by RGE evolution $\bar{C}_{4}^{(30)}$ $-2.0 \\ -4.0 \\ -4.0 \\ -6.0 \\ -8.0 \\ \hline{C}_{4}^{(30)} = -4.24 \pm 1.17 \\ -8.0 \\ \hline{C}_{4}^{(30)} = -4.24 \pm 1.17 \\ -8.0 \\ \hline{C}_{4}^{(30)} = -5.00 \pm 1.67 \\ -8 \\ -10 \\ \hline{C}_{4}^{(30)} = -5.00 \pm 1.67 \\ -9 \\ -11 \\ \hline{C}_{6}^{(30)} = -5.28 \pm 2.04 \\ -9 \\ -11 \\ \hline{C$

[[]Kühn et al] [Boughezal et al] [Sturm] [Maier et al] [Hoang,VM, Zebarjad] [Greynat et al]

Status of computations

Moments

- For n = 1, 2, 3 the $C_n^{0,0}$ coefficients are known at $\mathcal{O}(\alpha_s^3)$
- For $n \ge 4$, $C_n^{0,0}$ are known in a semi-analytic approach (Padé)
- The rest of $C_n^{a,b}$ can be deduced by RGE evolution $\bar{C}_{4}^{(30)}$ $\bar{C}_{5}^{(30)}$ $\bar{C}_{5}^{(30)}$ $\bar{C}_{5}^{(30)}$ $\bar{C}_{6}^{(30)}$ $\bar{C}_$
 - R-ratio for a massive pair of quarks
 - Analytically known up to $\mathcal{O}(\alpha_s)$
 - Known high-energy and threshold limits up to ${\cal O}(lpha_s^3)$
 - Semi-analytic approach (Padé) up to $\mathcal{O}(\alpha_s^3)$

[Kühn et al] [Boughezal et al] [Sturm] [Maier et al] [Hoang,VM, Zebarjad] [Greynat et al]

[Hoang,VM, Zebarjad] [Greynat et al]

Charm mass from sum rules

[[]Dehnadi, Hoang, & VM '15]

From QCD sum rules

[Dehnadi, Hoang, & VM '15]

Type of sum rule

Type of sum rule

Type of sum rule

From QCD sum rules

1

only HPQCD has attempted this kind of analysis

1 2 3		Chakraborty et al. '14 McNeile et al. '10 Allison et al. '08	QCD sum rules with lattice input
4 5		Narison ^{'12} '10 Bodenstein et al. '10	
6 7		Hoang & Jamin '04 Bodenstein et al. '11	
8 9 10		Chetyrkin et al. '09 Kuhn et al. '07 Boughezal et al. '06	standard QCD sum rules
11		Signer et al. '09	NRQCD sum rules
12		 Dehnadi et al. '15 [V] Dehnadi et al. '15 [P] 	
200 1.225 1	1.250 1.275 1.3 $\overline{m}_{c}(\overline{m}_{c})$ [Ge	300 1.325 1.350 eV]	

Perturbative input

Perturbative input

Experimental data used

Experimental data used

Experimental data: charm

Experimental data used

From QCD sum rules Chakraborty et al. '14 possible bias + underestimate of McNeile et al. '10 2 experimental uncertainties Allison et al. '08 3 Narison ^{'12}_{'10} 4 5 Bodenstein et al. '10 Only BES data + pQCD 6 Hoang & Jamin '04 instead of experimental info 7 Bodenstein et al. '11 for the rest of the spectrum 8 Chetyrkin et al. '09 Kuhn et al. '07 9 Boughezal et al. '06 10 11 Signer et al. '09 12 Dehnadi et al. '13 13 Dehnadi et al. '15 [V] 14 Dehnadi et al. '15 [P] 1.200 1.225 1.275 1.325 1.250 1.300 1.350 $\overline{m}_{c}(\overline{m}_{c})$ [GeV]

Experimental data: charm

Data used in Kuhn et al (2004, 05) and Bodenstein et al

Experimental data used

Experimental data: charm

Perturbation theory

Only where there is no data

• Assign a conservative 10% error to reduce model dependence

Type of QCD current

Type of QCD current

Convergence test

Cauchy root convergence test: $S[a] = \sum a_n$

$$V_{\infty} \equiv \limsup_{n \to \infty} (a_n)^{1/n}$$

$$V_{\infty} = \begin{cases} > 1 & \text{divergent} \\ = 1^+ & \text{inconclusive} \\ \le 1 & \text{convergent} \end{cases}$$

n

Convergence test

Cauchy root convergence test: $S[a] = \sum_{n} a_n$ V_{∞}

$$V_{\infty} \equiv \limsup_{n \to \infty} (a_n)^{1/n}$$

We do not known so many terms in QCD... need to adapt the test !

Convergence test [Dehnadi, Hoang, & VM '15]

For each pear (μ_m, μ_α) we define

$$\overline{m}_c(\overline{m}_c) = m^{(0)} + \delta m^{(1)} + \delta m^{(2)} + \delta m^{(3)}$$

from the mass extractions at $\mathcal{O}(\alpha_s^{0,1,2,3})$ and define the convergence parameter

$$V_c = \max\left[\frac{\delta m^{(1)}}{m^{(0)}}, \left(\frac{\delta m^{(2)}}{m^{(0)}}\right)^{1/2}, \left(\frac{\delta m^{(3)}}{m^{(0)}}\right)^{1/3}\right]$$

Convergence test

For each pear (μ_m, μ_α) we define

$$\overline{m}_c(\overline{m}_c) = m^{(0)} + \delta m^{(1)} + \delta m^{(2)} + \delta m^{(3)}$$

from the mass extractions at $\mathcal{O}(\alpha_s^{0,1,2,3})$ and define the convergence parameter

$$V_c = \max\left[\frac{\delta m^{(1)}}{m^{(0)}}, \left(\frac{\delta m^{(2)}}{m^{(0)}}\right)^{1/2}, \left(\frac{\delta m^{(3)}}{m^{(0)}}\right)^{1/3}\right]$$

It is convenient to plot histograms, and see if there is a peaked structure

Smaller value of V_c means better convergence.

Convergence test

For each pear (μ_m, μ_α) we define

$$\overline{m}_c(\overline{m}_c) = m^{(0)} + \delta m^{(1)} + \delta m^{(2)} + \delta m^{(3)}$$

from the mass extractions at $\mathcal{O}(\alpha_s^{0,1,2,3})$ and define the convergence parameter

$$V_c = \max\left[\frac{\delta m^{(1)}}{m^{(0)}}, \left(\frac{\delta m^{(2)}}{m^{(0)}}\right)^{1/2}, \left(\frac{\delta m^{(3)}}{m^{(0)}}\right)^{1/3}\right]$$

It is convenient to plot histograms, and see if there is a peaked structure

For our final analysis we discard series with $V_c \gg \langle V_c \rangle$ (3% of series only)

Estimate of perturbative uncertainties

Exploration of scale variation

[Dehnadi, Hoang, & VM '15]

Estimate of perturbative uncertainties

Exploration of scale variation

[Dehnadi, Hoang, & VM '15]

our approach $\overline{m}_c(\overline{m}_c) \le \mu_{\alpha}, \mu_m \le 4 \,\mathrm{GeV}$

Charm mass scale should not be excluded in the perturbative extraction of the charm mass

Our default is iterative method

We implement a cut on badly convergent series (mild effect on error)

<u>conclusions</u>: independent variation of scales down to $\overline{m}_c(\overline{m}_c)$ so that using different expansions does not matter

Bollom mass from sum rules

Type of sum rule

1 2 3 4		HPQCD ^{'15} '10 Narison '12 Narison '10 Bordes et al. '03	relativistic sum rules give the most precise determinations		
5 —	•	Corcella et al. '03			
6		Bodenstein et al. '12			
7		Chetyrkin et. al. '09			
8		Boughezal et al. '06			
9		Kuhn et. al. '07	standard QCD sum rules		
10	·•	Erler et al. '03			
11		Beneke et al. '15			
12		Penin et al. '14			
13		Hoang et al. '12			
14	· · · · ·	Dehnadi et at '15			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					

Type of sum rule

Type of sum rule

Perturbative input

1		HPQCD 115	expected large uncertainties
2		'10 Narison '12	
3		Narison '10	
4 🛏		Bordes et al. '03	(0)
5	•	Corcella et al. '03	$\mathcal{O}(\alpha_s^2)$ input
6		Bodenstein et al. '12	
7		Chetyrkin et. al. '09	
8	• •	Boughezal et al. '06	
9 🛏		Kuhn et. al. '07	
10	• — •	Erler et al. '03	
11	••••••	Beneke et al. '15	
12		Penin et al. '14	
13		Hoang et al. '12	
14		Dehnadi et at '15	
4.10 4	.15 4.20 4.25	4.30	
	$\overline{\mathrm{m}}_{\mathrm{b}}(\overline{\mathrm{m}}_{\mathrm{b}}) [\mathrm{GeV}]$		

Perturbative input

Experimental data used

much smaller uncertainties

Experimental data used

1 2 3			HPQCD ^{'15} '10 Narison '12 Narison '10	expected large uncertainties
4	•	•	Bordes et al. '03 Corcella et al. '03	
6 7			Bodenstein et al. '12 Chetyrkin et. al. '09	
8 9 10			Kuhn et. al. '07 Erler et al. '03	old values for narrow resonances parameters and threshold region
11 12 13		-	Beneke et al. '15 Penin et al. '14 Hoang et al. '12	
	· · · · · · · · · · · · · · · · · · ·		Dehnadi et at '15	

Strong impact on experimental uncertainties

Treatment of continuum

Treatment of continuum

1		HPOCD '15	more realistic uncertainties
2		'10 Narison '12	
3		Narison '10	
4	•	Bordes et al. '03	
5	•	Corcella et al. '03	
6		Bodenstein et al. '12	
7		Chetyrkin et. al. '09	use pQCD with perturbative
8	•	Boughezal et al. '06	uncertainties to model region
9 🛏		Kuhn et. al. '07	with no data
10		Erler et al. '03	WILLI HO Uala
11		Beneke et al. '15	
12		Penin et al. '14	
13		Hoang et al. '12	use pQCD with 4%
14		Dehnadi et at '15	systematic uncertainty
4.10 4	.15 $\frac{4.20}{\overline{m}_{1}}$ (\overline{m}_{2}) [G	4.25 4.30 •V1	

Experimental data: bottom

Narrow resonances

Experimental data: bottom

Babar data

Experimental data: bottom

Perturbation theory

Aren't we comparing theory to theory? 4% error gives a huge uncertainty to the first moment !!

63% of the first moment from region without data !

High energy region

High energy region

Discrepancy: (rebinned) data vs theory: 4%

- Conservative continuum model: $R_b^{\text{model}} = R_b^{\text{theory}} \pm 4\%$
- Size of systematic error in rebinned data

High energy region contribution

n = 2 n = l40% 63% 37% 60% n = 3 n = 4 26% 17% 83% 74%

Situation is less dramatic for higher moments

For n > 2 we find issues with perturbation theory

Therefore we use the 2nd moments as our default

High-energy region contributes "only" 39% of total error if 4% error assigned to theory

New experimental data in high-energy region: dramatic impact to precision!

Type of QCD current

From QCD sum rules

good convergence

Type of QCD current

Estimate of perturbative uncertainties

Exploration of scale variation

Estimate of perturbative uncertainties

Exploration of scale variation

We implement a cut on badly convergent series (mild effect on error)

<u>conclusions</u>: independent variation of scales down to $\overline{m}_b(\overline{m}_b)$ so that using different expansions does not matter

Conclusions

Conclusions & Oullook

Sum rules provide the most accurate extractions
of the charm and bottom masses

 Double scale variation appears to provide best uncertainty estimate (charm, bottom, pseudo)

Pseudo-scalar correlator has worse convergence

Comparisons with Lattice, important cross check

Bottom: 2nd moment smaller experimental error