Charm and Bollom quark masses off the Laktice

Vicent Mateu

(8) universität wien

In collaboration with A. Hoang and B. Dehnadi (U. Vienna),

$$
\text { JHEPO9 (2013) } 103+1504.07638 \text { ('16) }
$$

$7^{\text {th }}$ inkernakional workshop on charm physics

$$
22-08-2016
$$

Outline

- InEroduction
- Recent determinations
- Theory review
- Sum rule mass determinations
- charm
- bottom
- Conclusions and Outlook

Introduction

Theoretical remarks

Confinement: m_{q} not a physical observable

Parameter in QCD Lagrangian \longrightarrow formal definition (as for α_{s})

$$
\mathcal{L}_{\mathrm{QCD}}=\frac{1}{4} G_{\mu \nu}^{a} G_{a}^{\mu \nu}+\sum_{f} \bar{q}_{f}\left(\not D-m_{f}\right) q_{f}
$$

Theoretical remarks

Confinement: m_{q} not a physical observable

Parameter in QCD Lagrangian \longrightarrow formal definition (as for α_{s})

$$
\mathcal{L}_{\mathrm{QCD}}=\frac{1}{4} G_{\mu \nu}^{a} G_{a}^{\mu \nu}+\sum_{f} \bar{q}_{f}\left(\not D-m_{f}\right) q_{f}
$$

Renormalization and scheme dependent object

In general running mass

Theoretical remarks

position of pole of propagator

$$
m_{\text {pole }}=m_{\text {short-distance }}+\delta m
$$

mass in
short distance scheme
δm defines the scheme and running

Theoretical remarks

position of pole of propagator

$$
m_{\text {pole }}=m_{\text {short-distance }}+\delta m
$$ does not suffer

$$
\delta m=\mu \sum_{n=1} \alpha_{s}^{n+1} 2^{n} \beta_{0}^{n} n!
$$

Contains renormalon
δm defines the scheme and running

Some schemes better than others...
best choice: process dependent

Theoretical remarks

position of pole of propagator

$$
m_{\text {pole }}=m_{\text {short }- \text { distance }}+\delta m
$$

does not suffer from $\mathcal{O}\left(\Lambda_{\mathrm{QCD}}\right)$ ambiguity

$$
\delta m=\mu \sum_{n=1} \alpha_{s}^{n+1} 2^{n} \beta_{0}^{n} n!
$$

Contains renormalon
δm defines the scheme and running

Some schemes better than others...
$\overline{\mathrm{MS}}$ scheme

- Short-distance scheme
- Standard mass for comparison $\bar{m}_{q}\left(\bar{m}_{q}\right)$
- And free from renormalon ambiguities
best choice: process dependent
Short-distance masses in general have an ambiguity $\sim \mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^{2}}{m_{q}}\right)$
top $0.5-1 \mathrm{MeV}$
bottom $20-50 \mathrm{MeV}$
charm $60-150 \mathrm{MeV}$
provably better in $\overline{\mathrm{MS}}$ scheme

Recent charm and boktom mass determinations

Charm mass determinations

Comparison of different methods

Relativist sum rules from the vector correlator give the most accurate results

Charm mass determinations

Comparison of different methods

Bottom mass determinations

Comparison of different methods

Relativist sum rules give the most accurate results

There seems to be a tension with Borel determination (heavy to light)

Bottom mass determinations

Comparison of different methods

Relativist sum rules give the most accurate results

There seems to be a tension with Borel determination (heavy to light)

Sum rules:
Theorelical framework

QCD sum rules

Total hadronic cross section

$$
R(s)=\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}
$$

QCD sum rules

Total hadronic cross section

$$
R(s)=\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}
$$

- Some smearing is necessary for perturbation theory to have any chance to describe data
- We also need to design the observable to be maximally sensitive to the heavy quark mass

QCD sum rules

Total hadronic cross section
Moments of the cross section

$$
R(s)=\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)} \quad \longrightarrow M_{n}=\int_{4 m^{2}}^{\infty} \frac{\mathrm{d} s}{s^{n+1}} R(s)
$$

- Some smearing is necessary for perturbation theory to have any chance to describe data
- We also need to design the observable to be maximally sensitive to the heavy quark mass

QCD sum rules

Total hadronic cross section
Moments of the cross section

$$
R(s)=\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}
$$

$M_{n}=\int_{4 m^{2}}^{\infty} \frac{\mathrm{d} s}{s^{n+1}} R(s) \stackrel{z=\frac{s}{4 m^{2}}}{=} \frac{1}{\left(4 m^{2}\right)^{n}} \int_{1}^{\infty} \frac{\mathrm{d} z}{z^{n+1}} R(z)$

change of variables

- Some smearing is necessary for perturbation theory to have any chance to describe data
- We also need to design the observable to be maximally sensitive to the heavy quark mass

QCD sum rules

Total hadronic cross section
Moments of the cross section

$$
R(s)=\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)} \quad \longrightarrow M_{n}=\int_{4 m^{2}}^{\infty} \frac{\mathrm{d} s}{s^{n+1}} R(s) \stackrel{\substack{s=\frac{s}{4 m^{2}}}}{=} \frac{1}{\left(4 m^{2}\right)^{n}} \int_{1}^{\infty} \frac{\mathrm{d} z}{z^{n+1}} R(z)
$$

- Some smearing is necessary for perturbation theory to have any chance to describe data
- We also need to design the observable to be maximally sensitive to the heavy quark mass

QCD sum rules

Total hadronic cross section

$$
R(s)=\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)} \quad \longrightarrow M_{n}=\int_{4 m^{2}}^{\infty} \frac{\mathrm{d} s}{s^{n+1}} R(s) \stackrel{z=\frac{s}{4 m^{2}}}{=} \frac{1}{\left(4 m^{2}\right)^{n}} \int_{1}^{\infty} \frac{\mathrm{d} z}{z^{n+1}} R(z)
$$

Vacuum polarization function
$\left(q^{2} g_{\mu \nu}-q_{\mu} q_{\nu}\right) \Pi\left(q^{2}\right)=-i \int \mathrm{~d} x e^{i x \cdot q}\langle 0| \mathrm{T} j_{\mu}(x) j^{\mu}(0)|0\rangle$

Moments of the cross section

$$
J_{\mu}(x)=\bar{q}(x) \gamma_{\mu} q(x)
$$

QCD sum rules

Total hadronic cross section

$$
R(s)=\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)} \quad \Longrightarrow M_{n}=\int_{4 m^{2}}^{\infty} \frac{\mathrm{d} s}{s^{n+1}} R(s) \stackrel{\substack{z=\frac{s}{4 m^{2}}}}{\left(4 m^{2}\right)^{n}} \int_{1}^{\infty} \frac{\mathrm{d} z}{z^{n+1}} R(z)
$$

Vacuum polarization function
Vector current (electromagnetic)
$\left(q^{2} g_{\mu \nu}-q_{\mu} q_{\nu}\right) \Pi\left(q^{2}\right)=-i \int \mathrm{~d} x e^{i x \cdot q}\langle 0| \mathrm{T} j_{\mu}(x) j^{\mu}(0)|0\rangle \quad J_{\mu}(x)=\bar{q}(x) \gamma_{\mu} q(x)$
Optical theorem electric charge

$$
R(s)=12 \pi Q^{2} \operatorname{Im} \Pi\left(s+i 0^{+}\right)
$$

QCD sum rules

Total hadronic cross section

$$
\begin{aligned}
& \text { Moments of the cross section } \\
& \text { al hadronic cross section } \\
& R(s)=\frac{\sigma\left(e^{+} e^{-} \rightarrow\right. \text { hadrons }}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}
\end{aligned} \quad M_{n}=\int_{4 m^{2}}^{\infty} \frac{\mathrm{d} s}{s^{n+1}} R(s) \stackrel{s}{4 m^{2}} \frac{1}{\left(4 m^{2}\right)^{n}} \int_{1}^{\infty} \frac{\mathrm{d} z}{z^{n+1}} R(z) .
$$

$\left(q^{2} g_{\mu \nu}-q_{\mu} q_{\nu}\right) \Pi\left(q^{2}\right)=-i \int \mathrm{~d} x e^{i x \cdot q}\langle 0| \mathrm{T} j_{\mu}(x) j^{\mu}(0)|0\rangle$
Optical theorem electric charge

$$
R(s)=12 \pi Q^{2} \operatorname{Im} \Pi\left(s+i 0^{+}\right)
$$

Vector current (electromagnetic)

$$
J_{\mu}(x)=\bar{q}(x) \gamma_{\mu} q(x)
$$

Dispersion relation

$$
\Pi\left(q^{2}\right)-\Pi(0)=\frac{q^{2}}{12 \pi^{2} Q^{2}} \int_{4 m^{2}}^{\infty} \mathrm{d} s \frac{R(s)}{s\left(s-q^{2}\right)}
$$

QCD sum rules

Total hadronic cross section

$$
R(s)=\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)} \quad \longrightarrow M_{n}=\int_{4 m^{2}}^{\infty} \frac{\mathrm{d} s}{s^{n+1}} R(s) \stackrel{\substack{z=\frac{s}{4 m^{2}}}}{\left(4 m^{2}\right)^{n}} \int_{1}^{\infty} \frac{\mathrm{d} z}{z^{n+1}} R(z)
$$

Vacuum polarization function
Vector current (electromagnetic)
$\left(q^{2} g_{\mu \nu}-q_{\mu} q_{\nu}\right) \Pi\left(q^{2}\right)=-i \int \mathrm{~d} x e^{i x \cdot q}\langle 0| \mathrm{T} j_{\mu}(x) j^{\mu}(0)|0\rangle \quad J_{\mu}(x)=\bar{q}(x) \gamma_{\mu} q(x)$
Optical theorem electric charge
Dispersion relation
$R(s)=12 \pi Q^{2} \operatorname{Im} \Pi\left(s+i 0^{+}\right) \quad \Pi\left(q^{2}\right)-\Pi(0)=\frac{q^{2}}{12 \pi^{2} Q^{2}} \int_{4 m^{2}}^{\infty} \mathrm{d} s \frac{R(s)}{s\left(s-q^{2}\right)}$

$$
\Pi\left(q^{2} \sim 0\right)=\frac{1}{12 \pi^{2} Q^{2}} \sum_{n=0}^{\infty} M_{n} q^{2 n} \Longrightarrow M_{n}^{\mathrm{th}}=\left.\frac{12 \pi^{2} Q^{2}}{n!} \frac{\mathrm{d}^{n}}{\mathrm{~d} q^{2 n}} \Pi\left(q^{2}\right)\right|_{q^{2}=0}
$$

QCD sum rules

Total hadronic cross section

$$
R(s)=\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}
$$

Moments of the cross section

$$
M_{n}=\int_{4 m^{2}}^{\infty} \frac{\mathrm{d} s}{s^{n+1}} R(s) \stackrel{z=\frac{s}{4 m^{2}}}{=} \frac{1}{\left(4 m^{2}\right)^{n}} \int_{1}^{\infty} \frac{\mathrm{d} z}{z^{n+1}} R(z)
$$

$\left(q^{2} g_{\mu \nu}-q_{\mu} q_{\nu}\right) \Pi\left(q^{2}\right)=-i \int \mathrm{~d} x e^{i x \cdot q}\langle 0| \mathrm{T} j_{\mu}(x) j^{\mu}(0)|0\rangle$

$$
J_{\mu}(x)=\bar{q}(x) \gamma_{\mu} q(x)
$$

Optical theorem electric charge
Dispersion relation

$$
R(s)=12 \pi Q^{2} \operatorname{Im} \Pi\left(s+i 0^{+}\right) \quad \Pi \quad \Pi\left(q^{2}\right)-\Pi(0)=\frac{q^{2}}{12 \pi^{2} Q^{2}} \int_{4 m^{2}}^{\infty} \mathrm{d} s \frac{R(s)}{s\left(s-q^{2}\right)}
$$

$$
\Pi\left(q^{2} \sim 0\right)=\frac{1}{12 \pi^{2} Q^{2}} \sum_{n=0}^{\infty} M_{n} q^{2 n} \leadsto M_{n}^{\mathrm{th}}=\left.\frac{12 \pi^{2} Q^{2}}{n!} \frac{\mathrm{d}^{n}}{\mathrm{~d} q^{2 n}} \Pi\left(q^{2}\right)\right|_{q^{2}=0} \Rightarrow M_{n}=6 \pi i Q^{2} \oint \mathrm{~d} s \frac{\Pi(s)}{s^{n+1}}
$$

QCD sum rules

Total hadronic cross section

$$
R(s)=\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)} \quad \quad M_{n}=\int_{4 m^{2}}^{\infty} \frac{\mathrm{d} s}{s^{n+1}} R(s) \stackrel{\substack{z=\frac{s}{4 m^{2}}}}{\frac{1}{\left(4 m^{2}\right)^{n}}} \int_{1}^{\infty} \frac{\mathrm{d} z}{z^{n+1}} R(z)
$$

Vacuum polarization function
Vector current (electromagnetic)
$\left(q^{2} g_{\mu \nu}-q_{\mu} q_{\nu}\right) \Pi\left(q^{2}\right)=-i \int \mathrm{~d} x e^{i x \cdot q}\langle 0| \mathrm{T} j_{\mu}(x) j^{\mu}(0)|0\rangle$
Optical theorem electric charge
Moments of the cross section
$R(s)=12 \pi Q^{2} \operatorname{Im} \Pi\left(s+i 0^{+}\right)$bound:

$$
\Pi\left(q^{2} \sim 0\right)=\frac{1}{12 \pi^{2} Q^{2}} \sum_{n=0}^{\infty} M_{n} q^{2 n} \leadsto M_{n}^{\mathrm{th}}=\left.\frac{12 \pi^{2} Q^{2}}{n!} \frac{\mathrm{d}^{n}}{\mathrm{~d} q^{2 n}} \Pi\left(q^{2}\right)\right|_{q^{2}=0} \leadsto M_{n}=6 \pi i Q^{2} \oint \mathrm{~d} s \frac{\Pi(s)}{s^{n+1}}
$$

Alkernakive percurbalive expansions

Methods in perturbation theory

One can use four different expansion methods, equivalent in perturbation theory, to test the convergence of the series expansion

All perturbative methods should give similar results when determining the charm and bottom mass (within theoretical uncertainties)

We use different renormalization scales for α_{s} (denoted by μ_{α}) and \bar{m}_{q} (denoted by μ_{m})

Methods in perturbation theory

Fixed order expansion

$$
M_{n}^{\text {pert }}=\frac{1}{\left(4 \bar{m}_{c}^{2}\left(\mu_{m}\right)\right)^{n}} \sum_{i, a, b}\left(\frac{\alpha_{s}\left(\mu_{\alpha}\right)}{\pi}\right)^{i} C_{n, i}^{a, b} \ln ^{a}\left(\frac{\bar{m}_{c}^{2}\left(\mu_{m}\right)}{\mu_{m}^{2}}\right) \ln ^{b}\left(\frac{\bar{m}_{c}^{2}\left(\mu_{m}\right)}{\mu_{\alpha}^{2}}\right)
$$

Methods in perturbation theory

Fixed order expansion

$$
M_{n}^{\mathrm{pert}}=\frac{1}{\left(4 \bar{m}_{c}^{2}\left(\mu_{m}\right)\right)^{n}} \sum_{i, a, b}\left(\frac{\alpha_{s}\left(\mu_{\alpha}\right)}{\pi}\right)^{i} C_{n, i}^{a, b} \ln ^{a}\left(\frac{\bar{m}_{c}^{2}\left(\mu_{m}\right)}{\mu_{m}^{2}}\right) \ln ^{b}\left(\frac{\bar{m}_{c}^{2}\left(\mu_{m}\right)}{\mu_{\alpha}^{2}}\right)
$$

Linearized
expansion

$$
\left(M_{n}^{\mathrm{th}, \mathrm{pert}}\right)^{1 / 2 n}=\frac{1}{2 \bar{m}_{c}\left(\mu_{m}\right)} \sum_{i, a, b}\left(\frac{\alpha_{s}\left(\mu_{\alpha}\right)}{\pi}\right)^{i} \tilde{C}_{n, i}^{a, b} \ln ^{a}\left(\frac{\bar{m}_{c}^{2}\left(\mu_{m}\right)}{\mu_{m}^{2}}\right) \ln ^{b}\left(\frac{\bar{m}_{c}^{2}\left(\mu_{m}\right)}{\mu_{\alpha}^{2}}\right)
$$

Methods in perturbation theory

Fixed order expansion

$$
M_{n}^{\text {pert }}=\frac{1}{\left(4 \bar{m}_{c}^{2}\left(\mu_{m}\right)\right)^{n}} \sum_{i, a, b}\left(\frac{\alpha_{s}\left(\mu_{\alpha}\right)}{\pi}\right)^{i} C_{n, i}^{a, b} \ln ^{a}\left(\frac{\bar{m}_{c}^{2}\left(\mu_{m}\right)}{\mu_{m}^{2}}\right) \ln ^{b}\left(\frac{\bar{m}_{c}^{2}\left(\mu_{m}\right)}{\mu_{\alpha}^{2}}\right)
$$

Linearized expansion

$$
\left(M_{n}^{\text {th,pert }}\right)^{1 / 2 n}=\frac{1}{2 \bar{m}_{c}\left(\mu_{m}\right)} \sum_{i, a, b}\left(\frac{\alpha_{s}\left(\mu_{\alpha}\right)}{\pi}\right)^{i} \tilde{C}_{n, i}^{a, b} \ln ^{a}\left(\frac{\bar{m}_{c}^{2}\left(\mu_{m}\right)}{\mu_{m}^{2}}\right) \ln ^{b}\left(\frac{\bar{m}_{c}^{2}\left(\mu_{m}\right)}{\mu_{\alpha}^{2}}\right)
$$

Iterative linearized expansion

$$
\begin{aligned}
& \bar{m}_{c}^{(0)}=\frac{1}{2\left(M_{n}^{\text {th.pert }}\right)^{1 / 2 n}} \tilde{n}_{n, 0}^{0,0} \\
& \bar{m}_{c}\left(\mu_{m}\right)=\bar{m}_{c}^{(0)} \sum_{i, a, b}\left(\frac{\alpha_{s}\left(\mu_{\alpha}\right)}{\pi}\right)^{i} \hat{C}_{n, i}^{a, b} \ln ^{a}\left(\frac{\bar{m}_{c}^{(0) 2}}{\mu_{m}^{2}}\right) \ln ^{b}\left(\frac{\bar{m}_{c}^{(0) 2}}{\mu_{\alpha}^{2}}\right)
\end{aligned}
$$

Solve analytically for mass, always has a solution

Methods in perturbation theory

Fixed order expansion

$$
M_{n}^{\mathrm{pert}}=\frac{1}{\left(4 \bar{m}_{c}^{2}\left(\mu_{m}\right)\right)^{n}} \sum_{i, a, b}\left(\frac{\alpha_{s}\left(\mu_{\alpha}\right)}{\pi}\right)^{i} C_{n, i}^{a, b} \ln ^{a}\left(\frac{\bar{m}_{c}^{2}\left(\mu_{m}\right)}{\mu_{m}^{2}}\right) \ln ^{b}\left(\frac{\bar{m}_{c}^{2}\left(\mu_{m}\right)}{\mu_{\alpha}^{2}}\right)
$$

Linearized expansion

$$
\left(M_{n}^{\mathrm{th}, \mathrm{pert}}\right)^{1 / 2 n}=\frac{1}{2 \bar{m}_{c}\left(\mu_{m}\right)} \sum_{i, a, b}\left(\frac{\alpha_{s}\left(\mu_{\alpha}\right)}{\pi}\right)^{i} \tilde{C}_{n, i}^{a, b} \ln ^{a}\left(\frac{\bar{m}_{c}^{2}\left(\mu_{m}\right)}{\mu_{m}^{2}}\right) \ln ^{b}\left(\frac{\bar{m}_{c}^{2}\left(\mu_{m}\right)}{\mu_{\alpha}^{2}}\right)
$$

$$
\begin{aligned}
& \bar{m}_{c}^{(0)}=\frac{1}{2\left(M_{n}^{\mathrm{th}, \mathrm{pert}}\right)^{1 / 2 n}} \tilde{C}_{n, 0}^{0,0} \\
& \bar{m}_{c}\left(\mu_{m}\right)=\bar{m}_{c}^{(0)} \sum_{i, a, b}\left(\frac{\alpha_{s}\left(\mu_{\alpha}\right)}{\pi}\right)^{i} \hat{C}_{n, i}^{a, b} \ln ^{a}\left(\frac{\bar{m}_{c}^{(0) 2}}{\mu_{m}^{2}}\right) \ln ^{b}\left(\frac{\bar{m}_{c}^{(0) 2}}{\mu_{\alpha}^{2}}\right)
\end{aligned}
$$

Solve analytically for mass, always has a solution

Contour improved expansion

$$
M_{n}^{\mathrm{c}, \mathrm{pert}}=\frac{6 \pi Q_{q}^{2}}{i} \oint_{\mathcal{C}} \frac{\mathrm{d} s}{s^{n+1}} \Pi\left[s, \alpha_{s}\left(\mu_{\alpha}^{c}\left(s, \bar{m}_{c}^{2}\right)\right), \bar{m}_{c}\left(\mu_{m}\right), \mu_{\alpha}^{c}\left(s, \bar{m}_{c}^{2}\right), \mu_{m}\right]
$$

$$
\left(\mu_{\alpha}^{c}\right)^{2}\left(s, \bar{m}_{c}^{2}\right)=\mu_{\alpha}^{2}\left(1-\frac{s}{4 \bar{m}_{c}^{2}\left(\mu_{m}\right)}\right)
$$

Methods in perturbation theory

Fixed order expansion

$$
M_{n}^{\mathrm{pert}}=\frac{1}{\left(4 \bar{m}_{c}^{2}\left(\mu_{m}\right)\right)^{n}} \sum_{i, a, b}\left(\frac{\alpha_{s}\left(\mu_{\alpha}\right)}{\pi}\right)^{i} C_{n, i}^{a, b} \ln ^{a}\left(\frac{\bar{m}_{c}^{2}\left(\mu_{m}\right)}{\mu_{m}^{2}}\right) \ln ^{b}\left(\frac{\bar{m}_{c}^{2}\left(\mu_{m}\right)}{\mu_{\alpha}^{2}}\right)
$$

Linearized expansion

$$
\left(M_{n}^{\mathrm{th}, \mathrm{pert}}\right)^{1 / 2 n}=\frac{1}{2 \bar{m}_{c}\left(\mu_{m}\right)} \sum_{i, a, b}\left(\frac{\alpha_{s}\left(\mu_{\alpha}\right)}{\pi}\right)^{i} \tilde{C}_{n, i}^{a, b} \ln ^{a}\left(\frac{\bar{m}_{c}^{2}\left(\mu_{m}\right)}{\mu_{m}^{2}}\right) \ln ^{b}\left(\frac{\bar{m}_{c}^{2}\left(\mu_{m}\right)}{\mu_{\alpha}^{2}}\right)
$$

$$
\begin{aligned}
& \bar{m}_{c}^{(0)}=\frac{1}{2\left(M_{n}^{\text {th,pert }}\right)^{1 / 2 n}} \tilde{C}_{n, 0}^{0,0} \\
& \bar{m}_{c}\left(\mu_{m}\right)=\bar{m}_{c}^{(0)} \sum_{i, a, b}\left(\frac{\alpha_{s}\left(\mu_{\alpha}\right)}{\pi}\right)^{i} \hat{C}_{n, i}^{a, b} \ln ^{a}\left(\frac{\bar{m}_{c}^{(0) 2}}{\mu_{m}^{2}}\right) \ln ^{b}\left(\frac{\bar{m}_{c}^{(0) 2}}{\mu_{\alpha}^{2}}\right)
\end{aligned}
$$

μ_{α} - and μ_{m}-independent

Contour improved expansion

$$
M_{n}^{\mathrm{c}, \mathrm{pert}}=\frac{6 \pi Q_{q}^{2}}{i} \oint_{\mathcal{C}} \frac{\mathrm{d} s}{s^{n+1}} \Pi\left[s, \alpha_{s}\left(\mu_{\alpha}^{c}\left(s, \bar{m}_{c}^{2}\right)\right), \bar{m}_{c}\left(\mu_{m}\right), \mu_{\alpha}^{c}\left(s, \bar{m}_{c}^{2}\right), \mu_{m}\right]
$$

$$
\left(\mu_{\alpha}^{c}\right)^{2}\left(s, \bar{m}_{c}^{2}\right)=\mu_{\alpha}^{2}\left(1-\frac{s}{4 \bar{m}_{c}^{2}\left(\mu_{m}\right)}\right)
$$

Methods in perturbation theory

Fixed order expansion

$$
M_{n}^{\text {pert }}=\frac{1}{\left(4 \bar{m}_{c}^{2}\left(\mu_{m}\right)\right)^{n}} \sum_{i, a, b}\left(\frac{\alpha_{s}\left(\mu_{\alpha}\right)}{\pi}\right)^{i} C_{n, i}^{a, b} \ln ^{a}\left(\frac{\bar{m}_{c}^{2}\left(\mu_{m}\right)}{\mu_{m}^{2}}\right) \ln ^{b}\left(\frac{\bar{m}_{c}^{2}\left(\mu_{m}\right)}{\mu_{\alpha}^{2}}\right)
$$

Linearized expansion

$$
\left(M_{n}^{\mathrm{th}, \mathrm{pert}}\right)^{1 / 2 n}=\frac{1}{2 \bar{m}_{c}\left(\mu_{m}\right)} \sum_{i, a, b}\left(\frac{\alpha_{s}\left(\mu_{\alpha}\right)}{\pi}\right)^{i} \tilde{C}_{n, i}^{a, b} \ln ^{a}\left(\frac{\bar{m}_{c}^{2}\left(\mu_{m}\right)}{\mu_{m}^{2}}\right) \ln ^{b}\left(\frac{\bar{m}_{c}^{2}\left(\mu_{m}\right)}{\mu_{\alpha}^{2}}\right)
$$

$$
\begin{aligned}
& \bar{m}_{c}^{(0)}=\frac{1}{2\left(M_{n}^{\mathrm{th}, \mathrm{pert}}\right)^{1 / 2 n}} \tilde{C}_{n, 0}^{0,0} \\
& \bar{m}_{c}\left(\mu_{m}\right)=\bar{m}_{c}^{(0)} \sum_{i, a, b}\left(\frac{\alpha_{s}\left(\mu_{\alpha}\right)}{\pi}\right)^{i} \hat{C}_{n, i}^{a, b} \ln ^{a}\left(\frac{\bar{m}_{c}^{(0) 2}}{\mu_{m}^{2}}\right) \ln ^{b}\left(\frac{\bar{m}_{c}^{(0) 2}}{\mu_{\alpha}^{2}}\right)
\end{aligned}
$$

residual dependence on μ_{α} and μ_{m} due to truncation of series in α_{s}
$\begin{aligned} & \text { Contour improved } \\ & \text { expansion }\end{aligned} M_{n}^{c, \text { pert }}=\frac{6 \pi Q_{q}^{2}}{i} \oint_{\mathcal{C}} \frac{\mathrm{d} s}{s^{n+1}} \Pi\left[s, \alpha_{s}\left(\mu_{\alpha}^{c}\left(s, \bar{m}_{c}^{2}\right)\right), \bar{m}_{c}\left(\mu_{m}\right), \mu_{\alpha}^{c}\left(s, \bar{m}_{c}^{2}\right), \mu_{m}\right]$

$$
\left(\mu_{\alpha}^{c}\right)^{2}\left(s, \bar{m}_{c}^{2}\right)=\mu_{\alpha}^{2}\left(1-\frac{s}{4 \bar{m}_{c}^{2}\left(\mu_{m}\right)}\right)
$$

Status of computations

Moments

- For $\mathrm{n}=\mathrm{I}, 2,3$ the $C_{n}^{0,0}$ coefficients are known at $\mathcal{O}\left(\alpha_{s}^{3}\right)$
- For $\mathrm{n} \geq 4, C_{n}^{0,0}$ are known in a semi-analytic approach (Padé)
- The rest of $C_{n}^{a, b}$ can be deduced by RGE evolution

$\overline{\mathrm{C}}_{4}^{(30)}$	
-2.0	
-4.0	
-6.0 -8.0	$\overline{\mathrm{C}}_{4}^{(30)}=-4.24 \pm 1.17$

$\overline{\mathrm{C}}_{6}^{(30)}$

[Kühn et al]
[Boughezal et al] [Sturm]
[Maier et al]
[Hoang,VM, Zebarjad]
[Greynat et al]

Status of computations

Moments

- For $\mathrm{n}=\mathrm{I}, 2,3$ the $C_{n}^{0,0}$ coefficients are known at $\mathcal{O}\left(\alpha_{s}^{3}\right)$
- For $\mathrm{n} \geq 4, C_{n}^{0,0}$ are known in a semi-analytic approach (Padé)
- The rest of $C_{n}^{a, b}$ can be deduced by RGE evolution

$\overline{\mathrm{C}}_{4}^{(30)}$	
-2.0	
-4.0	
-6.0	$\overline{\mathrm{C}}_{4}^{(30)}=-4.24 \pm 1.17$
-8.0	

[Kühn et al]
[Boughezal et al] [Sturm]
[Maier et al]
[Hoang,VM, Zebarjad]
[Greynat et al]

R-ratio for a massive pair of quarks

- Analytically known up to $\mathcal{O}\left(\alpha_{s}\right)$
[Hoang, VM, Zebarjad]
[Greynat et al]
- Known high-energy and threshold limits up to $\mathcal{O}\left(\alpha_{s}^{3}\right)$
- Semi-analytic approach (Padé) up to $\mathcal{O}\left(\alpha_{s}^{3}\right)$

Charm mass from sum rules

Charm mass determinations

From QCD sum rules

[Dehnadi, Hoang, \& VM ‘I5]

Charm mass determinations

From QCD sum rules

[Dehnadi, Hoang, \& VM ‘I5]

Charm mass determinations

Type of sum rule

From QCD sum rules

relativistic sum rules give the most precise determinations
standard QCD sum rules

Charm mass determinations

Type of sum rule

From QCD sum rules

perturbative NRQCD not applicable to charmonium
standard QCD sum rules
NRQCD sum rules

Charm mass determinations

Type of sum rule

only HPQCD has attempted this kind of analysis

From QCD sum rules

QCD sum rules with lattice input
standard QCD sum rules
NRQCD sum rules

Charm mass determinations

Type of sum rule

From QCD sum rules

theoretically less sound
QCD sum rules with lattice input
other types of sum rules
standard QCD sum rules
NRQCD sum rules

Charm mass determinations

Perturbative input

From QCD sum rules

expected large uncertainties
$\mathcal{O}\left(\alpha_{s}^{2}\right)$ input

Charm mass determinations

Perturbative input

From QCD sum rules

much smaller uncertainties
$\mathcal{O}\left(\alpha_{s}^{3}\right)$ input
$\mathcal{O}\left(\alpha_{s}^{2}\right)$ input

Charm mass determinations

Experimental data used

From QCD sum rules

expected large uncertainties, since narrow resonances are the most important piece
> old values for narrow resonances parameters

Charm mass determinations

Experimental data used

From QCD sum rules

smaller uncertainties
old values for narrow resonances parameters most up to date values

Experimental data: charm

Narrow resonances

	J / Ψ	$\psi(2 S)$
$M(\mathrm{GeV})$	$3.096916(11)$	$3.686093(34)$
$\Gamma_{e e}(\mathrm{keV})$	$5.55(14)$	$2.48(6)$
$(\alpha / \alpha(M))^{2}$	0.957785	0.95554

Experimental data

$$
M_{n}^{\mathrm{res}}=\frac{9 \pi \Gamma_{e e}}{\alpha(M)^{2} M^{2 n+1}}
$$

Narrow-width approximation

Charm mass determinations

Experimental data used

From QCD sum rules

possible bias + underestimate of experimental uncertainties

> Only BES data +pQCD instead of experimental info for the rest of the spectrum

Experimental data: charm

Data used in Kuhn et al $(2004,05)$ and Bodenstein et al

Charm mass determinations

Experimental data used

From QCD sum rules

minimal dependence on assumptions

Abstract

Only BES data + pQCD instead of experimental info for the rest of the spectrum

use all available data

Experimental data: charm

Perturbation theory

- Only where there is no data
- Assign a conservative 10% error to reduce model dependence

Charm mass determinations

Type of QCD current

From QCD sum rules

vector correlator

Charm mass determinations

Type of QCD current

From QCD sum rules

not so good convergence
pseudoscalar correlator
vector correlator

Convergence test

Cauchy root convergence test: $\quad S[a]=\sum_{n} a_{n}$

$$
V_{\infty} \equiv \limsup _{n \rightarrow \infty}\left(a_{n}\right)^{1 / n}
$$

$$
V_{\infty}= \begin{cases}>1 & \text { divergent } \\ =1^{+} & \text {inconclusive } \\ \leq 1 & \text { convergent }\end{cases}
$$

Convergence test

Cauchy root convergence test: $\quad S[a]=\sum_{n} a_{n}$

$$
V_{\infty} \equiv \limsup _{n \rightarrow \infty}\left(a_{n}\right)^{1 / n}
$$

$$
V_{\infty}= \begin{cases}>1 & \text { divergent } \\ =1^{+} & \text {inconclusive } \\ \leq 1 & \text { convergent }\end{cases}
$$

We do not known so many terms in QCD... need to adapt the test !

Convergence test

For each pear $\left(\mu_{m}, \mu_{\alpha}\right)$ we define

$$
\bar{m}_{c}\left(\bar{m}_{c}\right)=m^{(0)}+\delta m^{(1)}+\delta m^{(2)}+\delta m^{(3)}
$$

from the mass extractions at $\mathcal{O}\left(\alpha_{s}^{0,1,2,3}\right)$ and define the convergence parameter

$$
V_{c}=\max \left[\frac{\delta m^{(1)}}{m^{(0)}},\left(\frac{\delta m^{(2)}}{m^{(0)}}\right)^{1 / 2},\left(\frac{\delta m^{(3)}}{m^{(0)}}\right)^{1 / 3}\right]
$$

Convergence test

For each pear $\left(\mu_{m}, \mu_{\alpha}\right)$ we define

$$
\bar{m}_{c}\left(\bar{m}_{c}\right)=m^{(0)}+\delta m^{(1)}+\delta m^{(2)}+\delta m^{(3)}
$$

from the mass extractions at $\mathcal{O}\left(\alpha_{s}^{0,1,2,3}\right)$ and define the convergence parameter

$$
V_{c}=\max \left[\frac{\delta m^{(1)}}{m^{(0)}},\left(\frac{\delta m^{(2)}}{m^{(0)}}\right)^{1 / 2},\left(\frac{\delta m^{(3)}}{m^{(0)}}\right)^{1 / 3}\right]
$$

It is convenient to plot histograms, and see if there is a peaked structure

Smaller value of V_{c} means better convergence.

Convergence test

For each pear $\left(\mu_{m}, \mu_{\alpha}\right)$ we define

$$
\bar{m}_{c}\left(\bar{m}_{c}\right)=m^{(0)}+\delta m^{(1)}+\delta m^{(2)}+\delta m^{(3)}
$$

from the mass extractions at $\mathcal{O}\left(\alpha_{s}^{0,1,2,3}\right)$ and define the convergence parameter

$$
V_{c}=\max \left[\frac{\delta m^{(1)}}{m^{(0)}},\left(\frac{\delta m^{(2)}}{m^{(0)}}\right)^{1 / 2},\left(\frac{\delta m^{(3)}}{m^{(0)}}\right)^{1 / 3}\right]
$$

It is convenient to plot histograms, and see if there is a peaked structure

For our final analysis we discard series with $V_{c} \gg\left\langle V_{c}\right\rangle$ (3\% of series only)

Charm mass determinations

Estimate of perturbative uncertainties

From QCD sum rules

 different methods and orders

correlated scale variation

$$
2 \mathrm{GeV} \leq \mu_{\alpha}=\mu_{m} \leq 4 \mathrm{GeV}
$$

$$
\begin{aligned}
& 2 \mathrm{GeV} \leq \mu_{\alpha} \leq 4 \mathrm{GeV} \\
& \mu_{m}=\bar{m}_{c}\left(\bar{m}_{c}\right)
\end{aligned}
$$

Exploration of scale variation

[Dehnadi, Hoang, \& VM 'I5]

Charm mass determinations

Estimate of perturbative uncertainties

From QCD sum rules

provides consistent results, reflects
actual series convergence

correlated scale variation

$$
2 \mathrm{GeV} \leq \mu_{\alpha}=\mu_{m} \leq 4 \mathrm{GeV}
$$

uncorrelated scale variation

$$
\bar{m}_{c}\left(\bar{m}_{c}\right) \leq \mu_{\alpha}, \mu_{m} \leq 4 \mathrm{GeV}
$$

Exploration of scale variation

[Dehnadi, Hoang, \& VM ‘I5]
$\bar{m}_{c}\left(\bar{m}_{c}\right)[\mathrm{GeV}]$ from M_{1}^{V}

our approach
$\bar{m}_{c}\left(\bar{m}_{c}\right) \leq \mu_{\alpha}, \mu_{m} \leq 4 \mathrm{GeV}$

Charm mass scale should not be excluded in the perturbative extraction of the charm mass

Our default is iterative method

We implement a cut on badly convergent series (mild effect on error)
conclusions: independent variation of scales down to $\bar{m}_{c}\left(\bar{m}_{c}\right)$ so that using different expansions does not matter

Bollom mass from sum rules

Bottom mass determinations

From QCD sum rules

Bottom mass determinations

From QCD sum rules

[Dehnadi, Hoang, \& VM 'I5]

Bottom mass determinations

Type of sum rule

From QCD sum rules

relativistic sum rules give the most precise determinations

standard QCD sum rules

Bottom mass determinations

Type of sum rule

standard QCD sum rules

NRQCD sum rules

Bottom mass determinations

Type of sum rule

From QCD sum rules

uses NRQCD lattice action, but relativistic pQCD for large-n moments
standard QCD sum rules

NRQCD sum rules

Bottom mass determinations

Type of sum rule

uses vNRQCD to sum up Coulomb and log singularities
standard $Q C D$ sum rules

NRQCD sum rules

Bottom mass determinations

Type of sum rule

use $N R Q C D$ to sum up only Coulomb singularities
standard QCD sum rules

NRQCD sum rules

Bottom mass determinations

Type of sum rule

Bottom mass determinations

Type of sum rule

From QCD sum rules

theoretically less sound
other types of sum rules
standard QCD sum rules

NRQCD sum rules

Bottom mass determinations

Type of sum rule

From QCD sum rules

only HPQCD has attempted this kind of analysis
sum rules with lattice input
other types of sum rules
standard QCD sum rules

NRQCD sum rules

Bottom mass determinations

Perturbative input
From QCD sum rules

expected large uncertainties
$\mathcal{O}\left(\alpha_{s}^{2}\right)$ input

Bottom mass determinations

Perturbative input

Bottom mass determinations

Experimental data used

From QCD sum rules

much smaller uncertainties
$\mathcal{O}\left(\alpha_{s}^{3}\right)$ input
$\mathcal{O}\left(\alpha_{s}^{2}\right)$ input

Bottom mass determinations

Experimental data used

Bottom mass determinations

Strong impact on experimental uncertainties

From QCD sum rules

Bottom mass determinations

Treatment of continuum

underestimate the error due to modeling
use $p Q C D$ with perturbative uncertainties to model region with no data

Bottom mass determinations

Treatment of continuum

more realistic uncertainties
use pQCD with perturbative uncertainties to model region with no data
use pQCD with 4% systematic uncertainty

Experimental data: bottom

Narrow resonances

Experimental data: bottom

Babar data

Experimental data: bottom

Perturbation theory

Aren't we comparing theory to theory? 4% error gives a huge uncertainty to the first moment !!
63% of the first moment from region without data!

High energy region

High energy region

Discrepancy: (rebinned) data vs theory: 4%

- Conservative continuum model: $R_{b}^{\text {model }}=R_{b}^{\text {theory }} \pm 4 \%$
- Size of systematic error in rebinned data

High energy region contribution

$\mathrm{n}=\mathrm{l}$

$\mathrm{n}=3$

$n=2$

$n=4$

Situation is less dramatic for higher moments

For $\mathrm{n}>2$ we find issues with perturbation theory

Therefore we use the $2^{\text {nd }}$ moments as our default

High-energy region contributes "only" 39% of total error if 4\% error assigned to theory

New experimental data in high-energy region: dramatic impact to precision!

Bottom mass determinations

Type of QCD current

From QCD sum rules

good convergence

vector correlator

Bottom, vector correlator, M_{2}^{V}

Bottom mass determinations

Type of QCD current

From QCD sum rules

not so good convergence

pseudoscalar correlator

vector correlator

Bottom mass determinations

Estimate of perturbative uncertainties

Exploration of scale variation

Bottom mass determinations

Estimate of perturbative uncertainties

From QCD sum rules

provides consistent results, reflects
actual series convergence

> correlated scale variation $5 \mathrm{GeV} \leq \mu_{\alpha}=\mu_{m} \leq 15 \mathrm{GeV}$
uncorrelated scale variation $\bar{m}_{b}\left(\bar{m}_{b}\right) \leq \mu_{\alpha}, \mu_{m} \leq 15 \mathrm{GeV}$

Exploration of scale variation

our approach

$$
\bar{m}_{b}\left(\bar{m}_{b}\right) \leq \mu_{\alpha}, \mu_{m} \leq 15 \mathrm{GeV}
$$

bottom mass scale should not be excluded in the perturbative extraction of the charm mass

Our default is iterative method

We implement a cut on badly convergent series (mild effect on error)
conclusions: independent variation of scales down to $\bar{m}_{b}\left(\bar{m}_{b}\right)$ so that using different expansions does not matter

Conclusions

Conclusions $\&$ Outlook

- Sum rules provide the most accurate extractions of the charm and bottom masses
- Double scale variation appears to provide best uncertainty estimate (charm, bottom, pseudo)
- Pseudo-scalar correlator has worse convergence
- Comparisons with Lattice, important cross check
- Bottom: $2^{\text {nd }}$ moment smaller experimental error

