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Abstract: We present new determinations of the MS charm quark mass using relativistic
QCD sum rules at O(α3

s) from the moments of the vector and the pseudoscalar current
correlators. We use available experimental measurements from e+ e− collisions and lattice
simulation results, respectively. Our analysis of the theoretical uncertainties is based on
different implementations of the perturbative series and on independent variations of the
renormalization scales for the mass and the strong coupling. Taking into account the
resulting set of series to estimate perturbative uncertainties is crucial, since some ways
to treat the perturbative expansion can exhibit extraordinarily small scale dependence
when the two scales are set equal. As an additional refinement, we address the issue that
double scale variation could overestimate the perturbative uncertainties. We supplement
the analysis with a test that quantifies the convergence rate of each perturbative series by
a single number. We find that this convergence test allows to determine an overall and
average convergence rate that is characteristic for the series expansions of each moment,
and to discard those series for which the convergence rate is significantly worse. We obtain
mc(mc) = 1.288 ± 0.020GeV from the vector correlator. The method is also applied to
the extraction of the MS bottom quark mass from the vector correlator. We compute the
experimental moments including a modeling uncertainty associated to the continuum region
where no data is available. We obtain mb(mb) = 4.176 ± 0.023GeV.
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1 Introduction

Precise and reliable determinations of the charm and bottom quark masses are an important
input for a number of theoretical predictions, such as Higgs branching ratios to charm and
bottom quarks or for the corresponding Yukawa couplings [1, 2]. They also affect the
theoretical predictions of radiative and inclusive B decays, as well as rare kaon decays. For
example, the inclusive semileptonic decay rate of B mesons depends on the fifth power of
the bottom quark mass. These weak decays provide crucial methods to determine elements
of the CKM matrix, which in turn are important for testing the validity of the Standard
Model, as well as for indirect searches of new physics. In this context, having a reliable
estimate of uncertainties for the quark masses is as important as knowing their precise
values [3]. Due to confinement quark masses are not physical observables. Rather, they are
scheme-dependent parameters of the QCD Lagrangian which have to be determined from
quantities that strongly depend on them.

One of the most precise tools to determine the charm and bottom quark masses
is the QCD sum rule method, where weighted averages of the normalized cross section
Re+e−→ qq̄+X , with q = c, b,

MV
n =

∫
ds

sn+1
Re+e−→ qq̄+X(s) , Re+e−→ qq̄+X(s) =

σe+e−→ qq̄+X(s)

σe+e−→µ+µ−(s)
, (1.1)

can be related to moments of the quark vector current correlator ΠV [4, 5]:

MV, th
n =

12π2Q2
q

n!

dn

dsn
ΠV (s)

∣∣∣
s=0

, jµ(x) = q̄(x)γµq(x) ,(
gµν s− qµqν

)
ΠV (s) = − i

∫
dx eiqx 〈 0 |T jµ(x)jν(0)| 0 〉 . (1.2)

Here Qq is the quark electric charge and
√
s =

√
q2 is the e+e− center-of-mass en-

ergy. Given that the integration over the experimental R-ratio extends from the quark
pair threshold up to infinity but experimental measurements only exist for energies up to
around 11GeV, one relies on using theory input for energies above that scale (which we
call the “continuum” region). For the charm moments, the combination of all available
measurements is actually sufficient to render the experimental moments essentially inde-
pendent of uncertainties one may assign to the theory input for the continuum region [6].
For the bottom moments, the dependence on the continuum theory input is very large,
and the dependence of the low-n experimental moments on unavoidable assumptions about
the continuum uncertainty can be the most important component of the error budget, see
e.g. [7]. In fact, the use of the first moment MV

1 to determine the bottom mass appears to
be excluded until more experimental data becomes available for higher energies.

Alternatively one can also consider moments of the pseudoscalar current correlator to
extract the heavy quark masses. Experimental information on the pseudoscalar correlator
ΠP is not available in a form useful for quark mass determinations, but for the charm quark
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very precise lattice calculations have become available recently [8]. For the pseudoscalar
correlator it turns out that the first two Taylor coefficients in the small-q2 expansion need
to be regularized and defined in a given scheme, and that the third term (which we will
denote by MP

0 ) is hardly sensitive to mq. We adopt the definitions

ΠP (s) = i

∫
dx eiqx 〈 0 |T jP (x)jP (0)| 0 〉 , jP (x) = 2mq i q̄(x)γ5q(x) , (1.3)

MP, th
n =

12π2Q2
q

n!

dn

dsn
P (s)

∣∣∣
s=0

, P (s) =
ΠP (s)−ΠP (0)−Π′P (0) s

s2
,

where the explicit mass factor in the definition of the pseudoscalar current ensures it
is renormalization-scheme independent.

For small values of n such that mq/n & ΛQCD, the theoretical moments for the vector
and pseudoscalar correlators can be computed in the framework of the OPE, i.e. as an
expansion in vacuum matrix elements involving operators of increasing dimension [4, 5].
The leading matrix element corresponds to the perturbative QCD computations, which
greatly dominates the series. Nonperturbative corrections are parametrized by vacuum
condensates, and we find that even the leading correction, given by the gluon condensate,
has a very small effect for low n, particularly so for the bottom correlator. For moments
at low values of n, it is mandatory to employ a short-distance mass scheme such as MS [9],
which renders the quark mass mq(µm) dependent on its renormalization scale µm, similar
to the strong coupling αs(µα), which depends on µα. This method of determining the heavy
quark masses with high precision is frequently called relativistic charmonium/bottomonium
sum rules.

For the perturbative term, the exact analytic expressions for the Π functions are known
at O(α0

s) and O(αs), [10]. Therefore any moment can be obtained simply by Taylor ex-
panding around q2 = 0. At O(α2

s) moments are known to up to n = 30 [11–15]. At
O(α3

s) they are known analytically for n = 1 [16–18], n = 2 and n = 3 (and even n = 4

for the pseudoscalar correlator) [19, 20]. Higher moments at O(α3
s) have been determined

by a semi-analytical procedure [21–24]. The Wilson coefficient of the gluon condensate
contribution is known to O(αs) [25].

The most recent determinations of the MS charm mass from charmonium sum rules
for the vector correlator [6, 26, 27] obtain very accurate results, but differ in the way
they estimate theoretical uncertainties, and also in the computation of the moments from
experimental data. Concerning the estimate of the perturbative uncertainties, Ref. [6]
obtained 19MeV compared to 1 and 2MeV obtained in Refs. [26] and [27], respectively.
The discrepancy arises from two differences. First, in Refs. [26, 27] the renormalization
scales µm, and µα were set equal, while in Ref. [6] it was argued that they should be
varied independently. Second, in Refs. [26, 27] the lowest renormalization scale was chosen
to be 2GeV, while in Ref. [6] variations down to the charm mass value were considered.
For the case of the pseudoscalar moments, the HPQCD collaboration has made a number
of very accurate predictions for charm and bottom masses [8, 28–30], the last of which
has the smallest uncertainty claimed so far for the charm mass. In all these analyses the
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renormalization scales µm, and µα are set equal when estimating the truncation uncertainty.
A detailed discussion on the estimates of theoretical and experimental uncertainties can be
found in Secs. 3 and 10 of this article (see also Ref. [6]).

Similarly, bottomonium sum rules have been used to determine the bottom mass from
low-n moments. To the best of our knowledge, the most recent and precise determina-
tions are from Refs. [27, 31]. These two analyses estimate their perturbative uncertainties
in the same way as the corresponding charm mass extractions from the same collabora-
tions [26, 27]. Furthermore, when it comes to compute the experimental moments, they use
theoretical input at O(α3

s) with perturbative uncertainties to model the high-energy region
(continuum region) of the spectrum. As we discuss in this work, similar caveats as for their
charm analyses can be argued to also affect their bottom quark results.

In this work we revisit the charmonium sum rules for the vector correlator, refining
our perturbative error estimate from Ref. [6] by incorporating a convergence test. The
convergence test addresses the issue that the independent variation of µm and µα together
with the relatively large value of the αs close to the charm mass scale, might lead to an
overestimate of the perturbative uncertainty. The convergence test allows to quantify the
convergence property of each perturbative series with a single parameter and to discard
series for which the convergence is substantially worse then for the rest of the series. We
show that this procedure is meaningful, since the complete set of series for the moments
shows a strongly peaked distribution in these convergence values, which allows to define
an overall convergence for the set of perturbative series. This leads to a reduction of
the perturbative uncertainty from 19 to 14MeV, and the corresponding result for the MS

charm mass supersedes the main result given in Ref. [6]. We also apply this improved
method of estimating theory uncertainties to obtain a new charm mass determination from
the pseudoscalar correlator, and to extract the bottom mass from the vector correlator. For
the latter, we compute the bottom experimental moments by combining contributions from
narrow resonances, experimental data taken in the continuum, and a theoretical model for
the continuum region. We carefully study the assignment of adequate uncertainties to this
last contribution, to make sure that the the model dependence is reduced to an acceptable
level.

This paper is organized as follows: In Sec. 2 we summarize the theoretical framework
introduced in [6], and adapt it to cover the case of the pseudoscalar moments. We also
introduce the ratios of moments, also used before in Ref. [9], and the perturbative expansions
associated to them. Sec. 3 contains a brief summary of the results obtained in [6], and the
discussion is extended to the case of the pseudoscalar correlator and the bottom mass. In
Sec. 4 we introduce the convergence test, and discuss how it allows to identify and discard
series with a bad convergence. Sec. 5 contains a discussion on the lattice simulation results
we use for our analysis. In Sec. 6 we present our computation of the experimental moments
for the bottom correlator. The results are compared to previous determinations in Sec. 7.
The computation of the ratio of experimental moments is presented in Sec. 8. Our final
results for the quark masses are given in Sec. 9. The results are compared to previous charm
and bottom mass analyses in Sec. 10. We present our conclusions in Sec. 11. In Appendix A
the numerical values of the perturbative coefficients that enter into our analysis and are

– 4 –



not yet provided by Ref. [6] are collected for the convenience of the reader.

2 Theoretical Input

2.1 Perturbative Contribution

The moments of the vector and pseudoscalar current correlators are defined in Eqs. (1.1)
and (1.3), respectively. In the OPE framework they are dominated by the perturbative
contribution (that is, a partonic computation), which exhibits a nonlinear dependence on
the mass. Within perturbation theory one can decide to manipulate the series expansion
to get a more linear dependence on the mass. Conceptually there is no preference. As
advocated in our previous analyses [6], one might consider various versions of the expansion
to reliably estimate the perturbative uncertainties. Four types of expansion were suggested
in Ref. [6], which we briefly review below.

(a) Standard fixed-order expansion

We write the perturbative vacuum polarization function as

Π̂X(s, nf , α
(nf )
s (µα),mq(µm), µα, µm) =

1

12π2Q2
q

∞∑
n=0

snM̂X
n , (2.1)

where X = V, P for vector and pseudoscalar currents, respectively. Note that for
notation reasons, in Eqs. (2.1, 2.5, 2.7, 2.8) we use ΠP (q2) = P (q2), where P is the twice-
subtracted pseudoscalar correlator defined in Eq. (1.3). Here Qq is the quark electric charge
with q = c, b, and nf = 4, 5 for charm and bottom, respectively. In full generality, the
perturbative moments M̂n can be expressed as the following sum:

M̂X
n =

1

[4m 2
q (µm)]n

∑
i,a,b

(
α

(nf )
s (µα)

π

)i
[CX(nf )]a,bn,i lna

(
m 2
q (µm)

µ2
m

)
lnb
(
m 2
q (µm)

µ2
α

)
.(2.2)

This is the standard fixed-order expression for the perturbative moments. The numer-
ical values for the [CV (nf = 5)]a,bn,i coefficients are given in Table 8 (for the vector current
with nf = 4, these coefficients can be found in Table 1 of Ref. [6]). Likewise, [CP (nf = 4)]a,bn,i
are collected in a numerical form in Table 11.

The expression in Eq. (2.2) is the common way to write the perturbative series of the
moments. However, as noted in Ref. [6], the nonlinear dependence on mq of the standard
fixed-order expansion has the disadvantage that for charm (bottom) quarks there are fre-
quently no solutions for the mass in the sum rule mass determination, for moments higher
than the first (second), for some set of values of the renormalization scales.

(b) Linearized expansion
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One can linearize the the fixed-order form expansion of Eq. (2.2) with respect to the
exponent of the quark mass pre-factor by taking the 2n-th root. This choice is e.g. made
in Ref. [28], and in general one can write:

(
M̂X
n

)1/2n
=

1

2mq(µm)

∑
i,a,b

(
α

(nf )
s (µα)

π

)i
[C̄X(nf )]a,bn,i lna

(
m 2
q (µm)

µ2
m

)
lnb
(
m 2
q (µm)

µ2
α

)
.

(2.3)

The coefficients [C̄V (nf = 5)]a,bn,i and [C̄P (nf = 4)]a,bn,i are given in Tables 9 and 12,
respectively (for nf = 4 the coefficients for the vector current can be found in Table 2
of Ref. [6]). Even though relation (2.3) still exhibits some nonlinear dependence on mq

through perturbative logarithms, we find that it always has a solution for the quark mass.

(c) Iterative linearized expansion

For the expansion methods (a) and (b) shown in Eqs. (2.2) and (2.3), one solves for
the quark masses mc,b(µm) numerically keeping the exact mass dependence on the theory
side of the equation. Alternatively, one can solve for mc,b(µm) iteratively order by order,
which is perturbatively equivalent to the exact numerical solution, but gives different nu-
merical results. The method consists of inserting the lower order values for mc,b(µm) in
the higher order perturbative coefficients, and re-expanding consistently. This method has
been explained in detail in Sec. 2.1(c) of Ref. [6], and we only quote the final results here:

mq(µm) = m(0)
q

∑
i,a,b

(
α

(nf )
s (µα)

π

)i
[C̃X(nf )]a,bn,i lna

(
m

(0) 2
q

µ2
m

)
lnb
(
m

(0) 2
q

µ2
α

)
, (2.4)

m(0)
q (µm) =

1

2
(
MX
n

)1/2n [C̃X(nf )]0,0n,0 ,

where the numerical value of the coefficients [C̃V (nf = 5)]a,bn,i and [C̃P (nf = 4)]a,bn,i are
collected in Tables 10 and 13, and the values for the vector current with nf = 4 can be
found in Table 3 of Ref. [6].

By construction, the iterative expansion always has a solution for the quark mass.
Accordingly, potential biases on the numerical analysis related to any possible nonlinear
dependence are eliminated.

(d) Contour-improved expansion

For the expansions (a), (b) and (c) the moments and the quark masses are computed for
a fixed value of the renormalization scale µα. Using the analytic properties of the vacuum
polarization function, one can rewrite the fixed-order moments as integrals in the complex
plane. This opens the possibility of making µα dependent on the integration variable,
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s

(1,0)

Figure 1. One possible integration path in the complex s̄-plane for the computation of the
contour-improved moments.

in analogy to the contour-improved methods used for τ -decays (see e.g. Refs. [32–37]).
Therefore we define the contour-improved moments [38] as (see Fig. 1),

M̂X,C
n =

6πQ2
q

i

∫
C

ds

sn+1
Π̂X(s, nf , α

(nf )
s (µcα(s,m 2

q )),mq(µm), µqα(s,m 2
q ), µm) , (2.5)

and we employ the following path-dependent µcα, first used in Ref. [38]

(µqα)2(s,m 2
q ) = µ2

α

(
1− s

4m 2
q (µm)

)
. (2.6)

It weights in a different way the threshold versus the high energy parts of the spectrum.
It was shown in Ref. [6] that the resulting moments M̂X,C

n can be obtained analytically
from the Taylor expansion around s = 0 of the vacuum polarization function using an
s-dependent µcα(s,m 2

q ):

Π̂MS
X

(
s, α

(nf )
s (µcα(s,m 2

q )),mq(µm), µcα(s,m 2
q ), µm

)
=
∞∑
n=0

sn M̂X,C
n . (2.7)

This trick works because αs(µcα(s,m 2
q )) has the same cut as the fixed-order expression

for Π̂X . Other choices could spoil this property. Expanding the analytic expression for
M̂X,C
n on αs at a given finite order, one recovers the fixed-order moments M̂X

n . This shows
that the dependence on the contour is only residual and represents an effect from higher
order terms from beyond the order one employs for the calculation.

The contour-improved moments have a residual sensitivity to the value of the vacuum
polarization function at zero momentum transfer.1 For the case of the vector correlator this
value depends on the UV-subtraction scheme and corresponds to Π̂(0) = M̂V

0 . For the case
of the pseudoscalar correlator, M̂P

0 is scheme-independent, since P (q2) already includes two
UV subtractions. However, one could as well define a three-times-subtracted pseudoscalar

1This means that the dependence vanishes in the large-order limit.
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correlator of the form P (q2) = P (q2)−P (0). Slightly abusing notation, we denote P as the
“on-shell” scheme for P (q2), and the twice subtracted (original) definition as the MS scheme
for P (q2). Using the OS scheme with Π̂X(0) = 0 for either vector or pseudoscalar correlator,
we find that the first moment for the contour-improved expansion gives exactly the first
fixed-order moment, M̂X,C

1 = M̂X
1 . Thus, in order to implement a non-trivial modification,

and following Ref. [6], we employ the MS scheme for Π̂V (0) defined for µ = mq(mq), and
the twice-subtracted expression for P (q2). Generically it can be written as

Π̂MS
X (0, nf ) =

∑
i,a,b

(
α

(nf )
s (µα)

π

)i
[CX(nf )]a,b0,i lna

(
m 2
q (µm)

µ2
m

)
lnb
(
m 2
q (µm)

µ2
α

)
. (2.8)

The numerical values for the coefficients [CX ]a,b0,i are collected in Table 7 for the vector
correlator with 5 flavors and the pseudoscalar correlator with 4 flavors. In Table 4 or Ref. [6]
one finds the the numerical values of [CV (nf = 4)]a,b0,i .

2.2 Gluon Condensate Contribution

We estimate nonperturbative power corrections by including the gluon condensate contri-
bution. The gluon condensate is a dimension-4 matrix element and gives the leading power
correction in the OPE for the moments [39, 40]

MX
n = M̂X

n + ∆MX, 〈G2〉
n + . . . (2.9)

Here the ellipses represent higher-order power corrections of the OPE involving con-
densates with dimensions bigger than 4. The Wilson coefficients of the gluon condensate
corrections are known to O(αs) accuracy [25]. Following Ref. [41], we express the Wilson
coefficient of the gluon condensate in terms of the pole mass, since in this way the correction
is numerically more stable for higher moments. However, as we did in Ref. [6], we still write
the pole mass in terms of the MS quark mass at one loop. The resulting expression reads

∆MX, 〈G2〉
n =

1

(4M2
q )n+2

〈αs
π
G2
〉

RGI

[
[aX(nf )]0n +

α
(nf )
s (µα)

π
[aX(nf )]1n

]
, (2.10)

Mq = mq(µm)

{
1 +

α
(nf )
s (µα)

π

[
4

3
− ln

(
m 2
q (µm)

µ2
m

)]}
.

We use the renormalization group invariant (RGI) scheme for the gluon condensate
[42]. The numerical value of the [aV (nf = 5)]an and [aP (nf = 4)]an coefficients are collected
in Table 6. The values for [aV (nf = 4)]an can be found in Table 5 of Ref. [6]. For methods
(b) and (c) one can obtain the gluon condensate contribution by performing simple algebra
operations and re-expansions in α(nf )

s and 〈G2〉. For method (d) we employ Eqs. (2.9) and
(2.10) as shown. For the RGI gluon condensate we adopt [43]

〈αs
π
G2
〉

RGI
= 0.006± 0.012 GeV4 . (2.11)
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Figure 2. Contour plots for mc(mc) as obtained from the first moment of the pseudoscalar cor-
relator MP

1 , as a function of µα and µm at O(α3
s), for methods (a) – (d). The shaded areas rep-

resent regions with µm, µα < mc(mc), and are excluded of our analysis. For this plot we employ
αs(mZ) = 0.118.

2.3 Ratios of Moments

An alternative set of observables which are also highly sensitive to the quark masses are
the ratios of consecutive moments. To that end we define RXn (nf ) ≡ MX

n+1(nf )/MX
n (nf ).

Such ratios are proportional to the inverse square of the quark mass for any value of n.
Their perturbative series can be expressed as an expansion in powers of α(nf )

s analogous to
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Figure 3. Contour plots for mb(mb) as obtained from the second moment of the vector correlator
MV

2 with nf = 5, as a function of µα and µm at O(α3
s), for methods (a) – (d). The shaded areas

represent regions with µm, µα < mb(mb), and are excluded of our analysis. For this plot we employ
αs(mZ) = 0.118.

Eq. (2.2), with the replacements [4m 2
q (µm)]n → 4m 2

q (µm) and [CX(nf )]i,ja,b → [RX(nf )]i,ja,b.
Their computation is trivial, as one only needs to take the ratio of the two consecutive
theoretical moments and re-expand as a series in α

(nf )
s . We call this the standard fixed-

order expansion, analogous to the expansion (a) of Sec. 2.1. The numerical expressions for
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the [RX(nf )]i,ja,b coefficients for the vector correlator with nf = 4, 5 are given in Table 14,
and for the pseudoscalar correlator with nf = 4 in Table 15. As for the regular moments,
we find that the nonlinear dependence of RXn on the quark mass sometimes causes that
there is no numerical solution for mq.

By taking the square root of the ratio of two consecutive moments one gets a linear
dependence on the inverse of the quark mass. The corresponding theoretical expression is
obtained by re-expanding the perturbative expansion of

√
RXn (nf ) as a series in powers

of α(nf )
s . Thus we obtain an expression of the form of Eq. (2.3) with the replacement

[C̄X(nf )]i,ja,b → [R̄X(nf )]i,ja,b. This is referred to as the linearized expansion, in analogy to
the expansion (b) of Sec. 2.1. The numerical values for the [R̄X(nf )]i,ja,b coefficients are
collected for the vector correlator with nf = 4, 5 in Table 16, and for the pseudoscalar
correlator with nf = 4 in Table 17.

Finally, one can use
√
RXn (nf ) to solve for mq(µm) in an iterative way, exactly as

explained in Sec. 2.1 for expansion (c). The theoretical expression is analogous to Eq. (2.4)
with the replacement [C̃X(nf )]i,ja,b → [R̃X(nf )]i,ja,b. We collect the numerical values for the
[R̃X(nf )]i,ja,b coefficients, in Tabs. 18 and 19 for the vector (nf = 4, 5) and pseudoscalar
(nf = 4) correlators, respectively. We call this the iterative linearized expansion.

One cannot implement a contour-improved expression for the ratios of moments, as
they cannot be computed as the contour integral of a correlator. For the ratios of moments,
in any of the three expansions, one can include non-perturbative corrections in the form of a
gluon condensate OPE term, just using Eq. (2.10) and performing simple algebra operations
and re-expansions in α(nf )

s and 〈G2〉.

3 Previous Results and Scale Variations

In a number of recent low-n sum rule analyses [8, 17, 26–29, 31, 44], which determined
the charm and bottom quark masses with very small uncertainties using O(α3

s) theoretical
computations for the moments [21–24], the theory uncertainties from the truncation of
the perturbative series have been estimated with the scale setting µm = µα based on
just one type of expansion, which was either the fixed-order [expansion (a)] for the vector
correlator, or the linearized [expansion (b)] for the pseudoscalar correlator. In Ref. [6] we
analyzed the perturbative series for the moments MV

1,2,3,4 of the charm vector correlator
at O(α3

s) using an alternative way to estimate the perturbative uncertainties, based on
the four different expansion methods (a) – (d), as explained in Sec. 2.1. We also focused
on the question whether renormalization scale variation restricted to µm = µα leads to a
compatible estimate of the perturbative uncertainties. From our analysis we found:

• The extractions for the MS charm mass using the expansions (a) – (d) with correlated
variations of µm and µα (e.g. µm = µα) for the vector correlator can lead to very small
scale variations, which can be very different depending on the method.2 Moreover,

2We judge the compatibility of the perturbative error estimates based on the size of scale variations
alone, i.e. without accounting at the same time for other sources of uncertainties such as experimental
errors or the uncertainty in the value of the strong coupling.
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for some expansions also the results from the different orders can be incompatible to
each other. It was therefore concluded that using correlated scale variation and one
type of expansion can lead to an underestimate of the perturbative uncertainty.

• Uncorrelated (i.e. independent) variation of µm and µα leads to charm mass extrac-
tions with perturbative uncertainty estimates that are in general larger, but fully
compatible among the expansions (a) – (d) and for the different orders. It was there-
fore concluded that µm and µα should be varied independently to obtain a reliable
estimate of the perturbative uncertainty.

• The size of the charm mass perturbative uncertainty has a significant dependence on
the value of the lower bound of the range of the scale variation. The choice of the
upper bound has a marginal impact.

• The pattern of size of the correlated scale variations for the different expansions can
be traced back to the form of the contours of constant charm mass in the µm –µα
plane, which happens to be located along the diagonal µm ∼ µα for expansions (a)
and (b), but roughly orthogonal for expansions (c) and (d), see Fig. 6 of Ref. [6].

For example,3 in Ref. [27] method (a) has been used for MV
1 with µm = µα varied

between 2 and 4GeV, quoting a perturbative error estimate of 2MeV. For the expansion
methods4 (a) – (d) we obtain for the same scale variation 1.2893± 0.0007, 1.2904± 0.0004,
1.2963± 0.0045 and 1.3009± 0.0020GeV, respectively, for mc(mc), which are inconsistent.
This can be compared to the corresponding results using independent variations as sug-
gested in Ref. [6]. Using 2 GeV ≤ µα, µm ≤ 4 GeV we obtain 1.291± 0.003, 1.291± 0.003,
1.296 ± 0.005 and 1.302 ± 0.003GeV, respectively, for expansions (a) – (d). These results
are not consistent either. It was furthermore argued in Ref. [6] that an adequate variation
range should include the charm mass itself (after all, that is the scale that governs the
series), motivated by the range 2mc ± mc around the pair production threshold. Thus,
adopting independent scale variation in the range mc(mc) ≤ µm, µα ≤ 4GeV one obtains
1.287 ± 0.018, 1.287 ± 0.015, 1.282 ± 0.019 and 1.291 ± 0.014GeV respectively. The re-
sults show consistency and demonstrate the strong dependence on the lower bound of the
renormalization scale variation. The outcome is illustrated graphically in Fig. 4(a), and
the order-by-order dependence in Fig. 1 of Ref. [45]. In Ref. [6] we also explored scale
setting in which µm was fixed to mc(mc) and only µα was varied. The outcome is shown
in Figs. 4 and 5 of that reference. The contour lines in the µm –µα plane for the mass
extraction from the first moment of the vector correlator for all methods are shown in
Fig. 6 of Ref. [6]. The final result quoted in Ref. [6], using αs(mZ) = 0.1184 ± 0.0021, was

3The size of the scale variations quoted in this paragraph applies to mc(mc) as well as to mc(3 GeV),
and all numerical results are obtained at O(α3

s). We also stress that there are no perturbative instabilities
concerning the use of the RGE down to the scale mc(mc).

4To compute the charm and bottom masses in this section we useMV, exp
1 = 0.2121 GeV−2 for the charm

vector correlator, result obtained in Ref. [6],MP, latt
1 = 0.1402 GeV−2 for the charm pseudoscalar correlator,

from Ref. [8], and our own computation MV, exp
2 = 2.834 × 10−5 GeV−4 for the bottom vector correlator,

see Sec. 6. We also use αs(mZ) = 0.1184.
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Figure 4. Charm and bottom mass values from the first [second] moment of the vector (a) for
charm [(c) for bottom] and pseudoscalar [(b), charm] currents at O(α3

s); and for the ratio of the
second over the first moment for the vector [(d) for charm, (g) for bottom] and pseudoscalar [(e),
charm] correlators. We show the outcome of various scale variations for the perturbative expansions
(a) – (d) [(a) – (c) for ratios], where green (rightmost) corresponds to 2 GeV ≤ µm = µα ≤ 4 GeV

[5 GeV ≤ µm = µα ≤ 15 GeV for bottom], blue (second from the left) 2 GeV ≤ µm, µα ≤ 4 GeV

[5 GeV ≤ µm, µα ≤ 15 GeV for bottom], purple (second from the right) mc(mc) ≤ µm, µα ≤ 4GeV

[mb(mb) ≤ µm, µα ≤ 15 GeV for bottom] and in red (rightmost) we supplement the latter variation
with a cut on the series with larger values of Vc.

mc(mc) = 1.282 ± (0.006)stat ± (0.009)syst ± (0.019)pert ± (0.010)αs ± (0.002)〈GG〉GeV
based on the iterative expansion method (c).

We have repeated this analysis for the first moment of the pseudoscalar correlator
MP

1 . Ref. [8] uses method (b) with the same scale variation as Ref. [27], quoting 4MeV
for the truncation error. For methods (a) – (d) and using 2 GeV ≤ µm = µα ≤ 4 GeV

we obtain 1.276± 0.003, 1.277± 0.004, 1.275± 0.005 and 1.297± 0.004GeV, respectively.
For independent double scale variation between 2 and 4GeV we obtain, 1.276 ± 0.013,
1.277±0.012, 1.271±0.012 and 1.294±0.012GeV, and if we use mc(mc) as the lower bound
to we obtain 1.260±0.039, 1.267±0.037GeV, 1.259±0.041 and 1.272±0.034. These results
are displayed graphically in Fig. 4(b). The contour lines for the mass extraction from the
first moment of the pseudoscalar correlator for all methods are shown in Fig. 2. We see
that the results show a qualitative agreement with the situation for the vector current, but
at a level of perturbative scale variations that are in general roughly larger by a factor of
two.

A similar study can be performed for the extraction of the bottom mass mb(mb) from
the second moment of the vector correlator MV

2 . Ref. [27] uses the fixed-order expansion
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[method (a)] and correlated scale variation between 5 GeV ≤ µm = µα ≤ 15 GeV, quoting
a perturbative error of 3MeV. For the same variation we obtain 4.1781± 0.0005, 4.1771±
0.0015, 4.1818±0.0034 and 4.1792±0.0044GeV for methods (a) and (d), respectively. As in
the charm case the results are not consistent, but the variations of the results have a much
smaller size, as is expected from the fact that for the bottom the renormalization scales
are much larger. For independent variation between the same values we get 4.183± 0.008,
4.181± 0.006, 4.180± 0.006 and 4.186± 0.013GeV. Finally, if the lower limit of the double
variation starts at mb(mb) we find 4.179± 0.011, 4.181± 0.011, 4.175± 0.011 and 4.184±
0.0015GeV. These results are collected in Fig. 4(c). The corresponding mb(mb) contours
in the µm –µα plane are shown in Fig. 3. As for the charm case, we find fully consistent
results for the independent scale variation and using mb(mb) as the lower bound.

We have also studied the ratio of the first over the second moments for the three cases,
and observe a very similar pattern. We do not provide a detailed discussion in the text,
but display the outcome graphically in Figs. 4(d) to 4(f).

4 Convergence Test

At this point it is useful to consider the perturbative series for all choices of µα and µm
as different perturbative expansions, which can have different convergence properties. To
estimate the perturbative uncertainties one analyzes the outcome of this set of (truncated)
series. While the uncorrelated scale variation certainly is a conservative method, one pos-
sible concern is that it might lead to an overestimate of the size of the perturbative error.
For instance, this might arise for a non-vanishing value of ln(µm/µα) in connection with
sizeable values of αs(µα) for µα close to the charm mass scale, which might artificially
spoil the convergence of the expansion. One possible resolution might be to simply reduce
the range of scale variation (such as increasing the lower bound). However, this does not
resolve the issue, since the resulting smaller variation merely represents a matter of choice.
Furthermore, there is in general no guarantee that the series which are left have a better con-
vergence despite the fact that the overall scale variation might become reduced. Preferably,
the issue should be fixed from inherent properties of the perturbative series themselves. It
is possible to address this issue by supplementing the uncorrelated scale variation method
with a convergence test constraint, which we explain in the following.

We implement a finite-order version of the root convergence test. Let us recall that in
mathematics, the root test (also known as Cauchy’s radical test) states that for a series of
terms an, S[a] =

∑
n an, if the quantity V∞ defined as

V∞ ≡ lim sup
n→∞

(an)1/n , (4.1)

is smaller (bigger) than 1, the sum is absolutely convergent (divergent). If V∞ ap-
proaches 1 from above then the series is still divergent, otherwise the test is not conclusive.
In Eq. (4.1) lim sup stands for the superior limit, which essentially means that in case of
oscillating series, one takes the maximum value of the oscillation. In the context of our
analysis with truncated series the relevant property is that a smaller V∞ implies a better
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convergent series. For the different expansion methods we use, it is simplest to apply the
method directly to the sequence of quark masses that are extracted order by order, rewrit-
ing the results as a series expansion. Since we only know a finite number of coefficients of
the perturbative series, we need to adapt the test. We now introduce Vc and proceed as
follows: 5

(a) For each pair of renormalization scales (µm, µα) we define the convergence parameter
Vc from the charm mass series mc(mc) = m(0) + δm(1) + δm(2) + δm(3) resulting from
the extractions at O(α0,1,2,3

s ):

Vc = max

[
δm(1)

m(0)
,
(δm(2)

m(0)

)1/2
,
(δm(3)

m(0)

)1/3 ]
. (4.2)

(b) The resulting distribution for Vc values can be conveniently cast as a histogram, and
the resulting distribution is a measure for the overall convergence of the perturba-
tive expansion being employed. We apply the convergence analysis to the region
mc(mc) ≤ µα, µm ≤ 4GeV for charm, and mb(mb) ≤ µα, µm ≤ 15GeV for bottom. If
the distribution is peaked around the average 〈Vc〉 it has a well-defined convergence.
Hence discarding series with Vc � 〈Vc〉 (particularly if they significantly enlarge the
estimate of the perturbative error) is justified.

Fig. 5(a) shows the Vc distributions for expansions (a) – (d) for the extraction of the
charm mass from the vector momentMV

1 . We find 〈Vc〉double = (0.15, 0.15, 0.17, 0.19)6 and
that the distributions are peaked around 〈Vc〉, indicating a very good overall convergence.
The scale variation error (defined as half the overall variation) as a function of the fraction
of the series (with the largest Vc values) that are being discarded is shown in Fig. 6(a). We
see that only around 2% of the series with the highest Vc values by themselves cause the
increase of the scale variation from well below 15MeV to up to 20MeV. These series are
located at the upper-left and lower-right corners of Figs. 2 and 3, and Fig. 6 of Ref. [6],
corresponding to values of µm and µα far from each other. Given that these series have
very large Vc values and do not reflect the overall good convergence behavior of the bulk of
the series, it is justified to remove them from the analysis.

The Vc distributions for the pseudoscalar first momentMP
1 are shown in Fig. 5(b), again

showing a clear peak. However, with 〈Vc〉double = (0.24, 0.24, 0.25, 0.21) [for correlated
variation 〈Vc〉corr = (0.22, 0.23, 0.22, 0.15) with 2GeV as the lower bound], the average
Vc values are significantly larger than for the vector correlator, indicating that the overall
perturbative convergence for the pseudoscalar moment is still excellent but worse than for
the vector moment. This means that the vector correlator method is superior, and we

5One could think of implementing the ratio test as well. However, since we only known a small number
of terms, it is likely that one of them becomes close to zero, making one of the ratios blow up. This makes
this test very unstable.

6Interestingly, the same analysis for the correlated variation with 2 GeV ≤ µα = µm ≤ 4GeV yields
〈Vc〉corr = (0.14, 0.16, 0.19, 0.19), which is similar to the outcome for the double variation. This same
observation can be made for the rest of the correlators.
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Figure 5. Vc distribution for mc(mc) from the first moment of the vector (a) and pseudoscalar
(b) correlator, and for mb(mb) for the second moment of the vector correlator (c), for expansions
(a) – (d). The three lower panels show the same for the ratio of the second over the first moment
for expansions (a) – (c).

expect that the perturbative uncertainty in the charm mass from the pseudoscalar is larger.
This expectation is indeed confirmed as we discussed in Sec. 3, see also Sec. 9. Fig. 6(b)
shows that the effect of discarding the series with the worst convergence is very similar to
that of the vector correlator.

For our determination of the bottom mass we use the second momentMV
2 (see Sec. 6 for

a discussion on why we discard the first moment), and employ uncorrelated scale variations
in the rangemb(mb) ≤ µm, µα ≤ 15GeV. Fig. 5(c) shows the corresponding histograms, and
we find that the convergence test yields 〈Vc〉double = (0.13, 0.11, 0.12, 0.15) for expansions
(a) – (d) [for the correlated variation with scales set equal and 5 GeV ≤ µα = µm ≤ 15GeV
we find 〈Vc〉corr = (0.13, 0.09, 0.13, 0.15)]. As expected, the averages for the bottom are
much smaller than for the charm. We further find that discarding series with the highest
Vc values only has minor effects on the perturbative error estimate for fractions up to 5%,
see Fig 6(c). This is a confirmation that the series for bottom moments overall are more
stable, which is again expected from the fact that perturbation theory should work better
for the bottom than for the lighter charm.

The behavior of the ratios of moments is very similar as that for regular moments, as
can be seen in Figs. 6 and 5, panels (d) – (f). We find the following average values for Vc for
methods (a) – (d): ratios of charm vector moments 〈Vc〉double = (0.19, 0.18, 0.19) [〈Vc〉corr =

(0.16, 0.16, 0.23)]; ratios of charm pseudoscalar moments 〈Vc〉double = (0.25, 0.23, 0.18)

[〈Vc〉corr = (0.25, 0.20, 0.16)]; ratios of bottom vector moments 〈Vc〉double = (0.13, 0.12, 0.13)

[〈Vc〉corr = (0.13, 0.11, 0.14)]. Therefore we conclude that the perturbative convergence of
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Figure 6. Half of the scale variation of mq(mq) at O(α3
s) as a function of the fraction of the

discarded series with highest Vc values for the first moment of the vector (a) and pseudoscalar (b)
correlators for charm, the second moment of the vector correlator for bottom (c); the ratio of the
second over the first moment for the vector [charm (d) and bottom (f)] and pseudoscalar [charm
(e)] correlators.

the ratios of moments is in general terms a bit worse than that of regular moments, except
for the linearized iterative method of the pseudoscalar ratios.

In our final numerical analyses we discard 3% of the series with the worst Vc values. As
can be seen from Fig. 5, this only affects series with Vc values much larger than the average
values for the whole set of series. It is our intention to keep the fraction of discarded series
as small as possible, since it is our aim to remove only series with convergence properties
that are obviously much worse than those of the bulk of the series. We call this procedure
trimming in the following. As we see in Figs. 7, the results including the trimming show
a very good order-by-order convergence for the heavy quark mass determinations, and at
each order every expansion method gives consistent results for the central values as well as
for the estimate of the perturbative uncertainties. Figs. 7(a) and 7(b) show the results for
mc(mc) from the vector and pseudoscalar correlators, respectively, for expansions (a) – (d)
at O(α1,2,3

s ) and with mc(mc) ≤ µm, µα ≤ 4GeV, using the first moment. Figs. 7(d) and
7(e) show results for methods (a) – (c), using the ratio of the second over the first moment.
Analogously, Figs. 7(c) and 7(f) show the results for mb(mb) for the second moment, and
the ratio of the second over the first moment, respectively, with the uncorrelated variation
mb(mb) ≤ µm, µα ≤ 15GeV.
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Figure 7. Charm and bottom mass values from the first [second] moment of the vector (a) for
charm [(c) for bottom] and pseudoscalar [(b), charm] currents at O(α1,2,3

s ); and for the ratio of
the second over the first moment for the vector [(d) for charm, (g) for bottom] and pseudoscalar
[(e), charm] correlators for expansions (a) – (d) [(a) – (c) for ratios], in red, blue, green and purple,
respectively.

5 Lattice Simulation Data

The pseudoscalar current is not realized in nature in a way which is useful to compute the
moments of the corresponding correlator from experimental data. Results for the moments
of the pseudoscalar current correlator can, however, be obtained from simulations on the
lattice. The strategy of these numerical simulations is to tune the lattice parameters (such
as bare coupling constant and masses) to a selected number of observables (e.g. the energy
splitting of Υ resonances). Once this tuning is performed, the lattice action is fully specified
and no further changes are implemented. The tuned lattice action can then be used to
perform all sorts of predictions, moments of correlators among them. Lattice simulations
have to face a number of challenges, which usually translate into sizeable uncertainties.
Among those are the extrapolations to the infinite volume and the zero lattice spacing (the
latter being much harder), as well as the extrapolation to physical quark masses. On top of
these systematic uncertainties, there are also statistical ones, which are related to the finite
sampling used to perform the path integrations. On the other hand there are also concerns
on the type of lattice action which is being used for the fermions. According to Ref. [8],
the moments of the pseudoscalar correlator are least affected by systematic uncertainties,
and so HPQCD has focused on those for their subsequent high-precision analyses.

To the best of our knowledge, HPQCD is the only lattice collaboration which has
published results on QCD correlators. They have used the staggered-quarks lattice action,
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and MILC configurations for gluons. These results have been used to determine the charm
mass and the strong coupling constant [8, 28, 29] with high accuracy, as well as the bottom
mass [28, 30], with smaller precision. We will use the simulation results as given in Ref. [8],
even if the results quoted in of [28, 29] are a bit more precise. The reason for this choice is
that while [8] makes a straightforward extrapolation to the continuum, which is independent
of the charm mass and αs extractions, in [28, 29] the fit for the quark masses, the strong
coupling constant and the extrapolation to the continuum is performed all at once, in a
single fit. Furthermore that fits contains a lot of priors for the parameters one is interested
in fitting. In any case, as we have seen, the charm mass extraction from the pseudoscalar
correlator is dominated by perturbative uncertainties, as a result of the bad convergence of
the series expansion for its moments.

Ref. [8] provides simulation results for the so-called reduced moments Rk, which are
collected in their Table II. The index k takes only even values, and starts with the value
k = 4, which is fairly insensitive to the charm mass. Hence the lowest moment we consider is
R6. Reduced moments are defined as (up to a global power) the full moment divided by the
tree-level result. By taking this ratio, the authors of Ref. [8] claim that large cancellations
between systematic errors take place. The reduced moments are scaleless, and the mass-
dimension that one obviously needs to determinate the charm quark mass is regained by
dividing with the mass of the ηc pseudoscalar particle. Thus one can easily translate the
reduced moments into the more familiar correlator momentsMP

n with the following relation:

MP
n = [CP (nf = 4)]0,0n,0

(
R2n+4

mηc

)2n

, (5.1)

where the CP coefficients correspond to the tree-level terms of the standard fixed-order
expansion of Eq. (2.2). Although the experimental value for ηc is 2.9836(7)GeV, we use
the value mηc = 2.980GeV given in Ref. [8], in order to ease comparison with that analysis.
In Ref. [29] the value mηc = 2.9863(27)GeV is used. It is claimed that (as for the lattice
action) it has no QED effects, and the error accounts for cc̄ annihilation. Using the quote
in Ref. [29] changes MP

1 by 0.4% and the effect on the charm mass is of the order of 2MeV.
The uncertainty in the ηc mass has no effect on the MP

n errors. In Table 1 we quote the
lattice simulation results written as regular moments MP

n .

MP
1 MP

2 MP
3 MP

4

1.402(20) 1.361(40) 1.426(59) 1.558(89)

Table 1. Lattice simulation results for the moments of the twice-subtracted pseudoscalar correlator
P (q2) for nf = 4. Moments given in units of 10−n×GeV−2n.

6 Computation of the Experimental Moments for the Bottom Correlator

In this section we present our computation of the moments for the bottom vector current
correlator from experimental data. These are made of three distinct contributions: the
narrow resonances below threshold, the region of broader resonances, explored by BABAR
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[46], and the continuum region, where no data has been taken and some modeling is required.
The BABAR data has to be corrected for initial-state radiation and vacuum polarization
effects. In the continuum region we use a model which consists of a combination of a linear
fit to the BaBar experimental points with energy larger than 11.05GeV, and perturbation
theory as a model for missing experimental data, which are joined smoothly by a cubic
interpolation. We assign a conservative uncertainty guided by the error function of the
linear fit to the BABAR data in the region with measurements with the highest energy.
Our determination of the experimental bottom moments differs from Ref. [27] in the way we
model the uncertainties for the hadronic cross section in the continuum region, plus other
minor differences in the contributions from the narrow widths and the threshold region,
see discussion in Sec. 7. We also provide the correlation matrix among different moments,
which cannot be found in the literature. Therefore, even though there are some similarities
with the computations outlined in [27], we find it justified to discuss our computation of
the experimental moments in some detail.

We note that our results for the moments of the bottom vector current correlator
have already been used in the analyses of high-n moments of Ref. [47], in the context of
nonrelativistic large-n sum rules.

6.1 Narrow Resonances

The contribution of resonances below the open bottom threshold
√
s = 10.62 GeV includes

Υ(1S) up to Υ(4S). We use the narrow width approximation to compute their contribution
to the experimental moments, finding

M res
n =

9πΓee

α(MΥ)2M2n+1
Υ

. (6.1)

The masses and electronic widths of these four resonances are taken from the PDG
[48], and the values of the effective electromagnetic coupling constant evaluated at the Υ

masses are taken from Ref. [44]. This information is collected in Table 2. We have also
checked that if one uses a Breit-Wigner instead of the narrow width approximation the
results change by an amount well within the error due to the uncertainty in the electronic
width.

In analogy to what we found in our study of the charm moments [6], the effect of the
mass uncertainty in the moments is negligible. Therefore one only needs to consider the
experimental uncertainty in the electronic widths. There is no information on the corre-
lation between the measurements of these widths. The PDG averages of the electronic
partial widths for the first three resonances is dominated by the CLEO measurement [49].7

Therefore we take the approach that half of the width’s uncertainty (in quadrature) is un-
correlated (therefore mainly of statistical origin), whereas the other half is correlated among
the various resonances (therefore coming from common systematics in the measurements).

7Refs. [27, 44] assume that the error of the electronic width for the first three narrow resonances is 100%

correlated, and uncorrelated to that of the Υ(4S).
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Υ(1S) Υ(2S) Υ(3S) Υ(4S)

MΥ(GeV) 9.46030(26) 10.02326(31) 10.3552(5) 10.5794(12)
Γee(KeV) 1.340(18) 0.612(11) 0.443(8) 0.272(29)(
αQED

α(MΥ)

)2
0.932069 0.93099 0.930811 0.930093

Table 2. Masses and electronic widths of narrow Υ resonances [48] and effective electromagnetic
coupling constant [44]. αQED = 1/137.035999084(51) represents the fine structure constant.

6.2 Threshold Region

The region between the open bottom threshold and the experimental measurement of the
Rb-ratio at the highest energy, 10.62 GeV ≤

√
s ≤ 11.2062 GeV, is referred to as the

threshold region. The region above the last experimental measurement will be collectively
denoted as the continuum region. The first experimental data close to the B meson threshold
were taken by the CLEO [50–52] and CUSB [53] collaborations. The measurements at each
c.m. energy have a 6% systematic uncertainty. More recently the BABAR collaboration [46]
has measured the Rb-ratio in the energy region between 10.54 GeV and 11.20 GeV, with
significantly higher statistics and better control of systematic uncertainties (of the order of
3%). These measurements are taken in small energy bins, densely populating the threshold
region. The BABAR data supersedes the older data of CLEO and CUSB, and it has already
been used in Refs. [27, 31, 41], in which the bottom mass was also determined.

This BABAR data for the Rb-ratio has not been corrected for initial-state radiation
and vacuum polarization effects. Moreover, the effect of the Υ(4S) resonance has not
been subtracted,8 so we have performed the subtraction ourselves, using the Breit-Wigner
approximation and using for the total width the PDG value Γ4S = 20.5MeV:

RBW(s) =
9M2

4S Γ4S
ee

α(M4S)2

Γ4S

(s−M2
4S)2 + Γ2

4SM
2
4S

. (6.2)

For the subtraction of the Υ(4S) resonance and the correction for the initial state
radiation we take an approach similar to Ref. [27].

6.2.1 Subtraction of the Υ(4S) Radiative Tail

Before subtracting the radiative tail of the Υ(4S) resonance one has to account for vacuum
polarization effects. BaBar experimental data has been normalized to the theoretical Born
level dimuon cross section (using the fine structure constant rather than the running effective
electromagnetic coupling), instead of normalizing to the number of events with muons in
the final state. Therefore one has to multiply the BaBar data with [α(s)/αem]2, which we
take as constant with value 0.93.

The contribution to be subtracted from the BABAR data (already corrected for vacuum
polarization effects) is the ISR-distorted tail of the Υ(4S), which reaches to energies above

8The radiative tails of the first three resonances are provided by BABAR, so they can be subtracted at
the data level, before correcting for vacuum polarization effects.
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its mass. The cross section R and the ISR-distorted cross-section R̂ are related by a
convolution relation

R̂(s) =

∫ 1

z0

dz

z
G(z, s) R(s z) , (6.3)

which can be used to determine the ISR effects on the Υ(4S) resonance given in
Eq. (6.2). Here the lower integration bound is z0 = (10 GeV)2/s. This value is not fully fixed
by theoretical arguments, and it is chosen such that it excludes the narrow resonances, but
keeps the major part of the Υ(4S) line shape. The radiator function G is given as [54, 55]

G(z, s) = (1− z)β(s)− 1 G̃(z, s) , (6.4)

G̃(z, s) = β(s) eδyfs(s) F (s)
[
δV+S
C (s) + δHC (s, z)

]
,

where the specific form of β, F and the two δ’s can be found in Eq. (7) of [27]. Note
that the function G(z, s) is divergent as z → 1, but since 0 < β − 1 < −1, it is integrable.
The divergent behavior is absent in G̃, which in the limit z → 1 reduces to

G̃(1, s) = β(s) eδyfs(s) F (s) δV+S
C (s) . (6.5)

After subtracting the radiative tail of the Υ(4S) we find that to a good approximation
the cross section vanishes for energies below 10.62 GeV. Therefore we add an additional
point to our BABAR dataset: Rb(10.62 GeV) = 0 and take Rb = 0 for energies below
10.62GeV. Since the subtracted cross section does not exactly vanish between 10.5408GeV
and 10.62GeV, we take the (small) contribution of the subtracted cross section in that
region to the moments as an additional source of systematic correlated uncertainty.

6.2.2 Deconvolution of Initial-State Radiation

After subtraction of the radiative tails and correcting for vacuum polarization effects, the
BABAR threshold data are corrected for ISR. The inversion of the convolution in Eq. (6.3),
can be carried out in an iterative way [27]. Defining δG(z, s) = G(z, s) − δ(1− z) one can
use a successive series of approximations

Rj(s) = R0(s)−
∫ 1

z0

dz

z
δG(z, s)Rj−1(s z), (6.6)

where we denoted the j-th approximation of R(s) as Rj(s) and use as starting point
R0(s) = R̂(s), the BABAR data after correcting for vacuum polarization effects and sub-
tracting the radiative tails. In Eq. (6.6) we take z0 = (10.62 GeV)2/s, using as a starting
point the energy value for which the cross section vanishes after the subtraction of the ra-
diative tails. To isolate the singularity at the higher endpoint one can perform a subtraction
at z = 1, resulting in:
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Rj(s) = R0(s) +Rj−1(s)−
∫ 1

z0

dz

z

(
1− z

)β(s)− 1
[
G̃(z, s)Rj−1(s z)− z G̃(1, s)Rj−1(s)

]
− 1

β(s)
G̃(1, s)Rj−1(s)

(
1− z0

)β(s)
. (6.7)

We use the trapezoidal rule to evaluate the integration on the discrete set of experi-
mental data measurements labeled by the index i. Changing the integration variable from
z to energy we find

Rji = R0
i +Rj−1

i + G̃(1, E2
i )Rj−1

i

(
1− E2

1

E2
i

)β(E2
i )(

E1(E2 − E1)

E2
i − E2

1

− 1

β(E2
i )

)
(6.8)

−
i−1∑
k=2

(
1−

E2
k

E2
i

)β(E2
i )− 1

Ek

[
G̃

(
E2
k

E2
i

, E2
i

)
Rj−1
k

E2
k

− G̃(1, E2
i )
Rj−1
i

E2
i

]
(Ek+1 − Ek−1) ,

where we have used Rj1 = R(10.62 GeV) ≡ 0 for all iterations. After applying the
procedure as many times as necessary to obtain a stable solution, one obtains the ISR-
corrected cross section. Among the experimental measurements one finds two data points
taken at very similar values of the energy: 10.86GeV and 10.8605GeV. It turns out that
the fact that they lie very close makes the iterative procedure unstable. Therefore we drop
the latter point from our analysis.

In Fig. 8 we show the BABAR data after the subtraction of all radiative tails, before
(red) and after (blue) ISR and vacuum polarization corrections.

6.2.3 Determination of the Unfolding Error Matrix

The BABAR collaboration splits the experimental uncertainties into statistical, systematic
uncorrelated, and systematic correlated. We add the two former in quadrature to obtain
the total uncorrelated uncertainty εuncor and rename the latter as the total correlated un-
certainty εcor. The removal of the radiative tails of the Υ mesons has no effect on these
uncertainties. Therefore, the correlation matrix for the BABAR data after the subtraction
of the radiative tails, before it is corrected for ISR effects, can be written as

M0 0
ij = (εuncor

i )2 δij + εcor
i εcor

j . (6.9)

One needs to compute a new correlation matrix after each iteration. In this way we
determine the unfolding error matrix.

The master formula in Eq. (6.8) can be cast in a matrix form as follows:

Rji = R0
i +

i∑
k=2

GikR
j−1
k , (6.10)

where Rji is to be thought as the i-th component of the column vector Rj , and Gik
represents the (i, k)-component of a matrix G. Here Rji depends only on the initial value
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Figure 8. BABAR experimental data before (blue) and after (red) the ISR correction is applied.
The purple bar on the right refers to the pQCD prediction for the continuum region. We have
removed one data point at E = 10.8605GeV.

R0
i and the result of the previous iteration Rj−1

i . The Gik do not depend on Rjk or the
iteration step j. Therefore, for the error propagation one uses

∂Rji
∂R0

k

= δik ,
∂Rji
∂Rj−1

k

= Gik , (6.11)

both of them j-independent. We will denote with M j j the correlation matrix among
the entries of the vector Rj for a given iteration j. We also find it convenient to introduce
the correlation matrix among Rj and R0, referred to as M j 0. Finally we use the notation
M0 j ≡ (M j 0)T . We find for the correlation matrix after j iterations:

M j j = M0 0 +M0 j−1 GT +G M (j−1) 0 +G M (j−1) (j−1)GT , (6.12)

M j 0 = M0 0 +GM (j−1) 0,

where the elements of the matrixM0 0 are given in Eq. (6.9). We find that after five iter-
ations the result has converged already to a level well below the experimental uncertainties.
Our unfolded BaBar data agrees well with that worked out in Ref. [41].

6.2.4 Contribution of the Threshold Region

After having corrected BABAR data for ISR and vacuum polarization effects, we use the
trapezoidal rule for integrating the threshold region between 10.62 GeV and 11.20 GeV:
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M thr
n =

1

2n

[N−1∑
i=2

Ri

(
1

E2n
i−1

− 1

E2n
i+1

)
+RN

(
1

EN−1
− 1

EN

)]
, (6.13)

where Ri has been already ISR corrected and N is the number of data points. We have
added the boundary condition point R1 = R(10.62) = 0. From Eq. (6.13) one can compute
the correlation matrix among M thr

n for various n values, using the unfolding matrix among
the Ri computed in Sec. 6.2.3.

6.3 Continuum Region

For the determination of the experimental moments from the region above 11.2GeV we use
pQCD (which has essentially negligible errors) supplemented by a modeling uncertainty.
Comparing pQCD (purple line in Fig. 9) to a linear fit to the BaBar data in the region
between 11.06GeV and 11.2GeV (red dotted line in Fig. 9) we find a 10% discrepancy con-
cerning the central values. The fit function has a roughly constant 4% relative uncertainty.
The fit linear function shows a growing pattern such that it would meet the pQCD predic-
tion at around 11.5GeV. This result is very robust, since a quadratic fit yields the same
meeting point. To model the continuum in the region between 11.2GeV and 11.52GeV
we patch together the linear fit function to the BaBar data and the result of pQCD above
11.52GeV using a cubic function, demanding continuity and smoothness at 11.2GeV and
11.52GeV. The result is shown as the central red line in Fig. 9. Given that the relative
discrepancy between experiment and pQCD for Rb at the Z-pole is about 0.3% [56], we
adopt a relative modeling error that decreases linearly from 4% at 11.2GeV to 0.3% at mZ ,
and stays constant for energies larger than mZ . This is shown as the red band in Fig. 9.
This uncertainty makes up for 96.9% of the total error for the first moment MV

1 (which
has an total 2.45% relative error), and 86.15% of the second moment MV

2 (which has a
total 1.85% relative error). Note that if we would adopt a constant 4% error for all energies
above 11.2GeV, this continuum uncertainty would make up for 97.24% of the total error
for the first moment MV

1 (from a total 2.60% relative error), and 86.46% of the second mo-
ment MV

2 (from a total 1.87% relative error). The difference is small because contributions
from higher energies are suppressed. Following our procedure in Ref. [6] we consider this
uncertainty as fully correlated for the various moments, but without any correlation to the
narrow resonances or the threshold region.

The perturbative QCD theoretical expression which we use to determine this contribu-
tion includes the non-singlet massless quark cross section supplemented with bottom mass
corrections up to O(m 4

b /s
2).9 It takes into account only contributions from the electromag-

netic current coupled to the bottom quark. It reads: [57–61]10

9We note that the double massive fermion bubble contribution to Rbb in Eq. (6.15) includes both virtual
and real radiation terms in the large energy expansion. However, when this formula is used to compare
pQCD to the existing BABAR data, below the four-bottom-quarks threshold, the real radiation should be
excluded. We have checked that this inconsistency has an effect below 0.1%.

10The authors of Ref. [41] use the pole mass instead of the MS, and include α4
s and QED corrections.

This explains some numerical differences in the analyses.
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Figure 9. Comparison of ISR-corrected BABAR data in the continuum region (black dots with
error bars) with pQCD (purple band). The red band shows our reconstruction of the continuum,
which includes a linear fit to the BaBar data, patched to the pQCD prediction in a smooth way
using a cubic polynomial in the energy.

Rth
bb̄ (s) = NcQ

2
b R

ns(s,m 2
b (
√
s), nf = 5, α

(nf=5)
s (

√
s)) , (6.14)

where

Rns(s,m 2
b (µ), nf = 5, α

(nf=5)
s (µ), µ)

= 1 +
αs
π

+
(αs
π

)2
(1.40923− 1.91667Ls) +

(αs
π

)3
(− 12.7671− 7.81872Ls + 3.67361L2

s )

+
m 2
b (µ)

s

[
12
αs
π

+
(αs
π

)2
(104.833− 47Ls) +

(αs
π

)3
(541.753− 724.861Ls + 137.083L2

s )
]

+
m4
b(µ)

s2

[
− 6 +

(αs
π

)
(− 22 + 24Ls) +

(αs
π

)2
(139.014− 4.83333Lm + 214.5Ls − 71L2

s )

+
(αs
π

)3
(3545.81− 158.311Lm + 9.66667L2

m − 538.813Ls + 37.8611Lm Ls

− 1037.79L2
s + 185.389L3

s )
]
, (6.15)

with

Ls ≡ ln
( s
µ2

)
, Lm ≡ ln

(m 2
b (µ)

s

)
, αs = α

(nf=5)
s (µ) . (6.16)

We use the initial conditions mb(mb) = 4.2 GeV and αs(mZ) = 0.118.
Therefore, for the continuum region we use the following expression,
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n Resonances 10.62− 11.2062 11.2062−∞ Total
1 1.394(12|22) 0.270(2|9) 2.862(0|108) 4.526(12|111)

2 1.459(12|22) 0.226(1|8) 1.148(0|45) 2.834(12|51)

3 1.538(12|22) 0.190(1|7) 0.611(0|24) 2.338(12|34)

4 1.630(13|22) 0.159(1|6) 0.365(0|15) 2.154(13|27)

Table 3. Results for our computations of the experimental moments. The second column collects
the contribution from the first four Υ resonances (using the narrow width approximation). The
third to fifth columns show the contributions from the threshold (using ISR-corrected BABAR
data) and continuum (using an interpolation between a linear fit to the BaBar data with highest
energy and pQCD as a model for the lack of data) regions, and the total moment determinations,
respectively. The two numbers quoted in parentheses correspond to the uncorrelated and correlated
experimental uncertainties, respectively. All numbers are given in units of 10−(2n+1) GeV−2n.

MpQCD
n =

∫ s1

s0

ds
Rcubic
bb (s)

sn+1

[
1 + γ′

0.04(m2
Z − s) + 0.003(s− s0)

m2
Z − s0

]
(6.17)

+

∫ m2
Z

s1

ds
Rth
bb (s)

sn+1

[
1 + γ′

0.04(m2
Z − s) + 0.003(s− s0)

m2
Z − s0

]
+ (1 + 0.003 γ′)

∫ ∞
m2
Z

ds
Rth
bb (s)

sn+1
, γ′ = 0± 1 ,

with s0 = (11.2062 GeV)2, s1 = (11.52 GeV)2 and Rcubic
bb is a cubic function that

smoothly interpolates between the linear fit to BaBar data and pQCD. Here γ′ is the
auxiliary variable used to parametrize our uncertainty, which we consider as 100% correlated
among the various moments. The related entries of the correlation matrix are trivially
computed as

CpQCD
nn′ =

∂MpQCD
n

∂γ′
∂MpQCD

n′

∂γ′
. (6.18)

6.4 Final Results for the Experimental Moments

The full result for the experimental moments is obtained by summing up all the portions
described before,

M exp
n = M res

n +M thr
n +MpQCD

n . (6.19)

We determine two correlation matrices among the first four moments. One of them
comes from the various uncorrelated uncertainties, whereas the other encodes the systematic
uncertainties. We denote them as the correlated and uncorrelated correlation matrices,
respectively. These are computed by summing up the respective individual matrices from
each region, and in the same way as we did for our charm analysis [6], we assume there is
no region-to-region correlation. We find:
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Cexp
uc =


0.0002 0.0002 0.0002 0.0002

0.0002 0.0002 0.0002 0.0002

0.0002 0.0002 0.0002 0.0002

0.0002 0.0002 0.0002 0.0002

, Cexp
cor =


0.0122 0.0055 0.0032 0.0021

0.0055 0.0026 0.0017 0.0012

0.0032 0.0017 0.0011 0.0009

0.0021 0.0012 0.0009 0.0007

, (6.20)

where the (n,m) entry of each matrix is given in units of 10−2(n+m+1) GeV−2(n+m) ,
and the total correlation matrix is the sum of Cexp

uc and Cexp
cor . The contribution of each

region to the final experimental moments and the corresponding uncertainties are presented
in Table 3.

7 Comparison to other Determinations of the Experimental Moments

In this section we compare our result for the experimental moments for the bottom vector
current correlator with previous determinations. These are collected in Table 4.11 The most
relevant comparison is between the second and third columns, where the most recent data
on the narrow resonances and the BABAR continuum data are used. For the contributions
from the narrow resonances we have a perfect agreement with [27], although slightly larger
errors. For the threshold region our results are slightly smaller, and our uncertainties are
almost identical; however, this is not a one-to-one comparison, since our integration region
is slightly smaller. Indeed if we consider their energy range we agree with their numbers
almost perfectly. The main difference between these two determinations is the estimate
of the uncertainties coming from the continuum region, where the pQCD prediction for
the Rb-ratio is employed. Whereas we adopt the more conservative approach described in
Sec. 6.3, Ref. [27] employs only the perturbative uncertainties related to the purple band in
Fig. 9. In Ref. [41] the same collaboration presents a more critical analysis of their errors.
In particular they observe that the last experimental measurement of BABAR, after being
corrected for ISR, disagrees with the pQCD prediction at the 20% level (way outside the cor-
responding uncertainties).12 To resolve this discrepancy they assume two possible scenarios:
a) pQCD starts being reliable at energies above 13GeV (therefore the authors interpolate
between the last experimental point and pQCD at 13GeV); b) BABAR systematic errors
have been underestimated (therefore the central values of the experimental measurements
are rescaled by a factor of 1.21). Ref. [41] quotes the values of the experimental moments
and the resulting values for the bottom mass for these two scenarios. Since the effect of
these differences of the two bottom masses obtained from MV

2 is only slightly larger than
the size of the other uncertainties (that is, the uncertainties of the theoretical moments
plus the other experimental errors) added quadratically, it is argued that this issue can

11In the case of Ref. [7], we reconstruct the experimental moments from their Table 3, where the moments
are split in several different contributions. For the reconstructed uncertainty, we take one half of the error
of the narrow resonances correlated to each other, and the other half as uncorrelated. The errors from
patches where theory input is used are taken as fully correlated to one another. The total narrow-resonance
error, and the total “theory-patch” error are added in quadrature to get the final uncertainty.

12From our own computation of the ISR-corrected Rb-ratio, we only observe a 10% deviation between
the last data point and the pQCD prediction, see Fig. 9.
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be ignored. We disagree with this argument, since the issue constitutes an independent
source of uncertainty not covered by the other errors and, in particular, being unrelated to
uncertainties in the theoretical moments. Therefore this shift must be taken as an addi-
tional source of error on the experimental moments (and indeed would then dominate the
corresponding total error). The additional error (to be added in quadrature to the one in
round brackets) is quoted in square brackets in the third column of Table 4. It amounts
to an additional error of 30, 18, 11 and 7MeV for mb(mb) extracted from moments MV

1 to
MV

4 , respectively.
Refs. [7, 17, 44] have used the older CLEO and CUSB experimental measurements,

resulting in relatively large uncertainties. In Ref. [44] the CLEO measurements are divided
by a factor of 1.28, and an error of 10% is assigned. It is argued that this procedure is
necessary to reconcile old and new CLEOmeasurements, as well as to improve the agreement
with pQCD predictions. Ref. [7] uses values for the Υ-states electronic partial widths given
by the PDG 2002, which have larger uncertainties. This makes their determination of the
experimental moments rather imprecise.

Concerning the continuum region where no measurements exist, while some previous
analyses have taken a less conservative approach than ours, in Ref. [62] a much more
conservative approach is adopted. In this region they consider the Rb-ratio as constant
with a 66% uncertainty. In Ref. [7] also a more conservative approach is adopted. Between
11.1 and 12GeV O(α2

s) pQCD errors are used, which are larger than 10%; for energies
above 12GeV a global 10% correlated error is assigned.

n This work Chetyrkin et al. ’09 [27] Kuhn et al. ’07 [44] Corcella et al. ’03 [7]
1 4.526(12|111) 4.592(31)[67] 4.601(43) 4.46(17)

2 2.834(12|51) 2.872(28)[51] 2.881(37) 2.76(15)

3 2.338(12|34) 2.362(26)[40] 2.370(34) 2.26(13)

4 2.154(13|27) 2.170(26)[35] 2.178(32) 2.08(12)

Table 4. Comparison of our results for the experimental moments of the bottom vector correlator
(2nd column) to previous determinations (3rd to 5th columns). The 2nd and 3rd columns use
BABAR data from Ref. [46], while 4th and 5th use older data from Refs. [50, 51]. The 3rd and
4th columns use perturbative uncertainties in the continuum region, while 2nd and 5th use a more
conservative estimate based on the agreement of data and pQCD. In the 3rd column, we quote in
square brackets our own estimate of an additional systematic error from the considerations made
in Ref. [41]. All numbers are given in units of 10−(2n+1) GeV−2n.

8 Computation of the Experimental Values for the Ratios of Moments

Once the experimental values for the moments of the vector and pseudoscalar correlators
have been computed, it is in principle a straightforward exercise to calculate ratios of
them. The central value is obtained by simply taking the ratio of the corresponding central
values. To obtain the uncertainties (or more generally, the correlation matrix among the
different ratios of moments), one needs to have access to the complete correlation matrix
among the moments. Our computation in Ref. [6] [see Eqs. (3.21) and (3.22)] for the
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Figure 10. Comparison of various determinations of the experimental moments for the bottom
vector correlator. Results in blue correspond to analyses of the same collaboration. The green
result and the determination at the top do not use the new BABAR results.

charm experimental moments, and the procedure presented in Sec. 6 [see Eq. (6.20)] to
determine the bottom experimental moments, yield the two desired correlation matrices, for
statistical and systematical correlations. For the pseudoscalar moments the information on
correlations is not provided in Ref. [8]. Therefore we make the simplest possible assumption,
which is that the moments are fully uncorrelated. This will most certainly overestimate
the uncertainties for the ratios of moments, but given that we are anyway dominated by
perturbative uncertainties, our approach appears justified. We collect our results for the
computation of the ratios of experimental moments in Table. 5. Readers interested in the
full correlation matrix among them can send a request to the authors.

9 Results

In this section we present the final results for our analyses at O(α3
s). We take method (c)

(linearized iterative expansion) as our default expansion. For the estimate of the perturba-
tive uncertainty, we perform double scale variation in the ranges mc(mc) ≤ µα, µm ≤ 4GeV
for charm (either correlator), and mb(mb) ≤ µα, µm ≤ 15GeV for bottom, and we discard
3% of the series with the worst convergence (that is, with highest values of the Vc con-
vergence parameter). For the charm mass determinations (either vector or pseudoscalar
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n Vector nf = 4 Vector nf = 5 Pseudoscalar nf = 4

1 6.969(32|59) 6.262(10|53) 0.971(32)

2 8.807(23|26) 8.251(09|48) 1.048(53)

3 9.547(14|13) 9.212(08|35) 1.092(77)

Table 5. Ratios of experimental moments for the vector correlator with 4 and 5 flavors (second and
third column, respectively), and for the pseudoscalar correlator with 4 flavors (fourth column). For
the vector current, the first error in parenthesis corresponds to the statistical uncertainty, whereas
the second corresponds to the systematic one. For the pseudoscalar correlator we only quote the
lattice error. Moments given in units of 10−2 GeV−2, 10−3 GeV−2 and, 10−1 GeV−2 for the second,
third, and fourth column, respectively.

correlator) we use the first moment as our default, given that it is theoretically more reli-
able than the higher moments. For the analysis of the bottom mass from regular moments,
we use MV

2 as our default, since it is less afflicted by systematic experimental errors than
the first moment, and is nevertheless theoretically sound. For the charm and the bottom
mass analyses we also examine the ratio of the second over the first moment as a cross
check and validation of the results from regular moments. The results for the experimental
moments are collected in: the last column of Table 9 in Ref. [6] (charm vector correlator
regular moments); the last column of Table 3 (bottom vector correlator regular moments);
Table 1 (lattice regular moments); and Table 5 (all ratios of moments).

We also analyzed higher (and also lower for the case of bottom) moments and ratios of
moments for all correlator and quark species. Since, as already discussed, fixed-order and
contour-improved higher moments are particularly afflicted by their nonlinear dependence
on the quark mass, we only consider the linearized and iterative methods for this analysis. In
any case, since higher moments have a larger sensitivity to infrared effects and are therefore
theoretically less sound, the analysis involving higher moments mainly aims at providing
cross checks. The results are collected in a graphical form in Fig. 11, and the numerical
results can be obtained from the authors upon request.

Our final determinations include nonperturbative effects through the gluon condensate
including its Wilson coefficients at order O(αs). Furthermore, we assign as a conservative
estimate of the nonperturbative uncertainty twice the shift caused by including the gluon
condensate. In any case, this error is very small, particularly for the bottom mass determi-
nation. One source of uncertainty which we have not discussed so far is that coming from
the strong coupling constant. Although the world average αs(mZ) = 0.1185 ± 0.006 has
a very small error, see Ref. [48], one cannot ignore the fact that it is fairly dominated by
lattice determinations, e.g. [29]. Furthermore, there are other precise determinations with
lower central values and in disagreement with the world average from event-shapes [63–66]
and DIS [67]. A review on recent αs determinations can be found in Refs. [68–70]. There-
fore, in analogy with Ref. [6], we perform our analyses for several values of αs(mZ) between
0.113 and 0.119, and provide the central values and perturbative errors as (approximate)
linear functions of αs(mZ). The other uncertainties are essentially αs-independent, so we
just provide the average. We also quote quark mass results for αs taken from the world
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Figure 11. Charm and bottom quark mass determinations for different moments (upper row) or
ratios of moments (lower row), for the linearized (in blue) and iterative (in red) methods. Panels
(a), (b) [(e), (f)] show the results for the charm mass from moments [ratios of moments] of the
vector and pseudoscalar correlator, respectively. Panels (c) and (g) show the results for the bottom
mass from the vector correlator, for moments and ratios of moments, respectively.

average:

αs(mZ) = 0.1185± 0.0021 , (9.1)

where we adopt an uncertainty 3.5 times larger than the current world average [48].
We note that in Ref. [6] we have taken αs(mZ) = 0.1184± 0.0021 as an input which causes
only tiny sub-MeV differences in the quark masses. We refrain ourselves from presenting
the αs dependence of the higher-moment result, which the reader can get from the authors
upon request.

For the numerical analyses that we carry out in this article we have created two com-
pletely independent codes: one using Mathematica [71] and another using Fortran [72],
which is much faster and suitable for parallelized runs on computer clusters. The two codes
agree for the extracted quark masses at the level of 1 eV.

9.1 Results for the Charm Mass from the Vector Correlator

For the analysis using the first moment of the charm vector correlator we use the experimen-
tal value quoted in Eq. (4.1) of Ref. [6]: MV, exp

1 = (0.2121± 0.0020stat ± 0.0030syst) GeV−2.
The outcome of this analysis, and one of the main results of this paper, is:
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Figure 12. Dependence on αs(mZ) of the central values of mc(mc) and the corresponding per-
turbative (red), statistical (orange), systematical (blue) and nonperturbative uncertainties (green),
for the analysis of the first moment [panels (a) and (b)] and the ratio of the second over the first
moment, [panels (c) and (d)], corresponding to the vector correlator.

mc(mc) = 1.288 ± (0.006)stat ± (0.009)syst ± (0.014)pert (9.2)

± (0.010)αs ± (0.002)〈GG〉GeV ,

where the quoted errors are (from left to right) experimental uncorrelated, experimental
correlated, peturbative, due to the uncertainty in αs as given in Eq. (9.1), and nonpertur-
bative. If we adopt the correlated scale variation 2 GeV ≤ µα = µm ≤ 4GeV, we obtain for
method (c) 1.297 ± (0.005)pert, with the other errors essentially unchanged. For method (a)
we would get 1.290 ± (0.0007)pert, with a scale variation even smaller than the nonpertur-
bative uncertainty, and 20 times smaller than our perturbative error estimate with double
scale variation [3 times for method (c)]. The dependence on αs(mZ) is shown graphically
in Figs. 12(a) and 12(b), and analytically the result reads:

mc(mc) = (1.288 + 4.40× [αs(mZ)− 0.1185]) ± (0.006)stat ± (0.009)syst (9.3)

± (0.014 + 0.95× [αs(mZ)− 0.1185])pert ± (0.002)〈GG〉 .
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Eqs. (9.2) and (9.3) supersede the results given in Eqs. (4.5) and (4.2) of Ref. [6],
respectively.

For the ratio of the second over the first moment of the vector correlator we use as the
experimental input RV, exp

1 = (6.969 ± 0.032stat ± 0.059syst) × 10−2 GeV−2, which yields
the following result for the charm mass:

mc(mc) = 1.271 ± (0.003)stat ± (0.005)syst ± (0.016)pert (9.4)

± (0.004)αs ± (0.004)〈GG〉GeV .

With correlated variation 2 GeV ≤ µα = µm ≤ 4 GeV we get 1.258 ± (0.005)pert and
1.279 ± (0.007)pert for methods (a) and (c), respectively. In this case the scale variations
are a factor of 2 to 3 smaller than our perturbative error estimate.13 The αs dependence,
which can be seen in Figs. 12(c) and 12(d), has the form:

mc(mc) = (1.271 + 1.64× [αs(mZ)− 0.1185]) ± (0.003)stat ± (0.005)syst (9.5)

± (0.016 + 1.081× [αs(mZ)− 0.1185])pert ± (0.004)〈GG〉 .

We observe that the central value for the ratios of moments is 17MeV smaller than
for the first moment analysis, but fully compatible within theoretical uncertainties. Fur-
thermore, the dependence on αs of the central value obtained from the regular moment
analysis is larger, which translates into a corresponding larger error due to the uncertainty
in αs. Both determinations have very similar perturbative uncertainties for any value of
αs. We also see that the charm mass from the ratio of moments has smaller experimental
uncertainties, as a result of cancellations between correlated errors. Moreover, the charm
mass result from RV1 has a nonperturbative error twice as large as that from MV

1 . The two
charm mass results from the first moment and the moment ratio are compared graphically
in Fig. 15(a).

9.2 Results for the Charm Mass from the Pseudoscalar Correlator

For the analysis of the first moment of the charm pseudoscalar correlator we employ
MP, latt

1 = (0.1402 ± 0.0020latt) GeV−2 [8], which yields the following charm mass de-
termination:

mc(mc) = 1.267 ± (0.008)lat ± (0.035)pert ± (0.019)αs ± (0.002)〈GG〉GeV . (9.6)

With correlated scale variation 2 GeV ≤ µα = µm ≤ 4 GeV we obtain the central values
1.278 and 1.276GeV, for methods (b) and (c), respectively. In both cases the scale variation

13Had we taken the fixed-order expansion (a) and correlated scale variation 2 GeV ≤ µα = µm ≤ 4 GeV

as the estimate for the perturbative uncertainty, the result from RV1 with all errors added quadratically
would be 1.258±0.013GeV, whereas the result from MV

1 would read 1.290±0.015GeV. Both results would
not be consistent to each other.
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Figure 13. Dependence on αs(mZ) of the central values of mc(mc) and the corresponding
perturbative (red), lattice (blue) and nonperturbative uncertainties (green), for the analysis of the
first moment [panels (a) and (b)] and the ratio of the second over the first moment, [panels (c) and
(d)], corresponding to the pseudoscalar correlator.

is 4MeV, 8 times smaller than our perturbative error estimate with double scale variation.
For the αs dependence, we find

mc(mc) = (1.267 + 8.36× [αs(mZ)− 0.1185]) ± (0.008)lat (9.7)

± (0.035 + 2.38× [αs(mZ)− 0.1185])pert ± (0.002)〈GG〉 ,

which is also displayed in Figs. 13(a) and 13(b). As expected, the perturbative error is
much larger than for the vector correlator, and has a stronger dependence on αs. We see
that the central value has a much stronger dependence on αs as well, which again translates
into a large error due to the uncertainty in the strong coupling. The central value is 21MeV
lower than Eq. (9.2), but fully compatible within errors [see Fig 15(a)]. The nonperturbative
uncertainties are identical to the vector current case.

For the ratio of second over the first moment of the pseudoscalar correlator we use
RP, latt

1 = (0.0971 ± 0.0032latt)GeV−2. We find for the charm mass
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mc(mc) = 1.266 ± (0.020)latt ± (0.018)pert ± (0.006)αs ± (0.002)〈GG〉GeV . (9.8)

Using correlated variation 2 GeV ≤ µα = µm ≤ 4 GeV one obtains 1.270 ± (0.007)pert

and 1.278 ± (0.003)pert for methods (a) and (c), respectively. These scale variations are a
factor 3 and 6 smaller than our perturbative error estimate, respectively. The αs dependence
is

mc(mc) = (1.266 + 2.31× [αs(mZ)− 0.1185]) ± (0.020)latt (9.9)

± (0.018 + 1.25× [αs(mZ)− 0.1185])pert ± (0.002)〈GG〉 .

The central values for both MP
1 and RP1 are almost identical, but their αs dependence

is not: the latter is much smaller (even smaller than forMV
1 , but larger than for RV1 ). Note

that the lattice error is larger for the ratio since we made the very conservative assumption
that they are fully uncorrelated. This is because the correlation matrix for various lattice
moments is unknown. The perturbative error reduces by a factor of two for any value
of αs when using the ratio, but we have checked that this only happens for the iterative
expansion. On the other hand, the αs dependence of the perturbative uncertainty is smaller
for the regular moment determination. The nonperturbative errors are identical.

All charm determinations are illustrated graphically in Fig. 15(a), where in red we show
our preferred determination from the first moment of the vector correlator.

9.3 Results for the Bottom Mass from the Vector Correlator

For our determination of the bottom quark mass from the second moment of the vector
correlator we use for the experimental moment MV, exp

2 = (2.834 ± 0.012stat ± 0.051syst)×
10−5 GeV−4, and we obtain

mb(mb) = 4.176 ± (0.004)stat ± (0.019)syst ± (0.010)pert (9.10)

± (0.007)αs ± (0.0001)〈GG〉GeV .

The perturbative error is 30% smaller than for the charm vector correlator analysis, as
a result of the smaller value of αs at the scales close to the bottom mass. This is consistent
with our discussion on the convergence properties of perturbation series for the bottom
quark carried out in Sec. 4. The total error is dominated by the experimental systematic
uncertainty, which in turn mainly comes from the continuum region where one relies on
modeling in the absence of any experimental measurements. The nonperturbative error is
completely negligible. This is expected since it is suppressed by two powers of the bottom
mass. Using the correlated scale variation 5 GeV ≤ µα = µm ≤ 15 GeV for methods (a)
and (c) we get 4.178 and 4.182 for the central values and scale variations which are 20 and
3 times smaller, respectively. The αs dependence reads
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Figure 14. Dependence on αs(mZ) of the central values of mb(mb) and the corresponding per-
turbative (red), statistical (orange), systematical (blue) and nonperturbative uncertainties (green),
for for the analysis of the second moment [panels (a) and (b)] and the ratio of the second over the
the first moment [panels (c) and (d)] of the vector correlator.

mb(mb) = (4.176 + 3.22× [αs(mZ)− 0.1185]) ± (0.004)stat ± (0.019)syst (9.11)

± (0.010 + 0.472× [αs(mZ)− 0.1185])pert ± (0.0001)〈GG〉 .

For the analysis based on the ratio of the second moment over the first, we use RV, exp
2 =

(6.262 ± 0.010stat ± 0.053syst) × 10−3 GeV−2, and with this value we obtain the bottom
mass

mb(mb) = 4.179 ± (0.003)stat ± (0.017)syst ± (0.009)pert (9.12)

± (0.003)αs ± (0.0002)〈GG〉GeV .

With correlated scale variation 5 GeV ≤ µα = µm ≤ 15 GeV we obtain 4.175 ±
(0.003)pert and 4.182 ± (0.004)pert for methods (a) and (c), respectively. In this case
the scale variation is smaller by a factor 3 and 2, respectively. The αs dependence reads as
follows:
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Figure 15. Charm (a) [bottom (b)] mass determinations from the first [second] moment of the
vector correlator (in red), the first moment of the pseudoscalar correlator (green, charm only),
and the ratio of the second over the first moment of the vector (blue) and pseudoscalar correlator
(purple, charm only).

mb(mb) = (4.179 + 1.199× [αs(mZ)− 0.1185]) ± (0.003)stat ± (0.017)syst (9.13)

± (0.009 + 0.426× [αs(mZ)− 0.1185])pert ± (0.0002)〈GG〉 .

Although the central value for the ratio analysis is 3MeV higher, this has no significance
given the size of the uncertainties. The dependence of the central value on αs is three times
smaller for the ratio analysis. The perturbative error and its αs dependence are roughly
the same for the ratio and the single moment analysis. Moreover, the two experimental
errors are very similar. This is because, even though there is some cancellation of correlated
errors in the ratio, a significant part of the huge systematic error of the first moment remains
uncanceled.

A graphical illustration of the two bottom mass determinations is shown in Fig. 15(b).
Both combined uncertainties and central values are rather similar, and we adopt the result
from the second moment (in red) as our default result.

10 Comparison to other Determinations

In this section we make a comparison to previous analyses of our updated charm mass
determination from the vector correlator, our new results for the charm mass from the
pseudoscalar current correlator and of our bottom mass determination. We restrict our
discussion to determinations which use QCD sum rules with infinite as well as finite energy
range for the vector or pseudoscalar current correlators, and including relativistic and non-
relativistic versions of the sum rules. We do not cover charm mass determinations from DIS
or bottom mass determinations from jets (which are in any case rather imprecise), as well
as determinations which are based on the mass of bound states (B mesons or quarkonia) or
B decays.
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In Figs. 16(a) and 16(b) we present in a graphical form a compilation of recent sum
rule determinations of the charm and bottom masses, respectively. We have labeled them
from top to bottom with numbers from 1 to 14. We note that comparing these results,
one has to keep in mind that different analyses in general employed different values and
uncertainties for the strong coupling. Only the analyses in Refs. [6, 27, 38, 47, 73] and ours
have provided the dependence of their results on the value of αs(mZ).

10.1 Charm Mass

Let us first focus our attention on the charm mass, Fig. 16(a). Within each color, de-
terminations are ordered according to publication date. In red (determinations 12 to 14)
we show the results of our collaboration: 12 and 13 for the vector correlator, the former
(dashed) corresponding to Ref. [6] without trimming procedure, and the latter (solid) cor-
responding to this work, which includes the trimming procedure. Determinations 12 to 14

are the only analyses using uncorrelated scale variation. Determination 6 (gray) [38] sets
µm = mc(mc), and all the other analyses have set µm = µα. Determinations in blue (1 [29],
2 [28] and 3 [8]) were performed by the HPQCD collaboration, which employ method (b)
for the pseudoscalar correlator moments used for the mass determination in their lattice
analyses. Only 1 to 3 and 14 use pseudoscalar moments, while all the other analyses use the
vector correlator. Among those 7 [26], 8 [27], 9 [44] and 10 [17] use data in the threshold
region only up to 4.8GeV; analysis 6 uses two patches of data in the threshold region, one
from threshold to 4.7GeV, and another between 7.2 and 11GeV; analyses 12 and 13 use
all available data (see Ref. [6] for the complete bibliographic information on charm data).
The result in 6 uses only O(α2

s) perturbative input [all the other analyses utilize O(α3
s)

computations] and older information on the narrow resonances, from the PDG 2006. They
also study the fixed-order expansion and two methods of contour improvement. In black (8
to 10) we display results using fixed order analyses at O(α3

s) from the Karlsruhe (8 and 9)
and Würzburg (10) collaborations.

Analysis 7 (orange) corresponds to weighted finite-energy sum rules. They employ a
kernel which enhances the sensitivity to the charm mass, and at the same time reduces the
sensitivity to the continuum region. Green color analyses, collected in 4 [74, 75] and 5 [73],
apply other kinds of sum rules. Analysis 5 uses a finite energy sum rule similar to 7, but
the kernel makes the sensitivity to the charm mass quite small. On the other hand, the
two determinations of 4 use shifted moments, ratios of shifted moments, and exponential
sum rules, and consider only the contributions from the first 6 vector resonances in the
narrow width approximation, and the pQCD prediction for the continuum. The lower
analysis of 4 [74] includes contributions from condensates up to dimension 6; the higher [75]
includes condensates up to dimension 8. In purple (11 [76]) we show the only analysis
which uses large-n moments for the charm mass fits, employing NRQCD methods to sum
up large logs and threshold enhanced perturbative corrections, supplemented with fixed
order predictions for the formally power suppressed terms. This analysis uses contributions
from narrow resonances, plus a crude model for the threshold and continuum patches, for
which a conservative uncertainty is assigned. We note, however, that this analysis might
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be questioned since perturbative NRQCD is in general not applicable for the charmonium
states.

Our new vector correlator result agrees well with the world average, having a similar un-
certainty. Our result is fully compatible with the other determinations shown in Fig. 16(a).
As mentioned already before, we disagree with the small perturbative uncertainties related
to the scale variations of the vector and/or pseudoscalar moments adopted in analyses 1 to
3 and 7 to 10.

10.2 Bottom Mass

Let us now turn our attention to the bottom mass results, see Fig. 16(b). The coloring and
chronological conventions are analogous to Fig. 16(a), and we try to keep a similar ordering.
We show three nonrelativistic determinations (11 [47], 12 [62] and 13 [77]) in purple; O(α2

s)

fixed-order analyses are shown in gray (5 [7]), black (10 [78]) and green (4 [79]); finite energy
sum rules also based on fixed-order appear in orange (6 [31]) and green (4); there are two
lattice analyses in blue, collected in 1 [28, 30]. Analyses 3, 6, 7 and 11 to 13 use the new
BABAR data, whereas the others use the older CLEO and CUSB data. Analyses 4 and
11 include only the contributions of the first six vector resonances. Analyses 4 and 5 use
older measurements of the electronic width for the narrow resonances. Analyses 3, 4, 6 to
9 use pQCD in the high-energy spectrum for the experimental moments. The theoretical
treatment of the bottom mass analyses in red, gray, black, blue and green are in complete
analogy to their charm mass analyses: 3 and 4 for bottom correspond to 4 and 5 for charm,
respectively; 1 in bottom corresponds to 1 and 2 for charm.

The upper analysis of 1 [30] uses a nonrelativistic lattice action to compute ratios of
large-n moments, which are later compared to relativistic continuum perturbation theory.
Because the continuum computation do not sum up Sommerfeld enhanced terms, this proce-
dure is questionable. The analysis 10 uses a combination ofMV

6 with the infinite momentum
transfer moment, both in fixed-order, in order to constrain the continuum region. They only
use experimental information on narrow resonances, and model the rest of the spectrum
with theory predictions. Finally, they make the following scale choice: µα = µm = mb(mb)

and estimate the truncation error from an ansatz for the O(α3
s) term.14 Analyses 11 and 13

use large-n moments and NRQCD methods for their theoretical moments. Analysis 12 uses
NRQCD fixed-order perturbation theory at N3LO (which accounts for the summation of the
Coulomb singularities) and 13 uses renormalization group improved perturbation theory in
the framework of vNRQCD at N2LL order. Both analyses employ low-scale short-distance
masses to avoid ambiguities related to the pole mass renormalon. Analysis 12 also uses
N3LO NRQCD fixed-order input, but is incomplete concerning the contributions from the
continuum region in the theoretical moments. Moreover, they extract the pole mass which
is then converted to the MS scheme.

Our result 14 is in full agreement with the world average, having a slightly smaller
uncertainty. It also agrees with the other analyses shown, with slightly smaller or compa-

14Ref. [78] also makes a determination of the charm mass. We exclude it from our comparison since it is
not used in the PDG average.
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rable uncertainties. We disagree with the small perturbative uncertainties related to scale
variations quoted in 6 to 10.

H L @ D

@ D

@ D

(a)

H L @ D

(b)

Figure 16. Comparison of recent determinations of charm (a) and bottom (b) quark masses from
sum rule analyses. Red results correspond to our determination. Black and gray correspond to
O(α2

s) and O(α3
s) analyses, respectively. Purple results use nonrelativistic sum rules. Orange use

weighted finite energy sum rules. Blue results are based on QCD sum rules using lattice simulation
results as experimental data. Green labels other kinds of sum rule analyses (FESR, Q2-dependent
moments, ratios of moments).

11 Conclusions

In this work we have determined the MS charm and bottom quark masses from quarko-
nium sum rules in the framework of the OPE, using O(α3

s) perturbative computations,
plus nonperturbative effects from the gluon condensate including its Wilson coefficient at
O(αs). For the determination of the perturbative uncertainties we independently varied
the renormalization scales of the strong coupling and the quark masses, in order to account
for the variations due to different possible types of αs expansions, as suggested earlier in
Ref. [6].

In order to avoid a possible overestimate of the perturbative uncertainties, coming
from the double scale variation in connection with a low scale of αs and resulting in badly
convergent series, we have re-examined the charm mass determination from charmonium
sum rules (vector correlator) supplementing the analysis with a convergence test. The
convergence test is based on Cauchy’s radical test, which is adapted to the situation in
which only a few terms of the series are known, and quantifies the convergence rate of each
series by the parameter Vc. We find that the distribution of the convergence parameter Vc
coming from the complete set of series peaks around its mean value, and allows to quantify
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the overall convergence rate of the set of series for each moment in a meaningful way. This
justifies discarding (or “trimming”) series with values of Vc much larger than the average.
For our analysis we discard 3% of the series having the highest Vc values, which results in
a reduction of the perturbative uncertainty for the MS charm mass mc(mc) from 19MeV
in [6] to 14MeV (which amounts to 26%), and a small shift of + 5MeV in the central value.
Our new determination of the charm mass from the first moment (which is theoretically
the cleanest) of the vector correlator reads:

mc(mc) = 1.288 ± 0.020 GeV , [Vector Correlator] (11.1)

where all sources of uncertainty have been added in quadrature. This result supersedes
our corresponding earlier result from Ref. [6], which was 1.282 ± 0.024GeV. This makes it
clear that the trimming procedure discards series which produce small values of the charm
mass.

We have applied the same method of theory uncertainty estimate to analyze the
HPQCD lattice simulation results for the pseudoscalar correlator. Our convergence test
signals that the pseudoscalar moments have far worse convergence than the corresponding
vector ones. This translates into an uncertainties of 35MeV due to the truncation of the
perturbative series and the error in αs (roughly twice as big as for the vector determina-
tion). In contrast, using correlated scale variation (e.g. setting the scales in the mass and
the strong coupling equal) the scale variation can be smaller by a factor of 8. Our new
determination from the first moment (again being the most reliable theoretical prediction)
of the pseudoscalar correlator reads mc(mc) = 1.267±0.041GeV, where again all individual
errors have been added in quadrature. The combined total error is twice as big as for the
vector correlator, and therefore we consider it as a validation of Eq. (11.1) in connection
with the convergence test. The result is in sharp contrast with the analyses carried out
by the HPQCD collaboration [8, 28, 29], where perturbative uncertainties of 4MeV are
claimed. We have checked that, as for the vector correlator, for the different possible types
of αs-expansion the correlated variation in general leads to a bad order-by-order convergence
of the charm mass determination.

The second important result of this work is the determination of the bottom quark
mass from the vector correlator. We have reanalyzed the experimental moments by com-
bining experimental measurements of the first four narrow resonances, the threshold region
covered by BABAR, and a theoretical model for the continuum. This theoretical model
is an interpolation between a linear fit to the BaBar data points with highest energy and
pQCD, to which we assign a 4% systematic uncertainty which decreases linearly to reach
0.3% at the Z-pole, and stays constant at 0.3% for higher energies. Our treatment is mo-
tivated by the error function yielded by the fit to BaBar data in the energy range between
11.0 and 11.2GeV and the discrepancy between pQCD and experimental measurements at
the Z-pole. This results into a large error for the first moment, and therefore we choose the
second moment (which is theoretically as clean as the first one for the case of the bottom
quark) for our final analysis, giving a total experimental uncertainty of 18MeV. Our treat-
ment of the experimental continuum uncertainty is in contrast to Ref. [27], where instead
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the very small perturbative QCD uncertainties (less than 1%) are used, claiming an experi-
mental uncertainties of 6MeV. In the light of the analysis carried out here, supported by the
observations made in Ref. [41], we believe this is not justified. Our convergence test reveals
that, as expected for the heavier bottom quark, the perturbative series converge faster than
for the charm quark. Correspondingly, the perturbative and αs uncertainties are ∼ 30%

smaller than those for charm. Taking correlated scale variation as used in Refs. [27, 31] the
perturbative error estimate can shrink up to a factor of 20. We also find that correlated
variation leads to incompatible results for the different types of αs-expansions. Our final
result for the bottom mass from the second moment, with all errors added in quadrature,
reads:

mb(mb) = 4.176 ± 0.023 GeV , [Vector Correlator] (11.2)

where the total error is fairly dominated by the systematic error, which comes from
the continuum region of the spectrum. Our uncertainty is very similar to the one obtained
by the HPQCD analysis, but 30% larger than the 16MeV claimed by [27]. Our central
value is 13MeV larger than the latter. This good agreement is a result of two effects that
push in opposite directions: smaller value of the second experimental moment, and different
perturbative analysis. Curiously enough, a similar accidental cancellation was observed for
the charm mass in [6].

In order to further validate the results discussed above, we have also analyzed the ratios
of consecutive moments of each one of the three correlators as alternative observables. In
all cases the results from the moment ratios agree very well the regular moment analyses.
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A Numerical Values for the Perturbative Coefficients

In this appendix we succinctly collect the numerical values for all of the coefficients appear-
ing in the perturbative series, such that our analysis can be reproduced. We organize these
values in tables, each of them corresponding to a different equation.
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n = 1 n = 2 n = 3 n = 4

[aV (nf = 5)]0,0n − 4.011 − 6.6842 − 9.7224 − 13.0879

[aV (nf = 5)]1,0n − 36.9604 − 69.9123 − 112.669 − 165.326

[aP (nf = 4)]0,0n 8.02101 0 − 9.72244 − 20.9406

[aP (nf = 4)]1,0n 39.1439 − 36.3842 − 152.67 − 309.925

Table 6. Numerical values for the coefficients of Eq. (2.10) for the vector correlator with nf = 5

(first two columns), and for the pseudoscalar correlator with nf = 4 (last two columns). (Gluon
condensate contribution).

[CV ]0,00,i [CV ]1,00,i [CV ]0,10,i [CV ]0,20,i [CP ]0,00,i [CP ]1,00,i [CP ]0,10,i [CP ]0,20,i

nf = 5 nf = 4

i = 0 0 0 0 0 1.33333 0 0 0

i = 1 1.44444 0 0 0 3.11111 0 0 0

i = 2 3.21052 0 − 2.76852 0 0.115353 0 − 6.48148 0

i = 3 − 6.28764 5.53704 − 15.7977 5.30633 − 1.22241 12.963 − 10.4621 13.5031

Table 7. Numerical values of the coefficients for Eq. (2.8) for Π̂V (0) in the MS scheme and nf = 5,
and P (q2 = 0) for nf = 4.

[CV ]0,0n,i [CV ]1,0n,i [CV ]2,0n,i [CV ]3,0n,i [CV ]0,1n,i [CV ]1,1n,i [CV ]2,1n,i [CV ]0,2n,i [CV ]1,2n,i

n = 1

i = 0 1.06667 0 0 0 0 0 0 0 0

i = 1 2.55473 2.13333 0 0 0 0 0 0 0

i = 2 3.15899 8.33909 4.17778 0 − 4.89657 − 4.08889 0 0 0

i = 3 − 7.76244 18.2235 29.3221 8.12346 − 18.2834 − 37.1221 −16.0148 9.38509 7.83704

n = 2

i = 0 0.457143 0 0 0 0 0 0 0 0

i = 1 1.10956 1.82857 0 0 0 0 0 0 0

i = 2 3.23193 7.20649 5.40952 0 − 2.12665 − 3.50476 0 0 0

i = 3 − 2.64381 19.0805 35.2229 14.1249 − 15.0705 − 32.0439 − 20.7365 4.07609 6.71746

n = 3

i = 0 0.270899 0 0 0 0 0 0 0 0

i = 1 0.519396 1.6254 0 0 0 0 0 0 0

i = 2 2.06768 5.57705 6.43386 0 − 0.995509 − 3.11534 0 0 0

i = 3 − 1.17449 14.8309 36.8953 21.0888 − 9.18132 − 25.3067 − 24.6631 1.90806 5.97108

n = 4

i = 0 0.184704 0 0 0 0 0 0 0 0

i = 1 0.203121 1.47763 0 0 0 0 0 0 0

i = 2 1.22039 3.86194 7.3266 0 − 0.389316, − 2.83213 0 0 0

i = 3 − 1.386 9.10716 34.8581 28.8994 − 5.16902 − 18.3751 − 28.0853 0.746189 5.42825

Table 8. Numerical values of the coefficients for Eq. (2.2) for the vector current with nf = 5.
(Standard fixed-order expansion).
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[C̄V ]0,0n,i [C̄V ]1,0n,i [C̄V ]2,0n,i [C̄V ]3,0n,i [C̄V ]0,1n,i [C̄V ]1,1n,i [C̄V ]2,1n,i [C̄V ]0,2n,i [C̄V ]1,2n,i

n = 1

i = 0 1.0328 0 0 0 0 0 0 0 0

i = 1 1.2368 1.0328 0 0 0 0 0 0 0

i = 2 0.788784 2.80034 1.50616 0 − 2.37054 − 1.97952 0 0 0

i = 3 − 4.70257 4.68012 9.59148 2.42659 − 6.01262 − 13.2306 − 5.77361 4.54354 3.79409

n = 2

i = 0 0.822267 0 0 0 0 0 0 0 0

i = 1 0.498944 0.822267 0 0 0 0 0 0 0

i = 2 0.999196 1.74376 1.19914 0 − 0.956309 − 1.57601 0 0 0

i = 3 −3.19148 1.49991 6.92794 1.93195 − 5.03603 − 8.67158 − 4.5967 1.83292 3.02069

n = 3

i = 0 0.804393 0 0 0 0 0 0 0 0

i = 1 0.257044 0.804393 0 0 0 0 0 0 0

i = 2 0.817928 1.4748 1.17307 0 − 0.492667 − 1.54175 0 0 0

i = 3 −1.97558 0.0722677 6.44038 1.88995 − 3.75658 − 7.59737 − 4.49678 0.944279 2.95503

n = 4

i = 0 0.809673 0 0 0 0 0 0 0 0

i = 1 0.111301 0.809673 0 0 0 0 0 0 0

i = 2 0.615164 1.33706 1.18077 0 − 0.213327 − 1.55187 0 0 0

i = 3 −1.36612 − 0.923734 6.26766 1.90236 − 2.62711 − 7.08209 − 4.5263 0.408876 2.97442

Table 9. Numerical values of the coefficients for Eq. (2.3) for the vector current with nf = 5.
(Linearized expansion).

[C̃V ]0,0n,i [C̃V ]1,0n,i [C̃V ]2,0n,i [C̃V ]3,0n,i [C̃V ]0,1n,i [C̃V ]1,1n,i [C̃V ]2,1n,i [C̃V ]0,2n,i [C̃V ]1,2n,i

n = 1

i = 0 1 0 0 0 0 0 0 0 0

i = 1 1.19753 1 0 0 0 0 0 0 0

i = 2 3.1588 4.71142 1.45833 0 − 2.29527 −1.91667 0 0 0

i = 3 1.32698 14.7867 13.2036 2.34954 − 15.0028 − 20.4771 − 5.59028 4.39926 3.67361

n = 2

i = 0 1 0 0 0 0 0 0 0 0

i = 1 0.60679 1 0 0 0 0 0 0 0

i = 2 2.42875 4.12068 1.45833 0 − 1.16301 −1.91667 0 0 0

i = 3 1.7702 11.9808 12.3421 2.34954 − 10.7766 − 18.2126 − 5.59028 2.22911 3.67361

n = 3

i = 0 1 0 0 0 0 0 0 0 0

i = 1 0.31955 1 0 0 0 0 0 0 0

i = 2 1.65593 3.83344 1.45833 0 − 0.612471 − 1.91667 0 0 0

i = 3 1.53408 10.1987 11.9232 2.34954 − 7.11997 − 17.1115 − 5.59028 1.1739 3.67361

n = 4

i = 0 1 0 0 0 0 0 0 0 0

i = 1 0.137464 1 0 0 0 0 0 0 0

i = 2 1.0347 3.65135 1.45833 0 − 0.263473 − 1.91667 0 0 0

i = 3 0.744809 8.93759 11.6576 2.34954 − 4.29854 − 16.4135 − 5.59028 0.504989 3.67361

Table 10. Numerical values of the coefficients for Eq. (2.4) for the vector current with nf = 5.
(Iterative linearized expansion).
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[CP ]0,0n,i [CP ]1,0n,i [CP ]2,0n,i [CP ]3,0n,i [CP ]0,1n,i [CP ]1,1n,i [CP ]2,1n,i [CP ]0,2n,i [CP ]1,2n,i

n = 1

i = 0 0.5333 0 0 0 0 0 0 0 0

i = 1 2.0642 1.06667 0 0 0 0 0 0 0

i = 2 7.23618 5.89136 2.17778 0 − 4.30041 − 2.22222 0 0 0

i = 3 7.06593 29.1882 19.5609 4.47654 − 36.7734 − 27.9695 − 9.07407 8.95919 4.62963

n = 2

i = 0 0.30476 0 0 0 0 0 0 0 0

i = 1 1.21171 1.21905 0 0 0 0 0 0 0

i = 2 5.9992 6.86166 3.70794 0 − 2.5244 − 2.53968 0 0 0

i = 3 14.5789 36.2468 31.4945 10.0938 − 28.8842 − 32.5014 −15.4497 5.25916 5.29101

n = 3

i = 0 0.20318 0 0 0 0 0 0 0 0

i = 1 0.71276 1.21905 0 0 0 0 0 0 0

i = 2 4.26701 6.29135 4.92698 0 − 1.48491 − 2.53968 0 0 0

i = 3 13.3278 34.8305 38.066 16.697 − 20.066 − 30.1251 − 20.5291 3.09356 5.29101

n = 4

i = 0 0.147763 0 0 0 0 0 0 0 0

i = 1 0.401317 1.18211 0 0 0 0 0 0 0

i = 2 2.91493 5.1643 5.95979 0 − 0.836077 − 2.46272 0 0 0

i = 3 9.9948 29.5129 40.2459 24.1703 −13.4331 −25.3105 −24.8325 1.74183 5.13067

Table 11. Numerical values of the coefficients for Eq. (2.2) for the pseudoscalar correlator with
nf = 4. (Standard fixed-order expansion).

[C̄P ]0,0n,i [C̄P ]1,0n,i [C̄P ]2,0n,i [C̄P ]3,0n,i [C̄P ]0,1n,i [C̄P ]1,1n,i [C̄P ]2,1n,i [C̄P ]0,2n,i [C̄P ]1,2n,i

n = 1

i = 0 0.730297 0 0 0 0 0 0 0 0

i = 1 1.41326 0.730297 0 0 0 0 0 0 0

i = 2 3.58681 2.62028 1.12587 0 − 2.94429 − 1.52145 0 0 0

i = 3 − 2.10344 11.3262 8.59338 1.93901 − 19.4793 − 13.2609 − 4.69114 6.13394 3.16969

n = 2

i = 0 0.743002 0 0 0 0 0 0 0 0

i = 1 0.738531 0.743002 0 0 0 0 0 0 0

i = 2 2.55535 1.96655 1.14546 0 − 1.53861 − 1.54792 0 0 0

i = 3 0.536147 6.35978 7.66478 1.97274 − 13.0167 − 10.5778 − 4.77276 3.20543 3.22484

n = 3

i = 0 0.766734 0 0 0 0 0 0 0 0

i = 1 0.448296 0.766734 0 0 0 0 0 0 0

i = 2 2.02851 1.71554 1.18205 0 − 0.93395 − 1.59736 0 0 0

i = 3 1.94168 4.12818 7.42578 2.03575 −9.89039 − 9.60801 − 4.9252 1.94573 3.32784

n = 4

i = 0 0.787401 0 0 0 0 0 0 0 0

i = 1 0.267317 0.787401 0 0 0 0 0 0 0

i = 2 1.624 1.56872 1.21391 0 − 0.55691 − 1.64042 0 0 0

i = 3 2.58251 2.65675 7.3283 2.09062 − 7.62431 − 9.06256 − 5.05796 1.16023 3.41754

Table 12. Numerical values of the coefficients for Eq. (2.3) for the pseudoscalar current with
nf = 4. (Linearized expansion).
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[C̃P ]0,0n,i [C̃P ]1,0n,i [C̃P ]2,0n,i [C̃P ]3,0n,i [C̃P ]0,1n,i [C̃P ]1,1n,i [C̃P ]2,1n,i [C̃P ]0,2n,i [C̃P ]1,2n,i

n = 1

i = 0 1 0 0 0 0 0 0 0 0

i = 1 1.93519 1 0 0 0 0 0 0 0

i = 2 8.78182 5.58796 1.54167 0 − 4.03164 − 2.08333 0 0 0

i = 3 9.22126 25.7977 15.8503 2.65509 − 42.7996 − 26.4915 − 6.42361 8.39924 4.34028

n = 2

i = 0 1 0 0 0 0 0 0 0 0

i = 1 0.99398 1 0 0 0 0 0 0 0

i = 2 5.42718 4.64676 1.54167 0 −2.07079 −2.08333 0 0 0

i = 3 11.733 19.005 14.3993 2.65509 −25.8023 −22.5698 −6.42361 4.31416 4.34028

n = 3

i = 0 1 0 0 0 0 0 0 0 0

i = 1 0.584683 1 0 0 0 0 0 0 0

i = 2 3.81501 4.23746 1.54167 0 − 1.21809 − 2.08333 0 0 0

i = 3 11.0126 15.8978 13.7683 2.65509 − 17.7717 − 20.8644 − 6.42361 2.53768 4.34028

n = 4

i = 0 1 0 0 0 0 0 0 0 0

i = 1 0.339493 1 0 0 0 0 0 0 0

i = 2 2.74147 3.99227 1.54167 0 − 0.707277 − 2.08333 0 0 0

i = 3 9.51996 13.9286 13.3903 2.65509 − 12.512 − 19.8428 − 6.42361 1.47349 4.34028

Table 13. Numerical values of the coefficients for Eq. (2.4) for the pseudoscalar current with
nf = 4. (Iterative linearized expansion).

[RV ]0,0n,i [RV ]1,0n,i [RV ]2,0n,i [RV ]3,0n,i [RV ]0,1n,i [RV ]1,1n,i [RV ]2,1n,i [RV ]0,2n,i [RV ]1,2n,i

n = 1

i = 0 0.428571 0 0 0 0 0 0 0 0

i = 1 0.0137566 0.857143 0 0 0 0 0 0 0

i = 2
1.56736 1.44418 1.75 0 − 0.0286596 − 1.78571 0 0 0

1.72775 1.32513 1.67857 0 − 0.0263668 − 1.64286 0 0 0

i = 3
− 4.79526 2.66831 9.00161 3.59722 − 6.57481 − 8.76742 − 7.29167 0.0597075 3.72024

− 3.53855 1.29072 7.81479 3.26389 − 6.65629 − 7.1511 − 6.43452 0.0505364 3.14881

n = 2

i = 0 0.592593 0 0 0 0 0 0 0 0

i = 1 − 0.302139 1.18519 0 0 0 0 0 0 0

i = 2
0.718416 1.35457 2.41975 0 0.629455 − 2.46914 0 0 0

1.06685 1.18996 2.32099 0 0.579099 − 2.2716 0 0 0

i = 3
− 1.59081 − 1.60786 11.1353 4.97394 − 2.02404 − 9.44651 − 10.0823 − 1.31137 5.14403

0.404636 − 3.06309 9.54776 4.51303 − 3.35942 − 7.42572 − 8.89712 − 1.10994 4.35391

n = 3

i = 0 0.681818 0 0 0 0 0 0 0 0

i = 1 − 0.557447 1.36364 0 0 0 0 0 0 0

i = 2
− 0.119176 1.13889 2.78409 0 1.16135 − 2.84091 0 0 0

0.369655 0.949499 2.67045 0 1.06844 − 2.61364 0 0 0

i = 3
− 1.61506 − 5.30928 11.9551 5.72285 2.28504 − 9.12039 − 11.6004 − 2.41948 5.91856

1.3858 − 6.67953 10.1636 5.19255 − 0.0698462 −6.9352 − 10.2367 − 2.04785 5.00947

Table 14. Numerical values for the coefficients of the standard fixed-order expansion of the ratios
of vector moments. We display results for the vector current with nf = 4, (5) for the upper (lower)
number.
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[RP ]0,0n,i [RP ]1,0n,i [RP ]2,0n,i [RP ]3,0n,i [RP ]0,1n,i [RP ]1,1n,i [RP ]2,1n,i [RP ]0,2n,i [RP ]1,2n,i

n = 1

i = 0 0.571429 0 0 0 0 0 0 0 0

i = 1 0.0603175 1.14286 0 0 0 0 0 0 0

i = 2 3.262 2.00952 2.33333 0 − 0.125661 − 2.38095 0 0 0

i = 3 6.32118 6.21577 12.1735 4.7963 − 13.7852 − 12.0397 − 9.72222 0.261795 4.96032

n = 2

i = 0 0.666667 0 0 0 0 0 0 0 0

i = 1 − 0.311887 1.33333 0 0 0 0 0 0 0

i = 2 2.1179 1.57993 2.72222 0 0.649765 − 2.77778 0 0 0

i = 3 9.55945 1.01989 12.6416 5.59568 − 7.82395 − 10.8608 − 11.3426 − 1.35368 5.78704

n = 3

i = 0 0.727273 0 0 0 0 0 0 0 0

i = 1 − 0.57611 1.45455 0 0 0 0 0 0 0

i = 2 1.09403 1.25182 2.9697 0 1.20023 − 3.0303 0 0 0

i = 3 9.74702 − 3.08269 12.8277 6.10438 − 2.71009 − 9.88258 − 12.3737 − 2.50048 6.31313

Table 15. Numerical values for the coefficients of the linearized expansion of the ratios of pseu-
doscalar moments with nf = 4.

[R̄V ]0,0n,i [R̄V ]1,0n,i [R̄V ]2,0n,i [R̄V ]3,0n,i [R̄V ]0,1n,i [R̄V ]1,1n,i [R̄V ]2,1n,i [R̄V ]0,2n,i [R̄V ]1,2n,i

n = 1

i = 0 0.654654 0 0 0 0 0 0 0 0

i = 1 0.0105068 0.654654 0 0 0 0 0 0 0

i = 2
1.19701 1.0925 1.00926 0 − 0.0218891 − 1.36386 0 0 0

1.31951 1.00158 0.954703 0 − 0.020138 − 1.25475 0 0 0

i = 3
− 3.68165 0.823415 5.76639 1.73817 − 5.02124 − 6.65245 − 4.20524 0.0456024 2.84138

− 2.72379 − 0.349776 4.95174 1.53813 − 5.0835 − 5.42147 − 3.6597 0.0385979 2.40494

n = 2

i = 0 0.7698 0 0 0 0 0 0 0 0

i = 1 − 0.196245 0.7698 0 0 0 0 0 0 0

i = 2
0.441611 1.07606 1.18678 0 0.408843 − 1.60375 0 0 0

0.667925 0.969147 1.12263 0 0.376136 − 1.47545 0 0 0

i = 3
− 0.92068 − 1.21163 6.45905 2.04389 − 1.21043 − 6.95338 − 4.9449 − 0.851757 3.34115

0.433093 − 2.4104 5.5185 1.80867 − 2.08612 − 5.57542 − 4.3034 − 0.720927 2.82795

n = 3

i = 0 0.825723 0 0 0 0 0 0 0 0

i = 1 − 0.337551 0.825723 0 0 0 0 0 0 0

i = 2
− 0.141159 1.02719 1.27299 0 0.703232 − 1.72026 0 0 0

0.154843 0.912501 1.20418 0 0.646973 − 1.58264 0 0 0

i = 3
− 1.03567 −2.65386 6.7324 2.19237 1.67114 − 6.92913 − 5.30412 − 1.46507 3.58387

0.902443 −3.82647 5.73411 1.94007 0.222185 − 5.49342 − 4.61602 − 1.24003 3.03338

Table 16. Numerical values for the coefficients of the linearized expansion of the ratios of vector
moments. We display results for the vector current with nf = 4, (5) for the upper (lower) number.
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[R̄P ]0,0n,i [R̄P ]1,0n,i [R̄P ]2,0n,i [R̄P ]3,0n,i [R̄P ]0,1n,i [R̄P ]1,1n,i [R̄P ]2,1n,i [R̄P ]0,2n,i [R̄P ]1,2n,i

n = 1

i = 0 0.7559290 0 0 0 0 0 0 0 0

i = 1 0.0398962 0.755929 0 0 0 0 0 0 0

i = 2 2.15656 1.28928 1.16539 0 − 0.0831172 − 1.57485 0 0 0

i = 3 4.06725 1.88674 6.70126 2.00706 − 9.11366 − 7.79727 − 4.85579 0.173161 3.28094

n = 2

i = 0 0.816497 0 0 0 0 0 0 0 0

i = 1 − 0.190991 0.816497 0 0 0 0 0 0 0

i = 2 1.27461 1.1585 1.25877 0 0.397898 − 1.70103 0 0 0

i = 3 6.15209 − 0.379067 6.87731 2.16787 − 4.6981 − 7.44666 − 5.24486 − 0.828954 3.54382

n = 3

i = 0 0.852803 0 0 0 0 0 0 0 0

i = 1 − 0.337775 0.852803 0 0 0 0 0 0 0

i = 2 0.574538 1.07172 1.31474 0 0.703697 − 1.77667 0 0 0

i = 3 5.94225 − 1.95744 6.96991 2.26427 − 1.31021 − 7.20157 − 5.47807 − 1.46604 3.7014

Table 17. Numerical values for the coefficients of the linearized expansion of the ratios of pseu-
doscalar moments with nf = 4.

[R̃V ]0,0n,i [R̃V ]1,0n,i [R̃V ]2,0n,i [R̃V ]3,0n,i [R̃V ]0,1n,i [R̃V ]1,1n,i [R̃V ]2,1n,i [R̃V ]0,2n,i [R̃V ]1,2n,i

n = 1

i = 0 1 0 0 0 0 0 0 0 0

i = 1 0.0160494 1 0 0 0 0 0 0 0

i = 2
1.86056 3.66883 1.54167 0 − 0.0334362 − 2.08333 0 0 0

2.04768 3.52994 1.45833 0 − 0.0307613 − 1.91667 0 0 0

i = 3
− 1.85046 11.8662 12.8916 2.65509 −7.80382 −18.4951 −6.42361 0.0696588 4.34028

− 0.0174324 9.52394 11.4806 2.34954 − 7.88822 − 15.9481 − 5.59028 0.0589592 3.67361

n = 2

i = 0 1 0 0 0 0 0 0 0 0

i = 1 − 0.254929 1 0 0 0 0 0 0 0

i = 2
0.0638103 3.39785 1.54167 0 0.531103 − 2.08333 0 0 0

0.357801 3.25896 1.45833 0 0.488615 − 1.91667 0 0 0

i = 3
− 2.11686 9.07965 12.4739 2.65509 0.552022 − 17.366 − 6.42361 − 1.10646 4.34028

0.322201 6.88187 11.0854 2.34954 − 0.755491 − 14.9093 − 5.59028 − 0.936512 3.67361

n = 3

i = 0 1 0 0 0 0 0 0 0 0

i = 1 − 0.408795 1 0 0 0 0 0 0 0

i = 2
− 0.988542 3.24398 1.54167 0 0.851656 − 2.08333 0 0 0

− 0.630066 3.10509 1.45833 0 0.783523 − 1.91667 0 0 0

i = 3
− 5.11183 7.46526 12.2367 2.65509 5.43048 − 16.7249 − 6.42361 − 1.77428 4.34028

− 1.87845 5.35334 10.861 2.34954 3.40317 − 14.3195 − 5.59028 − 1.50175 3.67361

Table 18. Numerical values for the coefficients of the iterative linearized expansion of the ratios
of vector moments. We display results for the vector current with nf = 4, (5) for the upper (lower)
number.
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[R̃P ]0,0n,i [R̃P ]1,0n,i [R̃P ]2,0n,i [R̃P ]3,0n,i [R̃P ]0,1n,i [R̃P ]1,1n,i [R̃P ]2,1n,i [R̃P ]0,2n,i [R̃P ]1,2n,i

n = 1

i = 0 1 0 0 0 0 0 0 0 0

i = 1 0.0527778 1 0 0 0 0 0 0 0

i = 2 2.95841 3.70556 1.54167 0 − 0.109954 − 2.08333 0 0 0

i = 3 11.4629 13.0982 12.9483 2.65509 − 12.4961 − 18.6481 − 6.42361 0.22907 4.34028

n = 2

i = 0 1 0 0 0 0 0 0 0 0

i = 1 − 0.233915 1 0 0 0 0 0 0 0

i = 2 1.09324 3.41886 1.54167 0 0.487324 − 2.08333 0 0 0

i = 3 8.77473 10.1858 12.5063 2.65509 − 3.80468 − 17.4536 − 6.42361 − 1.01526 4.34028

n = 3

i = 0 1 0 0 0 0 0 0 0 0

i = 1 − 0.3960760 1 0 0 0 0 0 0 0

i = 2 − 0.118446 3.2567 1.54167 0 0.825158 − 2.08333 0 0 0

i = 3 4.92499 8.38182 12.2563 2.65509 1.76427 − 16.7779 − 6.42361 − 1.71908 4.34028

Table 19. Numerical values for the coefficients of the iterative linearized expansion of the ratios
of pseudoscalar moments with nf = 4.
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