Searches for CP violation in charm at LHCb

Paras Naik

on behalf of the LHCb collaboration

LHCb Charm CP Violation (CPV) talks (at Charm)

Measurements of time-integrated CP and other asymmetries Marco Gersabeck Measurements of mixing and indirect CP violation 19 May Measurements of T-odd observables Stefanie Reichert 20 May Maurizio Martinelli Searches for CPV in charm 20 May now

Also relevant to CPV in Charm at LHCb

Outline

- Introduction
- The LHCb Detector
- Flavor tagging neutral D mesons at LHCb
- Searches for Direct CP Violation
- Searches for Indirect CP Violation
- Conclusion

Charm at LHCb?

- We are most certainly a B physics experiment. However...
- The same properties that optimize LHCb for B physics also make LHCb an excellent charm physics experiment.
- The charm cross section is ~20 times larger than the b cross section.
 - $\sigma(c\bar{c})_{LHCb} = 1419 \pm 133 \ \mu b$ (Nucl. Phys. B 871 (2013), 1) @ $\sqrt{s} = 7 \text{ TeV}$
 - $\sigma(b\bar{b})_{LHCb} = 75.3 \pm 14.1 \,\mu b$ (Phys. Lett. B 694 (2010), 209)
- ~5 trillion cc̄ were produced during LHC Run 1, in our acceptance!
- LHCb can make precision measurements in charm with high sensitivity to New Physics hiding in quantum loops...
 - We have the world's best sensitivity to CP violation in charm.
- Boosted quarks, high rapidities: ideal for studying time-dependent effects

Knowledge of the Neutral Charm System in 2013

- D⁰, the only mixing meson with up-type quarks.
- Neutral D mass eigenstates: $D_{1,2}=p|D\rangle \pm q|\overline{D}\rangle$ $\phi = \arg(q/p)$

•
$$x = \frac{m_2 - m_1}{\Gamma}$$
 ~mixing frequency

•
$$y = \frac{\Gamma_2 - \Gamma_1}{2\Gamma}$$
 ~lifetime difference

- CP violation if $|q/p| \neq 1$ or CPV phase $\phi \neq 0$
- $x = (0.39 \pm 0.17)\%, y = (0.67 \pm 0.08)\%$
- $|q/p| = 0.91 \pm 0.11$, $\varphi = -10.8^{\circ} \pm 12.3^{\circ}$

Averages by HFAG (Charm 2013) The errors on x, Ip/qI, and ϕ are asymmetric, I show the larger error.

Where do we look for CPV in charm?

No CPV weak phase in charm flavor transitions.

$$\begin{bmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{bmatrix}$$

- V_{ub} and it's associated weak phase may enter via quantum loop.
 - In Cabibbo-favored (CF) decays the amplitudes of these diagrams are dominated by the tree process.
 - In singly Cabibbo-suppressed (SCS) decays, loop diagrams can contribute.
- Standard Model (SM): x, y at most 1%, small CPV
 - O(1%) CPV could mean potential new physics in the loops
- Indirect (mixing-induced) CPV searches look at SCS decays, but can also exploit interference between CF decay (after mixing) and DCS decay.

LHCb Experiment: Tracking

- Accurate decay time resolution from our vertex locator (VELO)
- High muon reconstruction efficiency from muon stations
- Good momentum resolution from tracking stations, $\Delta p/p = 0.35\% 0.55\%$

LHCb Experiment: Charged kaon/pion separation

K/π separation provided by Ring Imaging Cherenkov (RICH) detectors

The ability to identify particles at LHCb is critical to many of our analyses.

Charm Trigger and LHCb recorded luminosty

- We have an excellent Trigger for charm decays
- Charm trigger uses 33% (2011) 40% (2012) of our trigger bandwidth
- Ability to trigger on tracks with lower p_T
- 1.0 fb⁻¹ at 7 TeV collected by LHCb in 2011
- 2 fb⁻¹ at 8 TeV collected by LHCb in 2012, higher cross section for charm
- Instantaneous luminosity delivered to LHCb fixed at $\mathcal{L} = 4 \times 10^{32} \, \text{cm}^{-2} \text{s}^{-1}$

Run	√s in TeV	L in fb ⁻¹	L _{eq}	ΣLeq
1 (2011)	7	1	1	1
1 (2012)	8	2	2.3	3.3

Flavor tagging neutral D mesons at LHCb

LHCb uses two methods to tag the flavor of neutral D mesons

D* decays (Prompt)

Use slow pion from D* decays to tag D flavor: $D^{*+} \to D^0 \pi_s^+$ or $D^{*-} \to D^0 \pi_s^-$

Semileptonic (SL) B decay (Secondary)

Use muon charge to tag D flavor:

$$B o ar{D^0} \mu^+
u_\mu X$$
 or $B o D^0 \mu^-
u_\mu X$

Search for direct CPV in charm

- CPV in $D_{(s)}^+ \rightarrow K_S^0 h^+$
- $\triangle A_{CP}$ in $D^0 \rightarrow h^+h^-$
- Time-integrated CPV in D⁰ → π⁺π⁻π⁰ decays
- CPV via triple product asymmetries in D⁰ → K+K- π + π -
- Search for CP violation in D+ → π+π+π- Dalitz plot
 - (discussed in Marco's Talk)

Search for direct CPV in Charm

A_{CP} is a time-integrated CP asymmetry defined as:

$$A_{CP}(f) = \frac{\Gamma(D \to f) - \Gamma(\overline{D} \to \overline{f})}{\Gamma(D \to f) + \Gamma(\overline{D} \to \overline{f})}$$

SM predictions do not rule out a few 10^{-3} in charm

NP could enhance up to $\mathcal{O}(10^{-2})$ in charm $^{ ext{Phys.Rev. D75}}$ (2007) 036008

Analysis techniques

- Magnetic field frequently flipped.
 - Using both 'magnet up' and 'magnet down' data cancels many asymmetries
- Kinematic areas with large detection asymmetries can be removed
- Take raw asymmetries and use cancellation techniques to extract CP decay asymmetries.

CPV in $D_{(s)}^+ \rightarrow K_S^0 h^+$

Search for direct CP asymmetry in the SCS decays

$$\mathcal{A}_{CP}^{D_{(s)}^{\pm} \to K_{S}^{0}h^{\pm}} \qquad \qquad \begin{array}{c} \blacksquare & \mathbb{D}^{+} \to \mathbb{K}_{S} \mathbb{K}^{+} \\ \blacksquare & \mathbb{D}_{S}^{+} \to \mathbb{K}_{S} \Pi^{+} \end{array}$$

CPV in $D_{(s)}^+ \rightarrow K_S^0 h^+$

- Search for direct CP asymmetry in the SCS decays
- Measured asymmetries are affected by other asymmetries

$$\mathcal{A}_{ ext{meas}}^{D_{(s)}^{\pm} o K_{ ext{S}}^{0}h^{\pm}} pprox \mathcal{A}_{CP}^{D_{(s)}^{\pm} o K_{ ext{S}}^{0}h^{\pm}} + \mathcal{A}_{ ext{prod}}^{D_{(s)}^{\pm}} + \mathcal{A}_{ ext{det}}^{h^{\pm}} + \mathcal{A}_{K^{0}/\overline{K}^{0}}$$

measure

want

Production asymmetry

f's detection asymmetry

Correction due to CPV in kaon system

CPV in $D_{(s)}^+ \rightarrow K_{S}^0 h^+$

- Search for direct CP asymmetry in the **SCS** decays
- Measured asymmetries are affected by other asymmetries

$$\mathcal{A}_{\mathrm{meas}}^{D_{(s)}^{\pm} \to K_{\mathrm{S}}^{0} h^{\pm}} \approx \mathcal{A}_{CP}^{D_{(s)}^{\pm} \to K_{\mathrm{S}}^{0} h^{\pm}} + \mathcal{A}_{\mathrm{prod}}^{D_{(s)}^{\pm}} + \mathcal{A}_{\det}^{h^{\pm}} + \mathcal{A}_{K^{0}/\overline{K}^{0}}$$

measure

want

Production asymmetry f's detection asymmetry

Correction due to CPV in kaon system

Combine with **CF** decays where CPV is not expected. Take asymmetries to isolate CP asymmetries e.g.

$$\mathcal{A}_{CP}^{D_s^\pm \to K_S^0 \pi^\pm} = \mathcal{A}_{\text{meas}}^{D_s^\pm \to K_S^0 \pi^\pm} - \mathcal{A}_{\text{meas}}^{D_s^\pm \to \phi \pi^\pm} - \mathcal{A}_{K^0} \qquad \begin{matrix} \mathcal{A}_{K^0} = (+0.07 \pm 0.02)\% \\ \text{calculation described in} \end{matrix}$$

IHEP 07 (2014) 041

CPV in $D_{(s)}^+ \rightarrow K_{S}^0 h^+$

JHEP 1410 (2014) 25 3.0fb⁻¹

see Marco's talk

- Search for direct CP asymmetry in the **SCS** decays
- Measured asymmetries are affected by other asymmetries

$$\mathcal{A}_{\mathrm{meas}}^{D_{(s)}^{\pm} \to K_{\mathrm{S}}^{0} h^{\pm}} \approx \mathcal{A}_{CP}^{D_{(s)}^{\pm} \to K_{\mathrm{S}}^{0} h^{\pm}} + \mathcal{A}_{\mathrm{prod}}^{D_{(s)}^{\pm}} + \mathcal{A}_{\det}^{h^{\pm}} + \mathcal{A}_{K^{0}/\overline{K}^{0}}$$

measure

want

Production asymmetry f's detection asymmetry

Correction due to CPV in kaon system

Combine with **CF** decays where CPV is not expected. Take asymmetries to isolate CP asymmetries e.g.

$$\mathcal{A}_{CP}^{D_s^\pm \to K_S^0 \pi^\pm} = \mathcal{A}_{\text{meas}}^{D_s^\pm \to K_S^0 \pi^\pm} - \mathcal{A}_{\text{meas}}^{D_s^\pm \to \phi \pi^\pm} - \mathcal{A}_{K^0} \qquad \begin{matrix} \mathcal{A}_{K^0} = (+0.07 \pm 0.02)\% \\ \text{calculation described in} \end{matrix}$$

IHEP 07 (2014) 041

Results: $\mathcal{A}_{CP}^{D^{\pm} \to K_{\rm S}^0 K^{\pm}} = (+0.03 \pm 0.17 \pm 0.14)\%$ $\mathcal{A}_{CP}^{D_s^{\pm} \to K_{\rm S}^0 \pi^{\pm}} = (+0.38 \pm 0.46 \pm 0.17)\%$

Can also get a sum of both SCS asymmetries using CF $D_{(s)}^+ \rightarrow K_S h^+$

$$\mathcal{A}_{CP}^{D^{\pm} \to K_{S}^{0} K^{\pm}} + \mathcal{A}_{CP}^{D_{s}^{\pm} \to K_{S}^{0} \pi^{\pm}} = (+0.41 \pm 0.49 \pm 0.26)\%$$

The AACP saga

$$A_{CP}(K^-K^+) - A_{CP}(\pi^-\pi^+) \equiv \Delta A_{CP}$$

neglecting indirect CPV

- Under SU(3) flavor symmetry, the direct CP asymmetries in these decays are expected to have equal magnitudes and opposite sign.
- ΔA_{CP} pre-Moriond 2013, measured by
 - BaBar (Phys. Rev. Lett. 100 (2008))
 - Belle (arXiv:1212.5320)
 - LHCb (Phys. Rev. Lett. 108 (2012))
 - CDF (Phys. Rev. Lett. 109 (2012))
- World average 4.6o deviation from zero
- Level of CP violation potentially accommodated within SM (arXiv:1202.3795, many more)
- Can also be explained by NP (arXiv:1202.2866, many more)
- Lively debate amongst theorists.

ΔACP Tagging

LHCb uses two methods to tag the D⁰ flavor

Semileptonic B decay (Secondary)

Use muon charge to tag D flavor

$$B \to D^0 \mu^+ \nu_\mu X$$
 or

$$B \to D^0 \mu^- \nu_\mu X$$

ACP from D* decays

$$A_{RAW}(f) \simeq A_{CP}(f) + A_{D}(f) + A_{D}(\pi_{s}^{+}) + A_{p}(D^{*+})$$

measure

want

f's detection asymmetry

π_s detection asymmetry

Production asymmetry

ACP from D* decays

$$A_{RAW}(f) \simeq A_{CP}(f) + A_{D}(f) + A_{D}(\pi_{s}^{+}) + A_{p}(D^{*+})$$

measure

want

f's detection asymmetry

π_s detection asymmetry

Production asymmetry

Zero for selfconjugate final states (K+K-/π+π-)

ΔA_{CP} from D* decays

$$A_{RAW}(f) \simeq A_{CP}(f) + A_{D}(f) + A_{D}(\pi_{s}^{+}) + A_{p}(D^{*+})$$

measure

want

f's detection asymmetry

π_s detection asymmetry

Production asymmetry

Taking $A_{RAW}(f) - A_{RAW}(f')$ the production and slow pion detection asymmetries will cancel.

$$A_{RAW}(K^-K^+) - A_{RAW}(\pi^-\pi^+) = A_{CP}(K^-K^+) - A_{CP}(\pi^-\pi^+) \equiv \Delta A_{CP}$$

Phys.Rev. D80 (2009) 076008

ΔA_{CP} from D* decays

LHCB-CONF-2013-003 1.0fb⁻¹ collected during 2011

LHCb Preliminary result

$$\Delta A_{CP} = (-0.34 \pm 0.15 \text{ (stat.)} \pm 0.10 \text{ (syst.)})\%$$

- Considerably closer to zero than previous (0.6 fb⁻¹) result [PRL 108 (2012) 111602]
- Larger data set
- Improved detector alignment and calibration
- · Improvement in analysis technique
- Detailed systematic studies
- Many cross checks confirm our result

AACP Tagging

LHCb uses two methods to tag the Do flavor

D* decays (Prompt)

Use slow pion from D* decays to tag D flavor $D^{*+} \to D^0 \pi_s^+$ or $D^{*-} \to \bar{D^0} \pi_s^-$

Update

Semileptonic B decay (Secondary)

Use muon charge to tag D flavor

$$B \to D^0 \mu^+ \nu_\mu X$$
 or

$$B \to D^0 \mu^- \nu_\mu X$$

ΔA_{CP} from semileptonic B decays

Taking $A_{RAW}(f) - A_{RAW}(f')$ the production and muon detection asymmetries will cancel.

$$A_{RAW}(K^-K^+) - A_{RAW}(\pi^-\pi^+) = A_{CP}(K^-K^+) - A_{CP}(\pi^-\pi^+) \equiv \Delta A_{CP}$$

Comparison of D* and semileptonic (-tagged) ΔA_{CP}

see Marco's talk

Prompt tag LHCb Preliminary 1 fb⁻¹

LHCB-CONF-2013-003

$$\Delta A_{CP} = (-0.34 \pm 0.15 \text{ (stat.)} \pm 0.10 \text{ (syst.)})\%$$

Semileptonic (SL) decays 3 fb⁻¹

JHEP 07 (2014) 014

$$\Delta A_{CP} = (+0.14 \pm 0.16 \,(\text{stat}) \pm 0.08 \,(\text{syst}))\%$$

- Statistical correlation between the two data samples is negligible
- · Systematic uncertainties essentially uncorrelated
- Using D⁰ → Kπ decays and D+ decays, and similar cancellation techniques, with the SL data we obtain the world's most precise <u>individual</u> asymmetries:

$$A_{CP}(K^-K^+) = (-0.06 \pm 0.15 \text{ (stat)} \pm 0.10 \text{ (syst)})\%$$

 $A_{CP}(\pi^-\pi^+) = (-0.20 \pm 0.19 \text{ (stat)} \pm 0.10 \text{ (syst)})\%$

Time-integrated CPV in D⁰ → π+π-π⁰ decays

- First LHCb CPV measurement using π⁰ decays
- Search for direct CPV in the SCS D⁰ → π⁺π⁻π⁰
- Resonances in the decay interfere and can carry different strong phases
 - Potential to have larger local CPV than phase-space integrated CPV

$$a_{CP} \propto \sin \Delta \delta \sin \Delta \phi$$

- Standard search techniques:
 - Fit contributing amplitudes, look for differences in fit parameters
 - Look for asymmetries in regions of phase space by "counting"
 - binned (chi-squared difference method) PLB 728 (2014) 585-595, PLB 726 (2013) 623-633
- Energy test: unbinned sample comparison used to assign p-value for hypothesis of identical distributions (= no CPV)

Stat. Comp. Simul. 75, Issue 2 109-119 (2004), NIM A537, 626-636 (2005), PRD 84 (2011) 054015.

Time-integrated CPV in D⁰ → π+π-π⁰ decays PLB 740 (2015) 158 2 fb-1 [2012 data]

First use of the Energy test method to search for CPV

see Marco's talk

- Compare average-pairwise distance on Dalitz plot among all D⁰ events, all anti-D⁰ events, and all D⁰ events to all anti-D⁰ events.
- Test statistic T:
 - T → 0 if all average distances are equal
 - T > 0 if average distances between
 D⁰ events and anti-D⁰ events is larger
- Compare nominal T-value to expected T-values for no-CPV hypothesis; a p-value of (2.6 +/- 0.5)% is calculated, consistent with no CPV.
- World's best sensitivity for CPV in $D^0 \to \pi^+\pi^-\pi^0$

 Method allows visualization of local CP asymmetries

CPV via T-odd moments in the SCS D⁰ → KKππ

Search for CPV in the SCS decay D → KKππ using triple products

$$C_T = \mathbf{p}_{\mathbf{K}^+} \cdot (\mathbf{p}_{\pi^+} \times \mathbf{p}_{\pi^-}) \qquad \qquad \overline{C}_T = \mathbf{p}_{\mathbf{K}^-} \cdot (\mathbf{p}_{\pi^-} \times \mathbf{p}_{\pi^+})$$

- These are non-vanishing since there are four distinct final state particles
- These triple products are odd under T (hence the name "T-odd")
 - We cannot reverse the decay, their P-odd nature is more important
- In the absence of final state interactions (FSI) due to long-distance strong interaction effects, if the number of decays with $C_T < 0$ is different from the number of decays with $C_T > 0$ this implies parity violation.
- We form triple-product asymmetries for both D flavors:

$$A_{C_T} = \frac{\Gamma\left(C_T > 0\right) - \Gamma\left(C_T < 0\right)}{\Gamma\left(C_T > 0\right) + \Gamma\left(C_T < 0\right)}, \quad \overline{A}_{\overline{C}_T} = \frac{\Gamma\left(-\overline{C}_T > 0\right) - \Gamma\left(-\overline{C}_T < 0\right)}{\Gamma\left(-\overline{C}_T > 0\right) + \Gamma\left(-\overline{C}_T < 0\right)}$$

CPV via T-odd moments in D⁰ → KKππ

JHEP 10 (2014) 005 3.0fb⁻¹

see Maurizio's talk

 To eliminate the effects of FSI, which conserve P, we form an asymmetry of asymmetries which cancels out the FSI; any remaining asymmetry implies that either C or P is violated, i.e. we have CPV

$$a_{CP}^{T-\text{odd}}(D^0) = \frac{1}{2} \left(A_{C_T} - \overline{A}_{\overline{C}_T} \right)$$

LHCb measured these asymmetries using SL flavor-tagged D decays.

$$A_{C_T} = (-71.8 \pm 4.1(\text{stat}) \pm 1.3(\text{syst})) \times 10^{-3}$$

 $\overline{A}_{\overline{C}_T} = (-75.5 \pm 4.1(\text{stat}) \pm 1.2(\text{syst})) \times 10^{-3}$

$$a_{CP}^{T-\text{odd}}(D^0) = (1.8 \pm 2.9(\text{stat}) \pm 0.4(\text{syst})) \times 10^{-3}$$

 We also searched for local CPV in bins of phase space, and evidence of CPV in bins of proper time. No CPV was found.

Search for indirect CPV in charm

- A_{Γ} in $D^0 \rightarrow h^+h^-$ decays
- CPV via mixing in "wrong-sign" D⁰ → Kπ decays

A_{Γ} in $D^0 \rightarrow hh$ decays

JHEP 04 (2015) 043 3 fb⁻¹

see Stefanie's talk

$$A_{\Gamma} = rac{ au^- - au^+}{ au^- + au^+}$$
 au^\pm : lifetime of D 0 ($\overline{\mathsf{D}}^0$) o CP+ eigenstates

 This gives a combined measure of CPV via mixing and decay

$$A_{\Gamma} \approx \left(A_{CP}^{\text{mix}} / 2 - A_{CP}^{\text{dir}} \right) y \cos \phi - x \sin \phi$$

 Can obtain A_Γ via time-dependent fits to the measured A_{CP} distribution

$$A_{CP}(t) \approx A_{CP}^{\text{dir}} - A_{\Gamma} \frac{t}{\tau}$$

Using SL-tagged D decays, we find:

$$A_{\Gamma}(K^{-}K^{+}) = (-0.134 \pm 0.077 ^{+0.026}_{-0.034}) \%$$

 $A_{\Gamma}(\pi^{-}\pi^{+}) = (-0.092 \pm 0.145 ^{+0.025}_{-0.033}) \%$

A_{Γ} in $D^0 \rightarrow hh$ decays

JHEP 04 (2015) 043 3 fb⁻¹

see Stefanie's talk

SL-tagged result can be compared to Prompt D*-tagged result:

$$A_{\Gamma}(K^{-}K^{+}) = (-0.134 \pm 0.077 ^{+0.026}_{-0.034}) \%$$

 $A_{\Gamma}(\pi^{-}\pi^{+}) = (-0.092 \pm 0.145 ^{+0.025}_{-0.033}) \%$

 $A_{\Gamma}(KK)=(-0.35\pm0.62\pm0.12)\times10^{-3}$ $A_{\Gamma}(\pi\pi)=(0.33\pm1.06\pm0.14)\times10^{-3}$ both prompt measurements are the world's most precise

Prompt 1 fb⁻¹ PRL 112 (2014) 041801

 HFAG combination including A_C and A_{CP} results:

$$a_{CP}^{ind} = 0.00058 \pm 0.00040$$

 $\Delta a_{CP}^{dir} = -0.00257 \pm 0.00104$

Consistent with no CPV at 1.8% CL

CPV via mixing in WS D⁰ → Kπ

- $D^0 \rightarrow K^+\pi^-$ (WS) decays are affected by the interference between mixing and decay
- The time-evolution of the WS decay rate can be compared for D⁰ and anti-D⁰ decays to test for CPV

$$T_{WS}(t) \propto e^{-\Gamma t} \left(\underbrace{R_D}_{} + \underbrace{\sqrt{R_D}\,y'\,\Gamma t}_{} + \underbrace{\frac{x'^2 + y'^2}{4}(\Gamma t)^2}_{}\right)$$
 DCS Interference Mixing

 $\delta_{K\pi}$ is the strong phase between CF and DCS amplitudes ($D^0 \to K\pi$)

$$\begin{aligned}
 x' &= x \cos \delta_{K\pi} + y \sin \delta_{K\pi} \\
 y' &= -x \sin \delta_{K\pi} + y \cos \delta_{K\pi}
 \end{aligned}
 \qquad y'^2 + x'^2 = x^2 + y^2$$

CPV via mixing in WS D⁰ → Kπ

PRL 111 (2013) 251801 3.0fb⁻¹, prompt-tagged D decays

see Stefanie's talk

D⁰ parameters

$$R_D^+$$
 [10⁻³] $3.545 \pm 0.082 \pm 0.048$
 y'^+ [10⁻³] $5.1 \pm 1.2 \pm 0.7$
 x'^{2+} [10⁻⁵] $4.9 \pm 6.0 \pm 3.6$

anti-D⁰ parameters

$$R_D^- [10^{-3}]$$
 $3.591 \pm 0.081 \pm 0.048$
 $y'^- [10^{-3}]$ $4.5 \pm 1.2 \pm 0.7$
 $x'^{2-} [10^{-5}]$ $6.0 \pm 5.8 \pm 3.6$

CPV in mixing

$$0.75 < |q/p| < 1.24 @ 68.3 \% CL$$

Direct CPV of DCS component

$$A_D = \frac{R^+ - R^-}{R^+ + R^-} = (-0.7 \pm 1.9)\%$$

Fit results show no evidence for CPV in mixing or decay

Knowledge of the Neutral Charm System in 2015

Charm 2015

Parameter	$CPV ext{-allowed}$	
x (%)	0.37 ± 0.16	
y (%)	$0.66^{+0.07}_{-0.10}$	
q/p	$0.91^{+0.12}_{-0.08}$	
ϕ (°)	$-9.4^{+11.9}_{-9.8}$	
	l	

Averages by HFAG

1.2 HFAG-charm
CHARM 2015

1.2 CHARM 2015

0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1 1.2 x (%)

Conclusion

- LHCb in its first run has made many contributions to the search for CP violation in charm including, but not limited to:
 - World's most precise KK and ππ direct CP asymmetries.
 - World's most precise measurements of A_{Γ} in these modes as well.
 - World's best sensitivity for CPV in $D^0 \to \pi^+\pi^-\pi^0$
- No observation of CPV in the charm system, yet!
- Several Run 1 analyses are still ongoing
 - There is much more to look forward to in the coming year.
- The LHCb detector has worked "like a charm."
 - Expect even more charming LHCb results from Run 2!
 - (and beyond... see Chris's talk tomorrow!)

Additional Slides

LHCB-CONF-2013-003 1.0fb⁻¹ collected during 2011

$$A_{RAW}(K^-K^+) - A_{RAW}(\pi^-\pi^+) = A_{CP}(K^-K^+) - A_{CP}(\pi^-\pi^+) \equiv \Delta A_{CP}$$

- Indirect and direct CPV can contribute
- Indirect CPV is ~universal
 - Indirect CPV cancels in A(K+K-)-A(π+π-) if lifetime acceptance same for KK and ππ
 - If not contribution A^{ind}[<t_{KK}>_{acc}-<t_{ππ}>_{acc}]/τ₀

Cancellation sequence for Acp(KK)

from Marco's parallel talk

Prompt A

from Stefanie's parallel talk

PROMPT Ar

PRL 112 (2014) 041801

- Fit to decay time and $\ln(\chi_{\rm IP}^2)$ to extract effective lifetimes
- Dominant systematic uncertainty from per-candidate acceptance functions (data-driven)
- ► Results

Fit of decay time to $\bar{D}^0 \to K^-K^+$

$$A_{\Gamma}(K^{+}K^{-}) = (-0.035 \pm 0.062 \pm 0.012)\%$$

$$A_{\Gamma}(\pi^{+}\pi^{-}) = (0.033 \pm 0.16 \pm 0.014)\%$$

- Update of analysis from 2011 0.6 fb⁻¹ → 1.0 fb⁻¹ (full 2011 dataset)
- Update includes new reconstruction
- Improved tracking alignment
- Improved particle identification from RICH calibration.
- Constrain the D* vertex to the primary vertex
- $\delta m \equiv m(h^+h^-\pi^+) m(h^+h^-) m(\pi^+)$
- Improves δm resolution by factor ~2.5.
- Kinematic re-weighting of D* (ensures D⁰→KK and D⁰→m have the same kinematics)

ΔA_{CP} from D* decays : Cross checks

LHCB-CONF-2013-003 1.0fb⁻¹ collected during 2011

- ΔA_{CP} stability checked
- Against time at which data was taken
- Various reconstructed quantities:
 - D⁰ p_T
 - · D⁰ η
 - D₀ p
 - · Do decay time
- Analysis performed on large Monte
 Carlo samples to check for bias
- Many more

LHCB-CONF-2013-003 1.0fb⁻¹ collected during 2011

Preliminary result

$$\Delta A_{CP} = (-0.34 \pm 0.15 \text{ (stat.)} \pm 0.10 \text{ (syst.)})\%$$

- Source of systematic uncertainties
- Soft pions with large IPχ² for pointing to PV
- Effect due to multiple scattering
 - Results in poor mass distribution
 - Should not depend on D⁰ decay mode
 - Raw asymmetry observed in these candidates
- Analysis repeated with these candidates removed
- Dominant systematic 0.08%

LHCB-CONF-2013-003 1.0fb⁻¹ collected during 2011

- Fit in δm
- $\delta m \equiv m(h^+h^-\pi^+) m(h^+h^-) m(\pi^+)$

- · Extremely clean signal
- 2.2 million D⁰→K+K⁻ candidates
- 0.7 million D⁰→π⁺π candidates

ΔA_{CP} from D* decays comparison to 2011 result

kinematic reweighting

$$\Delta Acp = (-0.45 \pm 0.16) \%$$

$$\Delta Acp = (-0.45 \pm 0.17) \%$$

force D* vertex to the Primary Vertex

$$\triangle Acp = (-0.45 \pm 0.17) \%$$

$$\Delta Acp = (-0.34 \pm 0.15) \%$$

ΔA_{CP}

- Magnetic field induces left/right differences between the D*+ and D*- due to the slow pion
- Acceptance effect at edges of detector
- Beam-pipe shadow
- We remove this asymmetry
- We remove areas of large asymmetry to avoid secondary effects
- Frequently flip the magnetic field
- Detector asymmetries removed in difference between RAW asymmetries

Beam-pipe shadow

63

ΔA_{CP}

- Magnetic field induces left/right differences between the D*+ and D*- due to the slow pion
 - Acceptance effect at edges of detector
 - · Beam-pipe shadow
- We remove this asymmetry
 - We remove areas of large asymmetry to avoid secondary effects
 - · Frequently flip the magnetic field
 - Detector asymmetries removed in difference between RAW asymmetries

Phys. Rev. Lett. 108 (2012) 111602

Ancient History

ΔA_{CP} from semileptonic B decays

1.0 fb-1

- Clean signal
- 0.6M D→K+K⁻ candidates
- 0.2M D→π⁺π candidates

ΔA_{CP} via Semileptonic: Cross checks 1.0fb⁻¹ collected during 2011

- Many cross checks carried out
- ΔA_{CP} stable with
- reconstructed quantities:
 - Do decay time
 - B flight distance
 - · reconstructed D⁰-μ mass
 - angle between μ and D⁰ daughters
 - p_T of D⁰ and µ
 - · η of D⁰ and μ
- · data taking period
- many more

ΔA_{CP} from semileptonic B decays

arXiv:1303.2614 1.0fb⁻¹ collected during 2011

· Result

$$\Delta A_{CP} = (0.49 \pm 0.30 \,(\text{stat}) \pm 0.14 \,(\text{syst}))\%$$

- Main source of systematic from low lifetime background in D⁰→π⁺π⁻ decays
- More low lifetime background in D⁰→π⁺π⁻ than D⁰→K⁺K⁻
- We required positive decay times in our analysis
- Analysis repeated including negative decay times
- Systematic uncertainty of 0.11%

Experiment Overview

The LHCb detector is a single arm forward spectrometer with a polar angular coverage from 10 to 300 mrad in the horizontal plane and

250 mrad in the vertical plane.

Unique regime: $2 < \eta < 5$, down to $p_T \sim 0$

- Trigger
 - Designed to select B decays.
 - Also favors higher p_T secondary charm.

LHCb MC

√s = 8 TeV

θ, [rad]

Common Strategies for D Mixing & CP Violation

- Use control modes / normalization channels for initial studies with data
- Perform systematic studies on data
 - Prompt-secondary distinction
 - Lifetime acceptance correction
- Using prompt charm
 - More events
 - Need to measure contribution from secondary
- Using charm from B decays
 - Lower cross-section, but higher p_T = higher trigger efficiency
 - Need to precisely measure D production vertex

Luminosity

- Nominal instantaneous luminosity: $\mathcal{L} = 4 \times 10^{32} \, \text{cm}^{-2} \text{s}^{-1}$
- LHCb instantaneous luminosity kept constant (luminosity leveling).

