Lattice perspective on leptonic and semileptonic decays

Elvira Gámiz

Universidad de Granada / CAFPE

· The 7th International Workshop on Charm Physics, Wayne State University, 18-22 May 2015 ·
Contents

1. Introduction

2. Leptonic D decays.

4. $|V_{cd}|, |V_{cs}|$: CKM unitarity in the second row.

5. Conclusions and outlook.
1. **Introduction**

Goals in the study of leptonic and semileptonic D decays

* Precise determination of CKM matrix elements ($|V_{cd,cs}|$)

$$\text{Experiment} = (\text{known factors}) \times (V_{CKM}) \times \text{(hadronic matrix elements)}$$

** Check Standard Model

** Consistency of different determinations of CKM matrix elements

** Test unitarity of CKM matrix.

** Comparison of shape of form factors with experimental data.
1. Introduction

Goals in the study of leptonic and semileptonic D decays

* Precise determination of CKM matrix elements ($|V_{cd,cs}|$)

\[
\text{Experiment} = (\text{known factors}) \times (V_{CKM}) \times (\text{hadronic matrix elements}) \text{ (lattice QCD)}
\]

* Check Standard Model

** Consistency of different determinations of CKM matrix elements

** Test unitarity of CKM matrix.

** Comparison of shape of form factors with experimental data.

* Validate lattice QCD techniques to use in B physics
1. Introduction

Goals in the study of leptonic and semileptonic D decays

* Precise determination of CKM matrix elements ($|V_{cd,cs}|$)

Experiment = (known factors) × (V_{CKM}) × (hadronic matrix elements)

* Check Standard Model

** Consistency of different determinations of CKM matrix elements

** Test unitarity of CKM matrix.

** Comparison of shape of form factors with experimental data.

* Validate lattice QCD techniques to use in B physics

* Constraining possible NP models

Fajfer, Nisandzic and Rojec, 1502.07748, Barranco et al., 1303.3896, 1404.0454

** Correlated signals of NP in leptonic and semileptonic decays.
1. **Introduction: Lattice QCD**

Lattice QCD: Numerical evaluation of QCD path integral (rely only on first principles).
1. **Introduction: Lattice QCD**

Lattice QCD: Numerical evaluation of QCD path integral (rely only on first principles).

Goal: Precise calculations ($\leq 5\%$ error)

* Control over systematic errors:

 ** Unquenched calculations: $N_f = 2$, $N_f = 2 + 1$ or $N_f = 2 + 1 + 1$.

 ** Discretization: improved actions $+$ simulations at several a's \rightarrow continuum limit.

 ** Chiral extrapolation: simulate at several m_π and extrapolate to m_π^{phys} using ChPT.

 ** Renormalization: non-perturbative, perturbative.

 ** Tuning lattice scale and masses

 ** Finite volume, *isospin effects, electromagnetic effects, ...*

Systematically improvable
1. Introduction: Overview of simulations parameters

Several $N_f = 2 + 1$ and even $N_f = 2 + 1 + 1$, and physical quark masses.

$N_f = 2$: open
$N_f = 2 + 1$: shaded
$N_f = 2 + 1 + 1$: filled

plot by A. El-Khadra,

First results with simulations with physical light quark masses (*BMW*, PACS-CS, MILC, RBC/UKQCD, ETMC)
1. Introduction: Averaging lattice QCD results

Flavor Lattice Averaging Group (FLAG-2): 28 people representing all big lattice collaborations.

- Advisory Board: S. Aoki, C. Bernard, C. Sachrajda
- Working Groups:
 - u, d and s quark masses: L. Lellouch, T. Blum, V. Lubicz
 - \(|V_{us}|, |V_{ud}|\): A. Jüttner, T. Kaneko, S. Simula
 - LEC’s: S. Dürr, H. Fukaya, S. Necco
 - \(B_K\): H. Wittig, J. Laiho, S. Sharpe
 - \(\alpha_s\): R. Sommer, R. Horsley, T. Onogi
 - \(f_{B(s)}, f_{D(s)}, \hat{B}_B\): A. El Khadra, Y. Aoki, M. Della Morte
 - \(B, D\) semileptonic and radiative decays: R. Van de Water, E. Lunghi, C. Pena

http://itpwiki.unibe.ch/flag/

2. Leptonic D decays

\[\mathcal{B}(D_q \rightarrow l\nu) \sim 4.5 - 3.5\% \]
\[\tau_{D_q} < 1.5\% \]
\[f_{D_q}^2 \sim 1\% \]
\[\text{others} < 0.4\% \]

\[\mathcal{B}(D_q \rightarrow l\nu) = \frac{G_F^2 \tau_{D_q}}{8\pi} m_l^2 m_{D_q} \left(1 - \frac{m_l^2}{m_{D_q}^2} \right)^2 |V_{cq}|^2 f_{D_q}^2 \]

(with $q = d, s$ and $D_q = D^+, D_s$)

Simple matrix element \[\langle 0 | \bar{c} \gamma_\mu \gamma_5 q | D_q (p) \rangle = i f_{D_q} p_\mu \rightarrow \text{precise calculations} \]

or, if using the same action for light and charm valence quarks,

\[(m_c + m_q) \langle 0 | \bar{c} \gamma_5 q | D_{(s)} (p = 0) \rangle = f_{D_q} M_{D_q}^2 \]

(no need of renormalization)

Reduction of error: use relativistic (improved) formulations for c.
2. **Leptonic D decays: New results (> 2013)**

$N_f = 2$:

* **TWQCD, 1404.3648**: $a \sim 0.06\,fm$ and $m_\pi \leq 260\,\text{MeV}$

\[
f_D = 202.3(3.4)\,\text{MeV} \quad f_{D_s} = 258.7(3.1)\,\text{MeV} \quad f_{D_s}/f_D = 1.279(26)
\]
2. Leptonic D decays: New results (> 2013)

$N_f = 2$:

* TWQCD, 1404.3648: $a \sim 0.06 \, fm$ and $m_\pi \leq 260$ MeV

$$ f_D = 202.3(3.4) \, MeV \quad f_{D_s} = 258.7(3.1) \, MeV \quad f_{D_s}/f_D = 1.279(26) $$

$N_f = 2 + 1$:

* χQCD, 1410.3343: Different set of configurations (RBC/UKQCD) and valence quark formulation (overlap) than previous calculations: two lattice spacings.

$$ f_{D_s} = 254(2)(4) \, MeV $$
2. Leptonic D decays: New results (> 2013)

$N_f = 2 + 1 + 1$:

* FNAL/MILC, 1407.3772: highly improved action, MILC configurations with phys. quark masses and small lattice spacing (4 a's, smallest $a \approx 0.06$ fm)
2. Leptonic D decays: New results (> 2013)

* $N_f = 2 + 1 + 1$:

* FNAL/MILC, 1407.3772: highly improved action, MILC configurations with
 phys. quark masses and small lattice spacing ($4 a', $smallest $a \approx 0.06$ fm)

\[
\begin{align*}
 f_{D^+} &= 212.6^{+1.1}_{-1.2} \text{ MeV} \\
 f_{D_s} &= 249.0^{+1.3}_{-1.5} \text{ MeV} \\
 f_{D_s}/f_{D^+} &= 1.1712^{+0.031}_{-0.034}
\end{align*}
\]

** ~ 0.5% error dominated by continuum extrapolation error

** They calculate the difference between f_{D^+} and the isospin limit value, f_D:

\[
f_{D^+} - f_D = 0.47^{+11}_{-5} \text{ MeV}
\]
2. Leptonic D decays: New results (> 2013)

$N_f = 2 + 1 + 1$:

* **FNAL/MILC, 1407.3772:** highly improved action, MILC configurations with phys. quark masses and small lattice spacing ($4 \ a'$s, smallest $a \approx 0.06 \ fm$)

$$f_{D^+} = 212.6^{+1.1}_{-1.2} \ MeV \quad f_{D_s} = 249.0^{+1.3}_{-1.5} \ MeV \quad f_{D_s}/f_{D^+} = 1.172^{+31}_{-34}$$

** $\sim 0.5\%$ error dominated by continuum extrapolation error

** They calculate the difference between f_{D^+} and the isospin limit value, f_D:

$$f_{D^+} - f_D = 0.47^{+11}_{-5} \ MeV$$

* **ETMC, 1411.7908:** ETMC configurations with 3 a's (smallest $a \approx 0.06 \ fm$), $m_\pi \geq 210 \ MeV$

$$f_D = 207.2(3.8) \ MeV \quad f_{D_s} = 247.2(4.1) \ MeV \quad f_{D_s}/f_D = 1.192(22)$$

** Error dominated by stat.+ chiral extrapolation error
2. Leptonic D decays

<table>
<thead>
<tr>
<th>N_f</th>
<th>f_D (MeV)</th>
<th>f_{D_s} (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(208 ± 7)</td>
<td>(250 ± 7)</td>
</tr>
<tr>
<td>2+1</td>
<td>(209.2 ± 3.3)</td>
<td>(248.6 ± 2.7)</td>
</tr>
<tr>
<td>2+1+1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FLAG – 2, $N_f = 2$

$f_D = (208 \pm 7) \text{ MeV}$

$f_{D_s} = (250 \pm 7) \text{ MeV}$

FLAG – 2, $N_f = 2 + 1$

FNAL/MILC $N_f = 2 + 1 + 1$

$f_{D+} = 212.6^{+1.1}_{-1.2} \text{ MeV}$

$f_{D_s} = 249.0^{+1.3}_{-1.5} \text{ MeV}$
2. **Leptonic \(D \) decays**

\[
\frac{f_{D_s}}{f_D}
\]

FLAG – 2, \(N_f = 2 \)

\[
\frac{f_{D_s}}{f_D} = 1.20 \pm 0.020
\]

FLAG – 2, \(N_f = 2 + 1 \)

\[
\frac{f_{D_s}}{f_D} = 1.187 \pm 0.012
\]

\(N_f = 2 + 1 + 1: \)

\[
\left| \frac{f_{D_s}}{f_D} \right|_{\text{FNAL/MILC}} = 1.1712^{+0.031}_{-0.034}
\]

\[
\left| \frac{f_{D_s}}{f_D} \right|_{\text{ETMC}} = 1.192 \pm 0.022
\]
2. Leptonic D decays

Experiment: Average from G. Rong, CKM2014, 1411.3868 and unitarity values

$|V_{cs}| = 0.97343 \pm 0.00015$, $|V_{cd}| = 0.22522 \pm 0.00061$ from PDG2014:

$$f_{D_s}/f_D|_{\text{exp.}} = 1.270 \pm 0.036$$

2.7σ larger than $N_f = 2 + 1 + 1$ FNAL/MILC result
and 2.3σ larger than $N_f = 2 + 1$ FLAG-2 average

FLAG – 2, $N_f = 2$

$$f_{D_s}/f_D = 1.20 \pm 0.020$$

FLAG – 2, $N_f = 2 + 1$

$$f_{D_s}/f_D = 1.187 \pm 0.012$$

$N_f = 2 + 1 + 1$:

$$f_{D_s}/f_D|_{\text{FNAL/MILC}} = 1.1712^{+0.031}_{-0.034}$$
$$f_{D_s}/f_D|_{\text{ETMC}} = 1.192 \pm 0.022$$
2. **Leptonic D decays:** $N_f = 2 + 1$ calculations in progress

* RBC/UKCD, 1502.00845: plans to calculate several charm physics observables (and extrapolate to $a m_b$).
2. **Leptonic D decays:** $N_f = 2 + 1$ calculations in progress

* **RBC/UKCD, 1502.00845:** plans to calculate several charm physics observables (and extrapolate to am_b).

* **FNAL/MILC, 1501.01991:** Fermilab $c +$ asqtad (relativistic) $s, u = d$ calculation with 5 a's and high statistics

** Estimated total error: $f_D \sim 2.1\%, f_{Ds} \sim 1.8\%, f_{Ds}/f_D \sim 1\%$

(larger error is heavy-quark mass tuning for $f_{D(s)}$)

** Errors reduced by a factor of ~ 2.5, now comparable to HPQCD

** Use same action for b and $c \rightarrow$ precise calculations of ratios f_B/f_D and f_{Bs}/f_{Ds} (many systematics cancel)
2. Leptonic decays: Charm-light and charm-charm vector mesons

\[\langle 0 | V_i | M^* (\vec{0}, \lambda) \rangle = f_{M^*} m_{M^*} e_\lambda^i \]

where \(e_\lambda^i \) is the polarization vector of the meson \(M^* \).
2. Leptonic decays: Charm-light and charm-charm vector mesons

\[\langle 0|V_i|M^*(\vec{0}, \lambda)\rangle = f_{M^*} m_{M^*} e^\lambda_i \]

where \(e^\lambda_i \) is the polarization vector of the meson \(M^* \).

Predictions for \(f_{D^*} \) and \(f_{D^*_s} \) (using relativistic action for \(c \))

* \(N_f = 2 \) on ETM configurations

\[
\frac{f_{D^*_s}}{f_{D_s}} = 1.26(3) \quad \frac{f_{D^*}}{f_D} = 1.208(27)
\]

Becirevic et al, 1201.4039 \hspace{1cm} Becirevic et al, 1407.1019

* \(N_f = 2 + 1 \) calculation by HPQCD, 1312.5264

\[
\frac{f_{D^*_s}}{f_{D_s}} = 1.10(2) \rightarrow f_{D^*_s} = 274(6) \text{ MeV}
\]
2. Leptonic decays: Charm-light and charm-charm vector mesons

\[\langle 0 | V_i | M^*(\vec{0}, \lambda) \rangle = f_{M^*} m_{M^*} e_\lambda^i \]

where \(e_\lambda^i \) is the polarization vector of the meson \(M^* \).

Predictions for \(f_{D^*} \) and \(f_{D_s^*} \) (using relativistic action for \(c \))

* \(N_f = 2 \) on ETM configurations

\[f_{D_s^*}/f_{D_s} = 1.26(3) \quad f_{D^*}/f_D = 1.208(27) \]

Becirevic et al, 1201.4039 \quad Becirevic et al, 1407.1019

* \(N_f = 2 + 1 \) calculation by HPQCD, 1312.5264

\[f_{D_s^*}/f_{D_s} = 1.10(2) \rightarrow f_{D_s^*} = 274(6) \text{ MeV} \]

Calculations of \(f_{J/\Psi} \) (experimental value \(f_{J/\Psi}^{exp} = 407(5) \text{ MeV} \))

* Calculation on \(N_f = 2 \) ETM configurations by Becirevic and Sanfilippo, 1206.1445:

\[f_{J/\Psi} = 414 \pm 8^{+9}_{-0} \text{ MeV} \]

* \(N_f = 2 + 1 \) calculation by HPQCD, 1208.2855:

\[f_{J/\Psi} = 405(6)(2) \text{ MeV} \]
3. **Semileptonic D decays**

$$P = \pi, K$$

$$x = d, s \text{ daughter light quark}$$

$$q = (p_D - p_P) \text{ (momentum of lepton pair)}$$

$$\frac{d\Gamma(D \rightarrow Pl\nu)}{dq^2} = \frac{G_F^2}{24\pi^3} \frac{(q^2 - m_l^2)^2 \sqrt{E_P^2 - m_P^2}}{q^4 m_D^2} |V_{cx}|^2$$

$$\left[\left(1 + \frac{m_l^2}{2q^2} \right) m_D^2 (E_P^2 - m_P^2) |f_+(q^2)|^2 + \frac{3m_l^2}{8q^2} (m_D^2 - m_P^2)^2 |f_0(q^2)|^2 \right]$$

With vector and scalar form factors $f_+(q^2)$ and $f_0(q^2)$ defined by

$$\langle P(p_P)|V_\mu|D(p_D)\rangle = \left(p_{P\mu} + p_{D\mu} - \frac{m_D^2 - m_P^2}{q^2} q_\mu \right) f_+(q^2) + \frac{m_D^2 - m_P^2}{q^2} q_\mu f_0(q^2)$$
3. Semileptonic D decays

For $l = e, \mu$ the contribution from $f_0(q^2)$ can be neglected and

$$\frac{d\Gamma(D \to Pl\nu)}{dq^2} = \frac{G_F^2}{24\pi^3} |\vec{p}_P|^3 |V_{cx}|^2 |f_{+}^{DP}(q^2)|^2$$

- experimental
- lattice QCD
3. Semileptonic D decays

For $l = e, \mu$ the contribution from $f_0(q^2)$ can be neglected and

\[
\frac{d\Gamma(D \to Pl\nu)}{dq^2} \propto \frac{G_F^2}{24\pi^3} \left| \vec{p}_P \right|^3 |V_{cx}|^2 \underbrace{\left| f_+^{DP}(q^2) \right|^2}_{\text{lattice QCD}}
\]

The errors on those studies are still dominated by errors in the calculation of the relevant form factors.

\[
\frac{d}{dq^2} \Gamma(D \to K(\pi)l\nu) \propto |V_{cs(cd)}|^2 \left| f_+^{D \to K(\pi)}(q^2) \right|^2
\]

$1.1(2.8)\%$ error $\quad 5(8.7)\%$ error
3. **Semileptonic** D **decays:** $q^2 = 0$

Two main strategies to eliminate the need of renormalize the lattice currents

- **Double ratios of 3-point correlators**
 Becirevic, Haas, Mescia 0710.1741
 (get the form factors from linear combinations of the double ratios)
3. Semileptonic D decays: $q^2 = 0$

Two main strategies to eliminate the need of renormalize the lattice currents

- Double ratios of 3-point correlators \cite{Becirevic2007}
 (get the form factors from linear combinations of the double ratios)

- Use the Ward identity ($S = \bar{x}c$) \cite{HPQCD2010}

\[
q^\mu \langle P|V^\text{cont.}_\mu |D\rangle = (m_c - m_x)\langle P|S^\text{cont.}|D\rangle
\]

that relates matrix elements of vector and scalar currents. In the lattice

\[
q^\mu \langle P|V^\text{lat.}_\mu |D\rangle Z = (m_c - m_x)\langle P|S^\text{lat.}|D\rangle
\]
3. Semileptonic D decays: $q^2 = 0$

Two main strategies to eliminate the need of renormalize the lattice currents

- Double ratios of 3-point correlators \textbf{Becirevic, Haas, Mescia} 0710.1741 (get the form factors from linear combinations of the double ratios)

- Use the Ward identity ($S = \bar{c}c$) \textbf{HPQCD}, Phys.Rev.D82:114506(2010)

$$q^\mu \langle P|V^{\text{cont.}}_\mu |D\rangle = (m_c - m_x) \langle P|S^{\text{cont}}|D\rangle$$

that relates matrix elements of vector and scalar currents. In the lattice

$$q^\mu \langle P|V^{\text{lat.}}_\mu |D\rangle Z = (m_c - m_x) \langle P|S^{\text{lat.}}|D\rangle$$

→ replace the V_μ with an S current in the 3-point function

$$f_0^{DP}(q^2) = \frac{m_c - m_x}{m_D^2 - m_P^2} \langle P|S|D\rangle_{q^2} \implies f_0^{PD}(0) = f_0^{PD}(0) = \frac{m_c - m_x}{m_D^2 - m_P^2} \langle S \rangle_{q^2=0}$$
3. **Semileptonic D decays: $q^2 = 0$**

Important reduction of errors in the lattice determination of the form factors $f_+^{D\pi(K)}(0)$ by the **HPQCD Collaboration**, Phys.Rev.D82:114506(2010), due mainly to

* Use a relativistic action, HISQ, to describe light and charm quarks.

* Absolutely normalized current

HPQCD, 1008.4562, 1109.1501

$$f_+^{D\pi}(0) = 0.666(29)$$

$$f_+^{DK}(0) = 0.747(19)$$

Work in progress: $N_f = 2 + 1 + 1$ **FNAL/MILC**, 1411.1651 with physical quark masses.
3. **Semileptonic D decays: $q^2 \neq 0$**

Determination of $|V_{cs}|$ from $D \to Kl\nu$ at non-zero momentum transfer

HPQCD, 1305.1462

Calculation of $f_{DK}^0(q^2)$ (using Ward identity method) and $f_{DK}^+(q^2)$ (using its definition)

* Global fit to available experimental data (using $z-$expansion) \rightarrow extraction of $|V_{cs}|$ using all experimental q^2 bins.
3. **Semileptonic** D **decays:** $q^2 \neq 0$

Determination of $|V_{cs}|$ from $D \to Kl\nu$ at non-zero momentum transfer

HPQCD, 1305.1462

Calculation of $f_0^{DK}(q^2)$ (using Ward identity method) and $f_+^{DK}(q^2)$ (using its definition)

* Global fit to available experimental data (using z—expansion) \rightarrow extraction of $|V_{cs}|$ using all experimental q^2 bins.

![Graph showing the ratio of experimental to lattice values for V_{cs} with q^2 bins in GeV2.]

$|V_{cs}| = 0.963(5)_{\text{exp}}(14)_{\text{lat}}$

Unitarity value PDG2014: $|V_{cs}| = 0.97343 \pm 0.00015$
3. Semileptonic D decays: $q^2 \neq 0$

Work in progress $(N_f = 2)$:

* **ETM**: Preliminary results in PoSLattice 2013, 391 (2013)

Work in progress $(N_f = 2 + 1)$:

* **FNAL/MILC**: Preliminary results in 1211.4964. Fermilab charm and staggered light, four lattice spacings, $m_\pi \geq 180$ MeV.

** Same actions used for $B \to \pi l \nu$ form factors calculation → can calculate accurately $\left| \frac{f_{B\pi}}{f_{D\pi}} \right|$ → alternative calculation of $|V_{ub}|$ (see A. Oyanguren talk)

Work in progress $(N_f = 2 + 1 + 1)$:

* **ETM, Lattice2014**: Twisted mass, three lattice spacings, $m_\pi \geq 210$ MeV

* **FNAL/MILC**: relativistic action for c, physical quark masses, four lattice spacings.
3. **Semileptonic D decays:** beyond gold-platted quantities

- Alternative determination of $|V_{cs}|$: $D_s \to \phi l\nu$ [HPQCD, 1311.6669]

- More challenging: five form factors (vector meson), unstable meson ...

- Treat ϕ as stable and estimate the error.
3. Semileptonic D decays: beyond gold-platted quantities

Alternative determination of $|V_{cs}|$: $D_s \to \phi l \nu$ HPQCD, 1311.6669

More challenging: five form factors (vector meson), unstable meson ...

* Treat ϕ as stable and estimate the error.

* q^2 and angular distributions agree with BaBar data.

$$|V_{cs}| = 1.017(44)_{lat}(35)_{exp}(30)_{K\bar{K}}$$

* Expected reduction of exper. errors at BESIII \to need improvement of theor. calculation (lattice error dominated by statistical error)

* Are the heavy meson form factors at a given q^2 insensitive to the spectator m_q?
 (compare $D_s \to \phi$ and $D \to K^*$).
3. **Semileptonic D decays:** beyond gold-platted quantities

- Alternative determination of $|V_{cs}|$: \[D_s \rightarrow \phi l\nu \] **HPQCD**, 1311.6669

 More challenging: five form factors (vector meson), unstable meson ...

 * Treat ϕ as stable and estimate the error.

 * q^2 and angular distributions agree with **BaBar** data.

 \[|V_{cs}| = 1.017(44)_{lat}(35)_{exp}(30)_{K\bar{K}} \]

 * Expected reduction of exper. errors at **BESIII** \(\rightarrow\) need improvement of theor. calculation (lattice error dominated by statistical error)

 * Are the heavy meson form factors at a given q^2 insensitive to the spectator m_q? (compare $D_s \rightarrow \phi$ and $D \rightarrow K^*$).

- Exploratory $N_f = 2 + 1$ calculation of $D \rightarrow \eta^{(')} l\nu$ **G. Bali et al**, 1406.5449

 * Calculate $\eta - \eta'$ mixing angles and disconnected contributions
3. **Semileptonic D decays: correlations with leptonic decays**

Cancel CKM matrix elements building ratios of semileptonic and leptonic decay widths

* $N_f = 2 + 1$ **HPQCD** calculation

$$\left[\frac{f_{D^+}^{D\pi}(0)}{f_{D^+}} \right]_{\text{lat}} = (3.20 \pm 0.15) \text{ GeV}^{-1}$$

* Using **HPQCD** $f_{D^+}^{D\pi}(0)$ and $N_f = 2 + 1 + 1$ **FNAL/MILC** f_{D^+}

$$\left[\frac{f_{D^+}^{D\pi}(0)}{f_{D^+}} \right]_{\text{lat}} = (3.13 \pm 0.14) \text{ GeV}^{-1}$$
3. **Semileptonic D decays:** correlations with leptonic decays

Cancel CKM matrix elements building ratios of semileptonic and leptonic decay widths

* $N_f = 2 + 1$ **HPQCD** calculation

\[
\left[\frac{f_{+D\pi}(0)}{f_D} \right]_{lat} = (3.20 \pm 0.15) \text{ GeV}^{-1}
\]

* Using **HPQCD** $f_{+D\pi}(0)$ and $N_f = 2 + 1 + 1$ **FNAL/MILC** f_{D^+}

\[
\left[\frac{f_{+D\pi}(0)}{f_{D^+}} \right]_{lat} = (3.13 \pm 0.14) \text{ GeV}^{-1}
\]

\[
\left[\frac{f_{+D\pi}(0)}{f_{D^+}} \right]_{exp} = (3.11 \pm 0.08) \text{ GeV}^{-1}\]

G. Rong et al, 1410.3232

Good agreement experiment-theory
3. **Semileptonic D decays:** correlations with leptonic decays

Cancel CKM matrix elements building ratios of semileptonic and leptonic decay widths

* $N_f = 2 + 1$ **HPQCD** calculation

\[
\left[\frac{f_+^{D\pi}(0)}{f_D} \right]_{\text{lat}} = (3.20 \pm 0.15) \text{GeV}^{-1}
\]

* Using **HPQCD** $f_+^{D\pi}(0)$ and $N_f = 2 + 1 + 1$ **FNAL/MILC** f_{D^+}

\[
\left[\frac{f_+^{D\pi}(0)}{f_{D^+}} \right]_{\text{lat}} = (3.13 \pm 0.14) \text{GeV}^{-1}
\]

\[
\left[\frac{f_+^{D\pi}(0)}{f_{D^+}} \right]_{\text{exp}} = (3.11 \pm 0.08) \text{GeV}^{-1} \quad \text{G. Rong et al, 1410.3232}
\]

Good agreement experiment-theory

Several $N_f = 2 + 1$ and $N_f = 2 + 1 + 1$ calculations in progress.
4. $|V_{cd}|$, $|V_{cs}|$: CKM unitarity in the second row

Extracting CKM matrix elements $|V_{cd(cs)}|$ from leptonic decays

Experimental averages: BaBar, Belle, CLEO-c, BESIII

$$f_{D_s}|V_{cs}| = (252.0 \pm 3.7 \pm 1.8) \text{ MeV} \quad f_{D^+}|V_{cd}| = (45.92 \pm 1.04 \pm 0.15) \text{ MeV}$$

Y. Fang et al, 1409.8049 \quad G. Rong et al, 1410.3232

Decay constant errors $\sim 0.5\%$ \to need EM effects when combining with experiment
4. $|V_{cd}|$, $|V_{cs}|$: CKM unitarity in the second row

Extracting CKM matrix elements $|V_{cd(cs)}|$ from leptonic decays

Experimental averages: BaBar, Belle, CLEO-c, BESIII

$$f_{D_s}|V_{cs}| = (252.0 \pm 3.7 \pm 1.8) \text{ MeV} \quad f_{D^+}|V_{cd}| = (45.92 \pm 1.04 \pm 0.15) \text{ MeV}$$

Y. Fang et al, 1409.8049 \quad G. Rong et al, 1410.3232

Decay constant errors $\sim 0.5\% \rightarrow$ need EM effects when combining with experiment

Following FNAL/MILC, 1407.3772

* Universal long-distance EM: $\downarrow \sim 2.5\%$ Kinoshita, PRL2, 1959

* Universal short-distance EM: $\uparrow \sim 1.8\%$ Sirlin, NPB196, 1982

* Hadronic structure dependent EM effects: rough estimate $\sim 0.6\%$.

(phenomelogical estimates available only in the K sector)
4. $|V_{cd}|, |V_{cs}|$: CKM unitarity in the second row

Extracting CKM matrix elements $|V_{cd(cs)}|$ from leptonic decays

Experimental averages: BaBar, Belle, CLEO-c, BESIII

$$f_{D_s}|V_{cs}| = (252.0 \pm 3.7 \pm 1.8) \text{ MeV} \quad \quad f_{D^+}|V_{cd}| = (45.92 \pm 1.04 \pm 0.15) \text{ MeV}$$

Y. Fang et al, 1409.8049 \quad G. Rong et al, 1410.3232

Decay constant errors $\sim 0.5\% \rightarrow$ need EM effects when combining with experiment

Following FNAL/MILC, 1407.3772

* Universal long-distance EM: $\downarrow \sim 2.5\%$ Kinoshita, PRL2, 1959

* Universal short-distance EM: $\uparrow \sim 1.8\%$ Sirlin, NPB196, 1982

* Hadronic structure dependent EM effects: rough estimate $\sim 0.6\%$.

(phenomelogical estimates available only in the K sector)

$$|V_{cd}| = 0.220 \pm 0.004_{lat} \pm 0.005_{exp} \pm 0.001_{EM}$$

$$|V_{cs}| = 1.017 \pm 0.011_{lat} \pm 0.017_{exp} \pm 0.006_{EM} \quad \text{FLAG-2 } N_f = 2 + 1$$
4. $|V_{cd}|, |V_{cs}|$: CKM unitarity in the second row

Extracting CKM matrix elements $|V_{cd(cs)}|$ from leptonic decays

Experimental averages: BaBar, Belle, CLEO-c, BESIII

\[
f_{D_s}|V_{cs}| = (252.0 \pm 3.7 \pm 1.8) \text{ MeV} \quad f_{D^+}|V_{cd}| = (45.92 \pm 1.04 \pm 0.15) \text{ MeV}
\]

Y. Fang et al, 1409.8049

G. Rong et al, 1410.3232

Decay constant errors $\sim 0.5\% \rightarrow$ need EM effects when combining with experiment

Following **FNAL/MILC,** 1407.3772

* Universal long-distance EM: $\downarrow \sim 2.5\%$ Kinoshita, PRL2, 1959

* Universal short-distance EM: $\uparrow \sim 1.8\%$ Sirlin, NPB196, 1982

* Hadronic structure dependent EM effects: **rough estimate** $\sim 0.6\%$.

(phenomelogical estimates available only in the K sector)

\[
|V_{cd}| = 0.217 \pm 0.001_{lat} \pm 0.005_{exp} \pm 0.001_{EM}
\]

\[
|V_{cs}| = 1.016 \pm 0.005_{lat} \pm 0.017_{exp} \pm 0.006_{EM} \quad \text{FNAL/MILC, } N_f = 2 + 1 + 1
\]
4. \(|V_{cd}|, |V_{cs}|: \) CKM unitarity in the second row

Extracting CKM matrix elements \(|V_{cd(cs)}|\) from semileptonic decays

Experimental averages:

\[
f_{+}^{DK}(0)|V_{cs}| = 0.717 \pm 0.004 \quad f_{+}^{D\pi}(0)|V_{cd}| = 0.143 \pm 0.002
\]

Y. Fang et al, 1409.8049 \quad G. Rong et al, 1410.3232

(not included Babar, Phys.Rev.D 91 052022 (2015)

\(|V_{cd}|f_{+}^{D\pi}(0) = 0.1374 \pm 0.0038 \pm 0.0022 \pm 0.0009, \) talk by A. Oyanguren)

* Experimental averages for neutral and charged \(D\) do not remove corrections from Coulomb attraction between charged FS particles in neutral mode \(\sim 1\%\)

→ Needed when lattice errors are reduced (forthcoming calculations from FNAL/MILC, ETM, RBC/UKQCD, ...
4. \(|V_{cd}|, |V_{cs}|: \) CKM unitarity in the second row

Extracting CKM matrix elements \(|V_{cd(cs)}| \) from semileptonic decays

Experimental averages:

\[
f_+^{DK}(0)|V_{cs}| = 0.717 \pm 0.004 \quad f_+^{D\pi}(0)|V_{cd}| = 0.143 \pm 0.002
\]

Y. Fang et al, 1409.8049

G. Rong et al, 1410.3232

(not included Babar, Phys.Rev.D 91 052022 (2015))

\[
|V_{cd}|f_+^{D\pi}(0) = 0.1374 \pm 0.0038 \pm 0.0022 \pm 0.0009, \text{ talk by A. Oyanguren}
\]

* Experimental averages for neutral and charged \(D \) do not remove corrections from Coulomb attraction between charged FS particles in neutral mode \(\sim 1\% \)

→ Needed when lattice errors are reduced (forthcoming calculations from FNAL/MILC, ETM, RBC/UKQCD, ...)

\[
|V_{cd}| = 0.215 \pm 0.009_{lat} \pm 0.003_{exp} \quad |V_{cs}| = 0.960 \pm 0.024_{lat} \pm 0.005_{exp}
\]

(with HPQCD, \(N_f = 2 + 1 \) \(f_+^{D\pi}(0) = 0.666(29) \) and \(f_+^{DK}(0) = 0.747(19) \))
4. $|V_{cd}|, |V_{cs}|$: CKM unitarity in the second row

* $|V_{cd}|$: Pretty good agreement between different determinations, but some tension

$N_f = 2 + 1 + 1$ FNAL/MILC leptonic-unitarity.

* $|V_{cs}|$: Slight tensions leptonic-semileptonic ($D \to KL\nu$) and leptonic-unitarity.
4. $|V_{cd}|$, $|V_{cs}|$: CKM unitarity in the second row

Using the most precise leptonic numbers ($N_f = 2 + 1 + 1$ FNAL/MILC)

$$1 - |V_{cd}|^2 - |V_{cs}|^2 - |V_{cb}|^2 = -0.07(4)$$

Using $N_f = 2 + 1$ FLAG-2 averages for decay constants

$$1 - |V_{cd}|^2 - |V_{cs}|^2 - |V_{cb}|^2 = -0.08(4)$$
4. Conclusions and outlook

Relativistic description of charm → important reduction of lattice QCD errors in decay constants and semileptonic form factors ...

\[
\text{Error } f_{D(s)} \sim 0.5\% \quad \text{Error } f_{DK(\pi)}^{D^+} \sim 2.5 - 4.3\%
\]

... still theory errors are dominant in \(|V_{cd(cs)}|\) extractions from semileptonic decays.

* Several on-going calculations of the shape of \(f_{+(0)}(q^2)\) will further reduce errors FNAL/MILC (with two different descriptions of the \(c\)), ETM, HPQCD ...

** Need experimental results reported in a model independent way, i.e., in \(q^2\) bins (including full covariance matrix).

* Physical quark masses also important in the reduction of errors, especially for \(D^+\) quantities.
4. Conclusions and outlook

At current level of precision we need to include subdominant effects:

* **EM effects** → Eventually will do QCD+QED simulations.

* Include **charm** in the sea

* **Strong isospin breaking effects:** leading order corrections included via tuning light valence quarks (effects of degenerate sea are NNLO in CHPT).
4. Conclusions and outlook

At current level of precision we need to include subdominant effects:

* **EM effects** \(\rightarrow\) Eventually will do QCD+QED simulations.

* Include **charm** in the sea

* **Strong isospin breaking effects:** leading order corrections included via tuning light valence quarks (effects of degenerate sea are NNLO in CHPT).

Currently there are some tensions in the unitarity of the second row, and between leptonic and semileptonic determinations of \(|V_{cs}|\).

* Interesting to improve theory error in \(D_s \rightarrow \phi l \nu\) (upcoming improvement of experimental error by BESIII)
4. Conclusions and outlook

At current level of precision we need to include subdominant effects:

* **EM effects** → Eventually will do QCD+QED simulations.

* Include *charm* in the sea

* Strong isospin breaking effects: leading order corrections included via tuning light valence quarks (effects of degenerate sea are NNLO in CHPT).

Currently there are some tensions in the unitarity of the second row, and between leptonic and semileptonic determinations of $|V_{cs}|$.

* Interesting to improve theory error in $D_s \rightarrow \phi \nu$ (upcoming improvement of experimental error by BESIII)

Extend the same techniques to B physics
2. Leptonic D decays: New results (> 2013)

Reduction of errors in f_D and f_{D_s} mainly due to the use of relativistic actions, and using the same action for light and charm quarks.

$N_f = 2 + 1 + 1$:

* FNAL/MILC, 1407.3772: highly improved action, MILC configurations with phys. quark masses and small lattice spacing (smallest $a \approx 0.06$ fm)

\[
\begin{align*}
 f_{D_s} &= 249.0 \pm 0.3_{\text{stat}} \pm 0.2_{\text{extr.}} \pm 0.4_{FV} \pm 0.1_{em} \pm 0.1_{FV} \pm 0.3_{em} \pm 0.4_{f_\pi} \text{ MeV} \\
 f_{D^+} &= 212.6 \pm 0.4_{\text{stat}} \pm 0.2_{\text{extr.}} \pm 0.3_{FV} \pm 0.1_{em} \pm 0.3_{f_\pi} \text{ MeV}
\end{align*}
\]