Theory aspects of open heavy flavor production and suppression in cold and hot nuclear matter

Marlene Nahrgang
Duke University

May 19th 2015 at CHARM 2015, Detroit
What do we want to study?

- Properties of strongly interacting many-body systems.
- Phases of hot and dense nuclear matter.
- Tool: (ultra)relativistic heavy-ion collisions.
- LHC: PbPb at $\sqrt{s_{NN}} = 2.76$, 5 TeV
 RHIC: AuAu at $\sqrt{s_{NN}} = 200 – 7.7$ GeV

How to probe the properties of the quark-gluon plasma?
Probes

- Probes should not thermalize with the medium, e.g. dileptons, high-pT jets, ...
- The mass of heavy quarks (HQ) sets another scale: m_c, m_b
 (top is too heavy to be produced abundantly and decays quickly)
- HQ vacuum shower terminates much earlier: E / Q_H^2
 with $Q_H = \sqrt{Q_0^2 + m_Q^2}$.
- The HQ mass reduces the radiation phase space: dead cone effect.
- Number of thermally excited HQ is negligibly small.
- HQ as leading parton is always tagged (hard radiations change energy but not identity).
Quark-gluon plasma and its properties

Expectation in heavy-ion collisions:

Formation of QGP, which evolves fluid dynamically as a nearly perfect fluid.

collective flow

jet quenching

observable: Fourier coefficients of

\[
\frac{d^2 N}{dp_T dy} \propto \sum_n v_n \cos(n \phi)
\]

sensitive to viscosity \(\eta / s \)

observable: nuclear modification factor

\[
R_{AA}(p_T) = \frac{1}{N_{\text{coll}}} \frac{dN_{AA} / dp_T}{dN_{pp} / dp_T}
\]

sensitive to jet quenching parameter \(\hat{q} \)
Quark-gluon plasma and its properties

Expectation in heavy-ion collisions:

Formation of QGP, which evolves fluid dynamically as a nearly perfect fluid.

collective flow

jet quenching

observable: Fourier coefficients of

\[
\frac{d^2N}{dp_Tdy} \propto \sum_n v_n \cos(n\phi)
\]
sensitive to viscosity \(\eta/s \)

observable: nuclear modification factor

\[
R_{AA}(p_T) = \frac{1}{N_{coll}} \frac{dN_{AA}/dp_T}{dN_{pp}/dp_T}
\]
sensitive to jet quenching parameter \(\hat{q} \)

B. Schenke et al. PLB702 (2011)

Jet Collab. PRC90 (2014)
Modeling of heavy-quark dynamics in the QGP

production interaction with the medium hadronization

- LO pQCD \rightarrow including resummation of logs: FONLL \rightarrow inclusive spectra \Rightarrow back-to-back initialization, no information about the azimuthal $Q\bar{Q}$ correlations

 M. Cacciari et al. PRL95 (2005), JHEP 1210 (2012)

- NLO pQCD matrix elements plus parton shower, e.g. POWHEG or MC@NLO \Rightarrow exclusive spectra, like $Q\bar{Q}$ correlations

- Cold nuclear matter effects, i.e. shadowing, p_T broadening aka Cronin effect, etc.

Modeling of heavy-quark dynamics in the QGP

- Collisional (elastic) cross sections ⇒ $\Delta E \sim \log(E)L$
- Incoherent radiation (GB regime) ⇒ $\Delta E \sim EL/l_{mfp}$
- Coherent radiation (BDMPS-Z regime) ⇒ $\Delta E \sim \sqrt{E}L$
- Dead cone effect reduces radiative energy loss for heavy quarks.
- For very energetic partons and thin media ⇒ $\Delta E \sim L^2$
- Further radiative effects: finite gluon mass and width

Modeling of heavy-quark dynamics in the QGP

production interaction with the medium hadronization

- Coalescence/Recombination – predominantly at small p_T.

- Fragmentation – predominantly at large p_T.

S. Cao et al. arxiv:1505.01413

Gossiaux et al. PRC 78 (2008)
What to expect from heavy-quark observables?

at low $p_T \sim m_Q$

- Very different from light partons.
- Nonperturbative!
- Partial thermalization with the light partons in the QGP?
- Diffusion D mainly via collisional processes?
- Hadronization via coalescence/recombination?
- Initial shadowing and cold nuclear matter effects?

at high $p_T \gg m_Q$

- Similar to light partons.
- Perturbative regime...
- Rare processes, probe the opacity of the matter.
- Energy loss dE/dx via collisional and radiative processes?
- Coherent energy loss \to jet-quenched parameter \hat{q}?
- Hadronization via (medium-modified) fragmentation?
Boltzmann equation for HQ phase-space distribution

\[\frac{df_Q}{dt}(t, \mathbf{x}, \mathbf{p}) = C[f_Q] \quad \text{with} \quad C[f_Q] = \int d\mathbf{k} \left[w(\mathbf{p} + \mathbf{k}, \mathbf{p}) f_Q(\mathbf{p} + \mathbf{k}) - w(\mathbf{p}, \mathbf{k}) f_Q(\mathbf{p}) \right] \]

expanding \(C \) for small momentum transfer \(k \ll p \) (in the medium \(k \sim \mathcal{O}(gT) \)) and keeping lowest 2 terms \(\Rightarrow \) Fokker-Planck equation

\[\frac{\partial}{\partial t} f_Q(t, \mathbf{p}) = \sum_i \left(A^i(\mathbf{p}) f_Q(t, \mathbf{p}) + \sum_j B^{ij}(\mathbf{p}) f_Q(t, \mathbf{p}) \right) \]

friction (drag) \quad momentum diffusion

Recast to Langevin equation (probably good for bottom, but for charm?)

\[\frac{d}{dt} \mathbf{\bar{p}} = -\eta_D(\mathbf{p}) \mathbf{\bar{p}} + \xi \quad \text{with} \quad \langle \xi^i(t) \xi^j(t') \rangle = \kappa \delta^{ij} \delta(t - t') \]

Transport coefficients connected by fluctuation-dissipation theorem (Einstein relation):

\[\eta_D = \frac{\kappa}{2m_Q T}, \quad D_s = \frac{T}{m_Q \eta_D} \]

spatial diffusion
Diffusion coefficient from lattice QCD

Lattice QCD at finite T is performed in Euclidean space ⇒ notoriously difficult to calculate dynamical quantities.

Transport coefficients calculated from correlation function of conserved currents via slope of spectral function ρ_E at $\omega = 0$ (Kubo formula)

momentum diffusion:

$$\frac{\kappa}{T^3} = \lim_{\omega \to 0} \frac{2T\rho_E(\omega)}{\omega}$$

⇒ No reliable input from lattice QCD calculations yet...
Collisional (elastic) energy loss

LO Feynmann diagrams for perturbative heavy quark scattering off a light parton

- Dominant contribution from the t-channel
- Well-known IR singularity, regulated by the Debye screening mass m_D
- Gluon propagator: $G(t) = \frac{\alpha_s}{t} \rightarrow \frac{\alpha_s}{t - m_D^2}$ with $m_D \sim O(gT)$
- Use the Hard-Thermal Loop (HTL) resummed gluon propagator for small $|t| \ll t^*$ and the bare gluon propagator $|t| \gg t^*$ to calculate energy loss.
- For well-separated scales $g^2 T^2 \ll T^2$ results are independent of the intermediate scale t^*.
Nantes model

- Relevant separation of scales $g^2 T^2 \ll T^2$ probably not fulfilled in RHIC and LHC experiments.
- Idea: introduce a reduced IR regulator λm_D^2 in the hard part: HTL+semi hard \Rightarrow by tuning λ achieve independence from t^\ast.
- Calibrate pQCD Born matrix elements with $G(t) = \frac{\alpha_s}{t-\lambda m_D^2}$ to HTL+semi hard energy loss.
- Use a running coupling at the scale of the specific process $\alpha_{\text{eff}}(t)$.
- Self-consistently determine the Debye-mass from $m_D^2 = (1 + 6n_f)4\pi\alpha_s(m_D^2)T^2$.

Non-perturbative resonance scattering

- Basic assumption: two-body interactions \rightarrow potential $V(t)$ with $t \simeq -\vec{q}^2$ (c, b quarks; $T \lesssim 3T_c$)

- T-matrix follows from Lippmann-Schwinger equation: $T = V + \int d^3k V G_2 T \rightarrow$ HQ transport coefficients, e.g. $A_Q(\vec{p}) \sim |T|^2$

- Medium-modified HQ potential from lQCD free/internal energy:
 - Stronger interaction from internal energy based V
 - Enhanced ΔE_{loss} than in pQCD due to resonant HQ-meson and di-quark states in scattering channels

- Spatial diffusion coefficient $D_s = 2\pi T^2 / m_Q A_Q$:
 - comparable to quenched lQCD
 - smooth transition to hadronic medium with minimum close to T_c

Radiative energy loss

- LO pQCD matrix element for $2 \rightarrow 3$ process Kunszt et al. PRD21 (1980)
- Gunion-Bertsch approximation derived in the high-energy limit, where the radiated gluon k_\perp and the momentum transfer q_\perp are soft $\ll \sqrt{s}$.
- Incoherent radiation off a massless parton, mid-rapidity
- Extention beyond mid-rapidity and to finite mass m_Q (heavy quarks!)
 \Rightarrow distribution of induced gluon radiation:

$$P_g(x, \vec{k}_\perp, \vec{q}_\perp, m_Q) = \frac{3\alpha_s}{\pi^2} \frac{1 - x}{x} \left(\frac{\vec{k}_\perp}{\vec{k}_\perp^2 + x^2 m_Q^2} - \frac{\vec{k}_\perp - \vec{q}_\perp}{(\vec{k}_\perp - \vec{q}_\perp)^2 + x^2 m_Q^2} \right)^2$$

$\Rightarrow E^{\text{loss}}_{\text{rad}} \propto E L$

J. Gunion, PRD25 (1982); O. Fochler et al. PRD88 (2013); J. Aichelin et al. PRD89 (2014)
Coherent emission - LPM

- coherent emission if $\tau_{\text{form}} = \sqrt{\frac{\omega}{\hat{q}}} > l_{\text{mfp}}$
- QCD analogon to the Landau-Pomeranchuk-Migdal (LPM) effect
- Important in QCD: rescattering of the forming gluon with medium partons \Rightarrow less suppression than in QED
- At large energies in BDMPS-Z: \Rightarrow $E_{\text{loss}}^{\text{rad}} \propto \sqrt{E} L$
- For very energetic partons $\tau_{\text{form}} > L$, then $E_{\text{loss}}^{\text{rad}} \propto L^2$, estimate for the LHC ($L \sim 2 \text{ fm}$, $\hat{q} \sim 2 \text{ GeV/fm} \Rightarrow \omega_c \sim 20 \text{ GeV}$)

Baier et al. PLB 345 (1995); NPB 483 (1997); ibid. 484 (1997); B. G. Zakharov, JETP Lett. 63 (1996) 952
Dead cone effect

suppression of high-energetic (small angle) gluon emission by the heavy quark mass:

\[\frac{d\sigma_{\text{rad}}}{\theta d\theta} \propto \frac{\theta^2}{(\theta^2 + M_Q^2/E_Q^2)} \]

Dokshitzer et al., PLB 519 (2001)

- Suppresses gluon emission in the dead cone \(\theta_D = M_Q/E_Q \)
- Introduces a mass hierarchy in the radiative energy loss.
- But: assumes hard scatterings!

When the hard scattering assumption is relaxed, emission at low \(k_\perp \) is significantly less suppressed:

\[\frac{P_g(x,k_\perp;M)}{P_g(x,k_\perp;0)} \]

hard-scattering approximation
all scatterings

J. Aichelin et al. PRD89 (2014)
From theoretical input to dynamical modeling

- No reliable input for the HQ diffusion coefficient from lattice QCD calculations.
- pQCD and pQCD inspired models of collisional and radiative processes.
- In a fully dynamical system processes on many scales involved, simple approximations are prone to fail at intermediate p_T.
- Due to uncertainties all models when compared to data contain (implicit or explicit) parameter tuning.
- Proper modeling of the QGP evolution is important! Should be well tested in the light hadron sector!

And finally some results...
pQCD at high momenta

- Collisional and radiative pQCD energy loss implemented, only applicable at high p_T.
- Good simultaneous description of D mesons, light hadrons and J/psi.
- While D meson suppression = charm quark suppression, the fragmentation into light hadron distorts the picture ⇒ light hadron suppression dominated by light quark suppression.
- No dynamical QGP description, only parametrized temperatures.

M. Djordjevic, PLB734 (2014)
• Langevin models have problems describing both the R_{AA} and the v_2.

Alberico et al. EPJC73 (2013); Cao et al. arxiv:1505.01413
Recombination needs to be included in order to describe the R_{AA} at lower p_T.

Cao et al. arxiv:1505.01413
Nonperturbative diffusion at the LHC

- Transport coefficients from T-matrix approach, Langevin dynamics and $2 + 1d$ ideal fluid dynamical QGP evolution.

- Rather good description of R_{AA} but ν_2 underestimated.

- Strangeness enhancement as signal of the QGP (thermal production) \Rightarrow enhancement of D_s compared to D mesons.

H. Min et al. PLB735 (2014)
pQCD Boltzmann transport

- pQCD-inspired Boltzmann transport in $3 + 1d$ ideal fluid dynamics (EPOS) or in partonic transport (BAMPS).

MN et al. (Nantes) - MC@sHQ+EPOS2

- Rather good description of the R_{AA} and the v_2.
- Slight preference for purely collisional energy loss in MC@sHQ+EPOS2.

Uphoff et al. (BAMPS)

- $\kappa = 1.0, X_{LPM} = 1.0$
- $\kappa = 0.2, X_{LPM} = 0.2$
- only $2 \rightarrow 2, \kappa = 0.2, K = 3.5$
- $0-7.5\%$ (ALICE)

- $\kappa = 1.0, X_{LPM} = 1.0$
- $\kappa = 0.2, X_{LPM} = 0.2$
- only $2 \rightarrow 2, \kappa = 0.2, K = 3.5$
- $30-50\%$ (ALICE)

How much of the observed suppression really comes from the hot QGP? Look at reference systems, like p+Pb collisions.

- The parton distribution function (pdf) is different for a proton in a nucleus than for a free proton: shadowing (ie. a depletion) at small x and possibly antishadowing (ie. enhancement) at intermediate x. \rightarrow effect is parametrized in sets of npdf

- Parton saturation at small x: large parton densities in the nucleus. E.g. Color Glass Condensate formalism (JIMWLK non-linear evolution equations).

- multiple scattering of partons in the cold nucleus before & after the hard scattering \Rightarrow transverse momentum broadening, Cronin effect

- If high-multiplicity pA collisions produce a QGP hot medium effects will also contribute (work in progress by groups in Duke, Nantes,...)

For much more, see talk by R. Vogt this afternoon!
Beyond traditional observables...

Conclusion: too many models can (more or less) well describe the available data.

⇒ Need new observables with high discriminating power between purely collisional and collisional+radiative approaches: eg. azimuthal correlations of $Q\bar{Q}$ pairs.

p_\perp from MC@sHQ+EPOS2:

$c\bar{c}$ correlation plot from Duke model

- Advantages: sensitive to the interaction mechanism: purely coll or coll+rad
- Difficulties: already the $c\bar{c}$ proton-proton baseline is not well understood theoretically, contributions from final hadronic interactions, experimental feasibility...

MN et al. PRC90 (2014)
Cao et al., arxiv:1505.01869
Beyond traditional observables...

- What can we learn from comparison to data from flow measurements?
- Most models give a τ_{relax} for charm quarks much longer than the evolution of the QGP, but HF v_2 is very similar to light hadron v_2.
- Further contributions from coalescence and energy loss.
- What about higher-order Fourier coefficients?

- Expectation: v_3 and higher-order coefficients show the incomplete coupling of HQ to the medium.

MN et al. PRC91 (2015)
Summary

- HQ probe partial thermalization at low p_T and energy loss at high p_T in the QGP.
- Mass ordering is seen in collisional and radiative interaction mechanisms from light hadrons \rightarrow charm \rightarrow bottom.
- Many effects important at intermediate p_T: onset of coherent gluon emission, gluon thermal mass, finite path length, nonperturbative scatterings,...
- Transport coefficients/scattering cross sections in Langevin or Boltzmann transport.
- In order to compare to experiment theory of energy loss needs to be coupled to a dynamical evolution of the QGP (better to use a model which is well tested in the light hadron sector!)
- R_{AA} and v_2 are described well by (too?) many models.
- Need for further observables, like $Q\bar{Q}$ correlations and higher-order flow coefficients, for veri/falsi-fication of models!
backup
Modeling of heavy-quark dynamics in the QGP

- Model the QGP: a locally thermalized medium provides the scattering partners.
- Input from a fluid dynamical description of the bulk QGP medium: temperatures and fluid velocities.
- Use a fluid dynamical description which describes well the bulk observables!

smooth initial conditions

fluctuating initial conditions

production interaction with the medium hadronization

medium description coupling medium - HF sector

- Model the QGP: a locally thermalized medium provides the scattering partners.
- Input from a fluid dynamical description of the bulk QGP medium: temperatures and fluid velocities.
- Use a fluid dynamical description which describes well the bulk observables!
“Partonic wind” effect

- Due to the radial flow of the matter low-\(p_T\) \(c\bar{c}\)-pairs are pushed into the same direction.
- Initial correlations at \(\Delta \phi \sim \pi\) are washed out but additional correlations at small opening angles appear.
- This happens only in the purely collisional interaction mechanism!
- No “partonic wind” effect observed in collisional+radiative(+LPM) interaction mechanism!
QGP: initial state and bulk flow (1)

- Bulk flow is driven by the initial elliptic or triangular eccentricity ϵ_2 and ϵ_3

$$\epsilon_n = \frac{\sqrt{\langle r^n \cos(n\phi) \rangle^2 + \langle r^n \sin(n\phi) \rangle^2}}{\langle r^n \rangle}$$

- In the light hadron sector the final $v_2 \propto \epsilon_2$ and $v_3 \propto \epsilon_3$ for not too large centralities.

 G.-Y. Qin et al., PRC 82 (2010); H. Niemi et al., PRC 87(2013)

- Proportionality depends on viscosity and higher-order flow is more sensitive!

$$\frac{v_n}{\epsilon_n} = \left(\frac{v_n}{\epsilon_n} \right)_{\text{ideal}} (1 - O(n^mK)) \quad m \sim 1 - 2$$

B. H. Alver et al., PRC 82, (2010); P. Staig and E. Shuryak, PRC 84 (2011); Y. Hatta et al., arXiv:1407.5952

- Dependence on centrality already in the ideal case: FO dynamics, core-corona separation, etc.
QGP: initial state and bulk flow (2)

average temperature and overlap area

centrality dependence:
+ increase of initial eccentricities
+ decrease of interaction rate and medium size

⇒ expectation: heavy-flavor flow shows a weaker dependence on centrality, especially for v_3
At small p_T: relative enhancement of flow in purely collisional scenario over collisional+radiative(+LPM) larger for v_3 than for v_2
Charm flow: hadronization and energy loss

collisional+radiative(+LPM), $K = 0.8$

- Contribution to the flow from hadronization.
- For low p_T the charm flow is predominantly due to the flow of the bulk.
Flow of B mesons reflects well the bottom quark flow.

Flow of B mesons for $p_T \lesssim 6$ GeV entirely due to bulk flow.
Diffusion coefficient in MC@sHQ

\[
\begin{align*}
\text{El. (K=1)} & \quad \text{El. + radiat LPM (K=1)} \\
\text{El. (K=1.5)} & \quad \text{El. + radiat LPM (K=0.8)}
\end{align*}
\]

\[2\pi T D_s \]

T/T_c vs T/T_c

$\text{MC}@_{s\text{HQ V508}}$

Banerjee et al., PRD 85 (2012)
Ding et al., PRD 86 (2012)
Radiative energy loss

- Incoherent radiation: Gunion-Bertsch spectrum extended to finite quark mass.

 J. Aichelin et al., PRD 89 (2014), arXiv:1307.5270

- Inclusion of an effective suppression of the spectra in the coherent radiation regime (LPM effect)

- Influence of gluon damping (not in this talk)
