MKIDs in our lab

J.Estrada

limitation of Si semiconductor detectors...

superconductors overcome this limitation

Number of quasiparticles is proportional to photon energy! ~5000 quasiparticles for a visible photon

Microwave Kinetic Inductance Detectors

Frequency multiplexing.

Each pixel is tuned to a different frequency. Photons each a pixel and move the resonance for that pixel. Digital FM radio.

Large array of superconducting detectors are NOW possible.

MKID pixel

Single pixel has an inductor and a capacitor

Light is collected at the inductor (micro-lens needed for fill factor)

MKIDs @ Fermilab started in 2013

MKIDs work at 100mK, but now this is easy. In two days installed and commissioned an ADR to 33mK temperature.

A couple of months after that, we started operating a 20 pixel MKID fabricated at Argonne National Laboratory.

Q & I measured relative to S1 S₂₁ is the sum in quadrature of Q & I

Pixel 1: Q=187k, f0=6.09143 Ghz

There is still a lot of work to do

- · Pixel overlap
- Pixel non-uniformity (Q)
- · Pixel spacing

Frequency (GHz)

 $R = E/\delta E = 16$ @250nm

Theoretical limit for the MKIDs is R=180... there is still ways to go.

Q is not always the same.

400nm pulses at FNAL with for a single pixel

Performance achieved at FNAL with 400nm photons. We can get in a few pixels R>10.

We are still trying to understand what happens when a lot more pixels are excited on the same line... we are not getting the same performance yet.

For each resonator collected data of the S21 as a function of frequency, for temperatures between 50mK and 180mK.

The results are using to fit the resonator parameters, and the frequency shift as a function of temperature.

Now we have the tools to characterize large arrays of resonators.

The performance is not uniform. We are looking for the reasons for this non-uniformity. Does not seem to be coming from changes in critical temperature.

A lot to learn, but we have the tools to make progress.