

Mu2e CD-2/3b Review 8.3 CRV Scintillator Extrusions

Anna Pla-Dalmau Mu2e CRV Scintillator Extrusions L3 10/21/2014

CRV Scintillator Extrusion Team

- Anna Pla-Dalmau:
 - CRV Scintillator Extrusion L3 Manager
 - Fermilab Scintillation Detector Development Group Leader (1997) – Applied Scientist – Chemist
 - Manager FNAL-NICADD Extrusion Line Facility since its start in 2003
 - L2 Manager for Scintillator for MINERvA
 - Prepared extruded scintillator for T2K, Double Chooz, Belle II, JLAB, Pierre Auger-AMIGA.
- James Wish:
 - Extrusion Line Operation
- Janina Gielata and Wanda Newby:
 - Extrusion Line Operation Assistance and Quality Control

Organizational Breakdown

Mu2e

10/21/14

🚰 Fermilab

Anna Pla-Dalmau - DOE CD-2/3b Review

Requirements

- Extrude plastic scintillator for Cosmic Ray Veto FNAL/NICADD Extrusion Line Facility:
 - Blue emitting plastic scintillator:
 - Polystyrene DOW STYRON 665 W
 - Dopants 1% PPO + 0.03% POPOP Curtiss Labs.
 - 15% TiO₂ in polystyrene coating (0.25 mm)
 - Cross-section 5 cm x 2 cm with 2 holes for WLS fibers
 - Amount 20 metric tones

M112e

Design

Mu2e

6

‡Fermilab

- The cross-section of the scintillator bar has changed:
 - From CD-1: 10 cm x 1 cm with 4 holes
 - To CD-2: 5 cm x 2 cm with 2 holes

Value Engineering since CD-1

- Performed extrusion, mechanical and test-beam tests with an existing die of cross-section 4 cm x 2 cm with 3 holes and adapted to produce strips with just 2 holes.
- Worked with coating manufacturer to keep the cost/quality of TiO₂/PS coating unchanged.

Performance

- Extruded a 5 cm x 2 cm profile with 2 fairly round and consistent holes.
- Improved TiO₂/PS coating thickness uniformity
- New TiO₂/PS coating with better extrudability in a wide part

Remaining work before CD-3

- Reduce gaps between bars:
 - Address concavity of top and bottom surfaces
 - Minimize round corners

Integration and Interfaces

- INTEGRATION:
 - Attend weekly CRV meeting
- INTERFACES for 47508.3:
 - 47508.2 Counter Design (predecessor)
 - 47508.7 Module Fabrication (successor)

Mu2e

Quality Assurance

- Perform QC on extruded scintillator strip
 - Check light yield with radioactive source on test samples
 - Check dimensions on test samples
- Document Quality Control process
- QA: Check purity of raw materials PS and dopants

Configuration Management:

- Use labels with barcodes for strips and test samples
- Create a database of dimensions and light yield scanning the labels on the test samples
- Document deliveries and usage of raw materials

Risks:

- <u>VETO-156</u>: Control size and shape of fiber holes
 - Size and shape of fiber holes may not match drawing specifications depending on extrusion operating parameters based on die manufactured.

Opportunities:

- <u>VETO-163</u>: Go to a wider extrusion to:
 - Increase tolerances on the module layer offset distance
 - Reduce numbers of fibers, SiPMs, extrusions, and electronics channels

Mu2e

- Follow established safety procedures at Fermilab
- Follow established extrusion procedures at Fermilab

	Base Cost (AY K\$)					
	M&S	Labor	Total	Uncertainty (on remaining budget)	% Contingency (on remaining budget)	Total Cost
8.03.01 Die design and procurement	158	77	234	37	36%	271
8.03.02 Scintillator extrusion production	410	385	795	172	24%	967
Grand Total	567	462	1,029	209	25%	1,238

Cost Breakdown

 Mu2e

 16
 Anna Pla-Dalmau - DOE CD-2/3b Review

Quality of Estimate

Resource Type

 18
 Anna Pla-Dalmau - DOE CD-2/3b Review

Resources by FY

Base Cost in AY K\$

🛟 Fermilab

Labor Resources by FY

Major Milestones

- Aug 2015: Final die design approved
- Jul 2016: PO issued for materials for production extrusions fabrication
- Feb 2017: Production extrusions complete

Schedule

22 Anna Pla-Dalmau - DOE CD-2/3b Review

- FNAL/NICADD Extrusion Line Facility with co-extruder to deliver the white reflective coating has been in operation since 2005.
- Mu2e CRV Die for "5 cm x 2 cm 2 holes" strip has been tested:
 - About 500 m of extruded scintillator bars were sent last June to the University of Virginia for testing.

