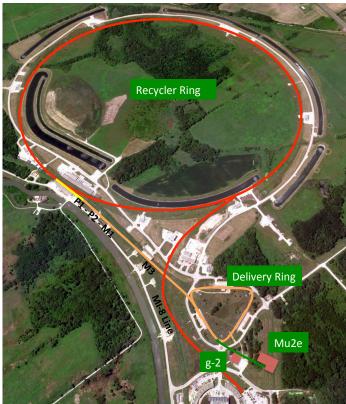
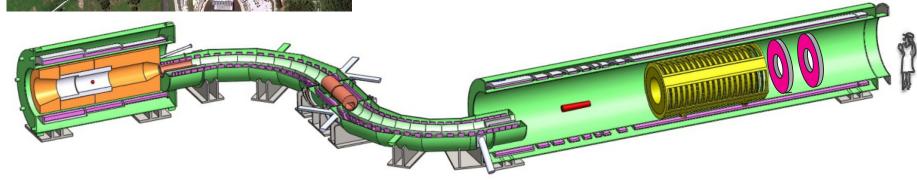

Mu2e Project Overview


Ron Ray Mu2e Project Manager 10/21/2014

Introduction

- Mu2e is a compelling discovery experiment with sensitivity to a broad range of new physics
 - Reach extends to 10⁴ TeV, beyond the reach of any current or planned accelerator.
- Synergistic part of the overall muon program at Fermilab
- Full cost, schedule and risk analysis has been developed resulting in a Total Project Cost of \$271M, matching the funding profile from OHEP.
- Requesting CD-2 approval for full Project along with CD-3b approval for the Mu2e Detector Hall and the Transport Solenoid Modules.



Mu2e Project Scope

Mu2e Project scope includes

- New building to house experiment
- Modifications/additions to accelerator complex
- Mu2e apparatus
 - Superconducting Solenoids
 - Tracker
 - Calorimeter
 - Cosmic Ray Veto (not shown)
 - DAQ

Additional Contributions to Mu2e

The scope required for Mu2e to become a functioning experiment comes from several sources

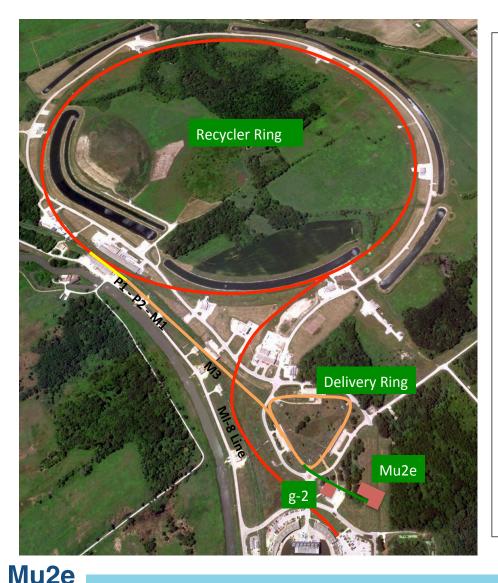
- Mu2e Project
- NOvA Project
 - MI-8 connection to Recycler and Recycler Injection Kicker
- Muon Campus common projects needed for both Mu2e and g-2
 - MC1 building houses power supplies for Mu2e beamline, extinction system and cryo plant
 - Beam Transport Accelerator Improvement Project (AIP)
 - Cryo Facility AIP
 - Delivery Ring AIP
 - Recycler Ring RF AIP
 - Beamline Enclosure General Plant Project (GPP)
 - Muon Campus Infrastructure GPP
- In-kind contribution from INFN for significant part of calorimeter and contributions to the solenoids
- Off project work tracked in Mu2e schedule via external milestones.
 Mu2e

4 R. Ray - DOE CD-2/3b Review

Additional Contributions to Mu2e

The scope required for Mu2e to become a functioning experiment comes from Muon Campus Common Projects Iviuon Campus Common Projects Required by Mary Common Projects , 8-2 Iong before they several sources

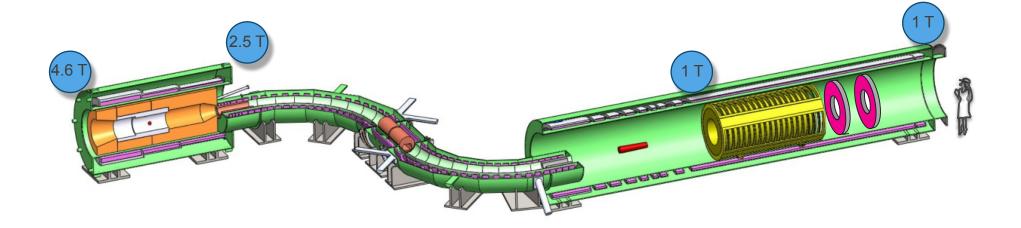
- Mu2e Project
- **NOvA** Project
 - MI-8 connection to Recycler and Res
- Muon Campus common projects needed ۲
 - MC1 building houses power supplies for Mu2e beamine
- are needed by Muze. Beam Transport Accelerator Improvement Project (AIP)
 - Cryo Facility AIP _
 - Delivery Ring AIP _
 - Recycler Ring RF AIP
 - Beamline Enclosure General Plant Project (GPP)
 - Muon Campus Infrastructure GPP
- In-kind contribution from INFN for significant part of calorimeter and contributions to the solenoids
- Off project work tracked in Mu2e schedule via external milestones. Mu₂e 🚰 Fermilab



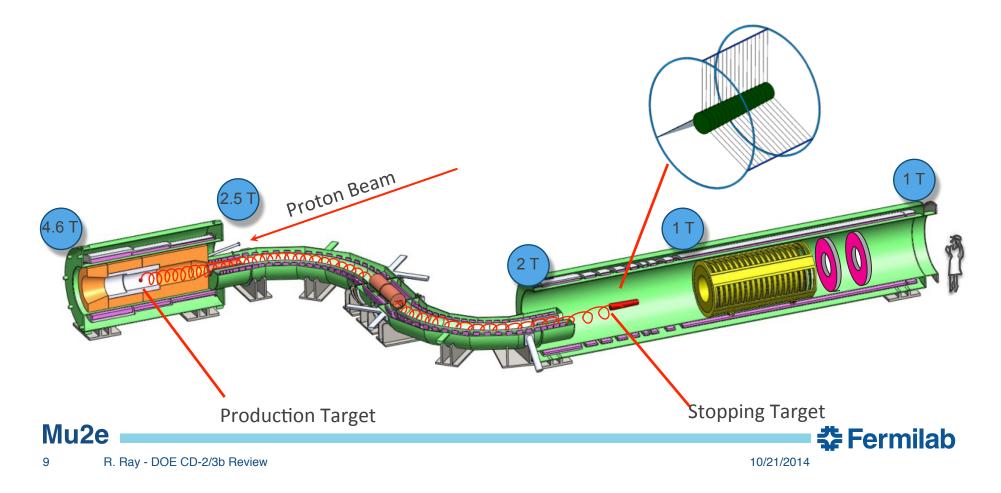
How Does the Experiment Work? What Drives the design?

6 R. Ray - DOE CD-2/3b Review

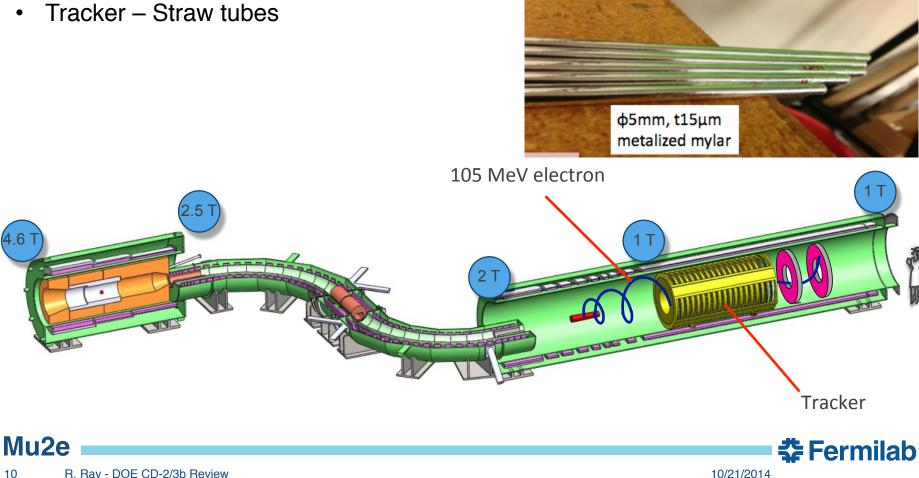
Beam Delivery

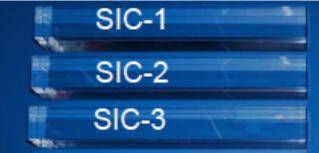


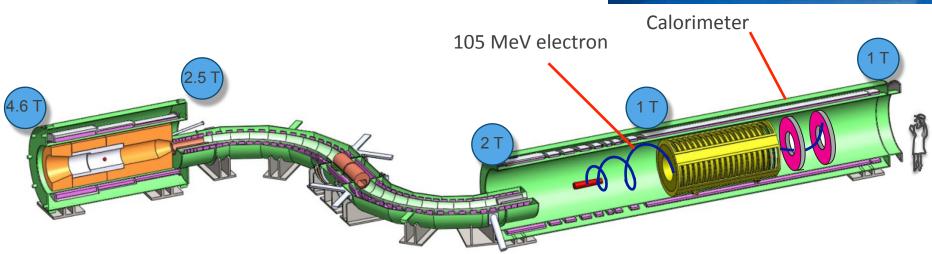
- We make muons by directing 8 GeV protons on to a target.
- Batches of protons from the Booster are transported through existing beamlines to the Recycler Ring where they are re-bunched and transported to the Delivery Ring through existing transport lines.
- Beam is slow extracted from Delivery Ring in microbunches of ~ 10⁷ protons every 1694 ns through a new external beamline to the Mu2e production target.
- An *extinction system* removes residual protons between microbunches.
- Mu2e can run simultaneously with NOvA and Booster Neutrino Program.



7 R. Ray - DOE CD-2/3b Review


- Solenoids capture pions, form secondary muon beam, preserve timing structure, provide magnetic field for momentum analysis and help to reject backgrounds
 - Most efficient way of producing an intense, low energy muon beam


- Solenoids capture pions, form secondary muon beam, preserve timing structure, provide magnetic field for momentum analysis and help to reject backgrounds
 - Most efficient way of producing an intense, low energy muon beam
- 2 targets



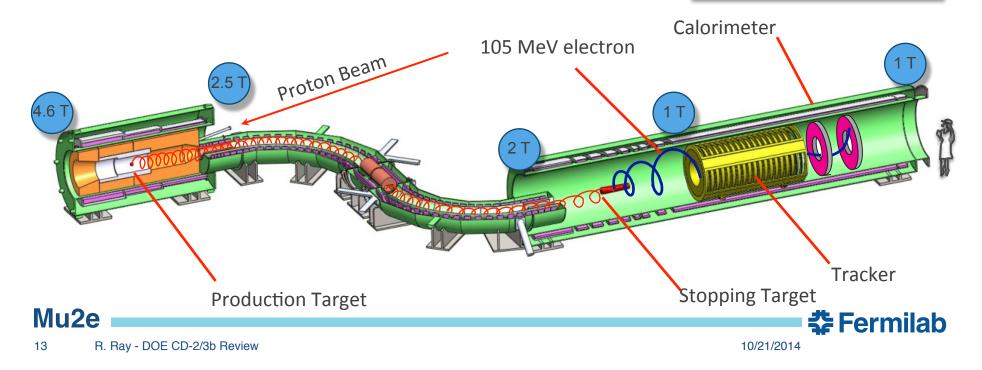
- Solenoids capture pions, form secondary muon beam, preserve timing structure, provide magnetic field for momentum analysis and help to reject backgrounds
 - Most efficient way of producing an intense, low energy muon beam
- 2 targets
- Tracker Straw tubes

- Solenoids capture pions, form secondary muon beam, preserve timing structure, provide magnetic field for momentum analysis and help to reject backgrounds
 - Most efficient way of producing an intense, low energy muon beam
- 2 targets
- Tracker Straw tubes
- Calorimeter BaF2 crystals

- Solenoids capture pions, form secondary muon beam, preserve timing structure, provide magnetic field for momentum analysis and help to reject backgrounds
 - Most efficient way of producing an intense, low energy muon beam
- 2 targets

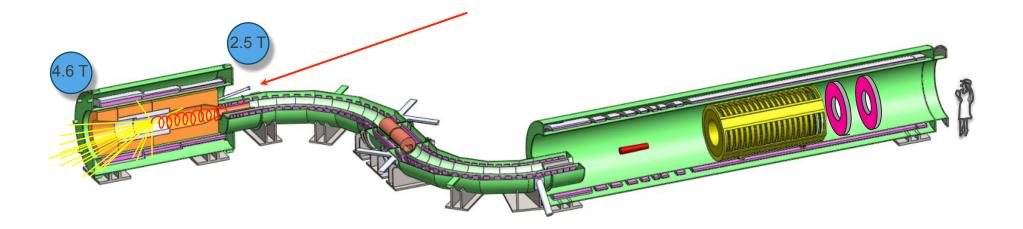
12

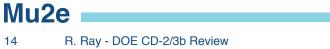
- Tracker Straw tubes
- Calorimeter BaF2 crystals
- Cosmic Ray Veto Scintillator, WLS fibers, SiPMs ٠



• Solenoids capture pions, form secondary muon beam, preserve timing structure, provide magnetic field for momentum analysis and help to reject backgrounds

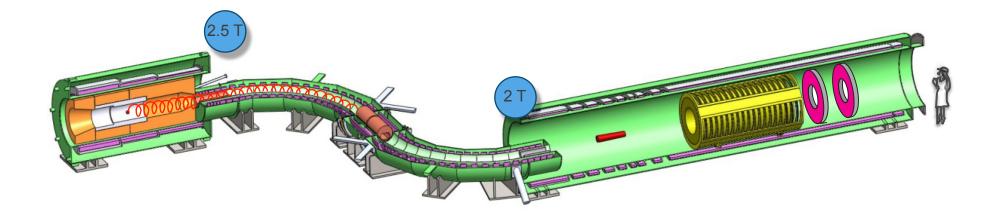
Cosmic Ray Veto and Stopping


Target Monitor not shown

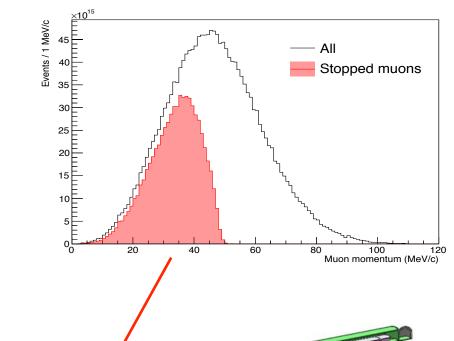

- Most efficient way of producing an intense, low energy muon beam
- 2 targets
- Tracker Straw tubes
- Calorimeter BaF2 crystals
- Cosmic Ray Veto Scintillator, WLS fibers, SiPMs
- Warm bore of solenoids evacuated to 10⁻⁴ to 10⁻⁵ Torr.

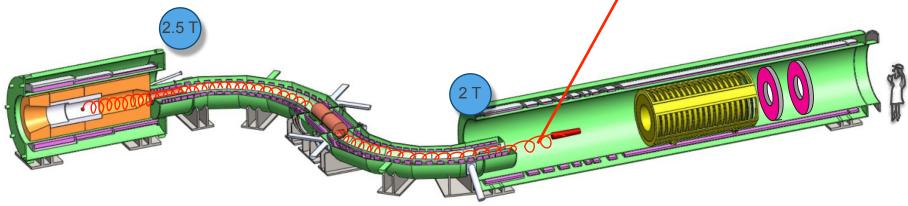
Production Solenoid

- Houses Production Target
- Inner bore lined with a bronze and water heat and radiation shield to limit radiation damage
- Captures pions and accelerates them towards the other solenoids



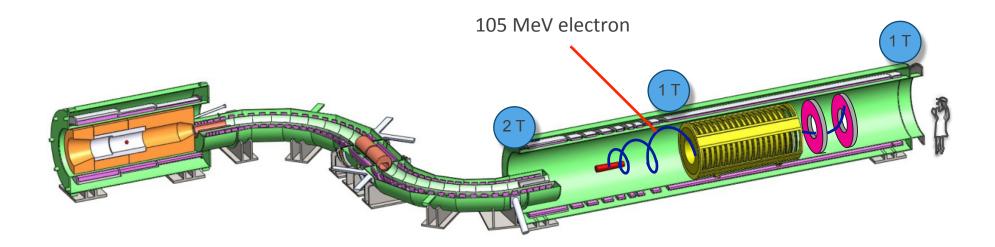
Transport Solenoid

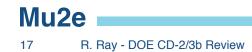

- Collimation system selects muon charge and momentum range
- Pbar window in middle of central collimator



Transport Solenoid

- Collimation system selects muon charge and momentum range
- Pbar window in middle of central collimator





7 Fermilab

Detector Solenoid

- Graded upstream field to improve acceptance and reject backgrounds
- Uniform field downstream for momentum analysis

Design Drivers

- High level requirements are driven by the science
 - Background rejection
 - High efficiency reconstruction of conversion electrons
- Discussed extensively in TDR Chapter 3
 - Physics requirements listed at end of Chapter 3.
 - These are the requirements that must be met to reject backgrounds to the required level and achieve the target sensitivity.
 - The physics requirements flow down to the Project subsystem requirements and design.

Requirements Management

Торіс	Document Database I	Requirements necessary to e	execute the
Science Driven Requirements	Mu2e-doc-4381	experiment have been devel	
Proton Beam	Mu2e-doc-1105		
Extinction	Mu2e-doc-1175	primarily by the Collaboratio	
Extinction Monitoring	Mu2e-doc-894	 Under configuration manage 	ement.
Production Target	Mu2e-doc-887	• Electronically signed by resp	onsible
Heat and Radiation Shield	Mu2e-doc-1092	parties. Automatic notification	
Proton Beam Absorber	Mu2e-doc-948		
Conventional Facilities	Mu2e-doc-1088	document is changed.	
Production Solenoid	Mu2e-doc-945	Part of Configuration M	anagement.
Transport Solenoid	Mu2e-doc-947	• Signed version is the official	document.
Detector Solenoid	Mu2e-doc-946		
Cryoplant	Mu2e-doc-1509		
Cryo Distribution	Mu2e-doc-1244	Neutron Absorbers	Mu2e-doc-1371
Quench Protection	Mu2e-doc-1238	Muon Beamline Shielding	Mu2e-doc-1506
Solenoid Power System	Mu2e-doc-1237	Detector Support and Installation System	Mu2e-doc-1383
Magnetic Field Mapping	Mu2e-doc-1275		
Stopping Target	Mu2e-doc-1437	Pbar Window	Mu2e-doc-941
Stopping Target Monitor	Mu2e-doc-1438	Tracker	Mu2e-doc-732
Transport Solenoid Collimators	Mu2e-doc-1129	Calorimeter	Mu2e-doc-864
Muon Beam Stop	Mu2e-doc-1351	Cosmic Ray Veto	Mu2e-doc-944
Vacuum System	Mu2e-doc-1481	Calibration	Mu2e-doc-1182
Proton Absorber	Mu2e-doc-1439	Trigger and DAQ	Mu2e-doc-1150

Mu2e

_

10/21/2014

‡Fermilab

Integration

- Integration is required to bring component subsystems together into a single functioning system.
 - Must be built into the design process from the beginning.
- Integration is achieved in Mu2e via meetings, documentation, 3D drawings and agreements between responsible parties.
- Completed, agreed upon interfaces are part of the final design of a system.
 - In Mu2e, final designs include signed interface agreements.
- For the preliminary design we require that each subsystem have a document that identifies and defines each interface, both internal and external.
- More detail in plenary talk by K. Krempetz (Project Engineer) later today.

Mu2e

🛟 Fermilab

Example – CRV Interface Document

Mu2e Project Document No.1551 Cosmic Ray Veto Interface Specifications

Page 6 of 7

CRV is ready for CD-2, so they have a document that identifies and describes all interfaces (docdb# 1551)

ltem	Interface	Description	Owners	Reference Documents/ Drawings
108.03.2.1	Scintillator Extrusions to Muon Beamline	Muon beamline shielding must be sufficient to keep radiation levels to below 1 kGy at scintillator extrusions.	475.08.03 475.05.09	
108.04.2.1	Fibers to Muon Beamline	Muon beamline shielding must be sufficient to keep radiation levels to below 1 kGy at fibers.	475.08.04 475.05.09	
108.05.2.1	Photodetector to Muon Beamline	Muon beamline shielding must be sufficient to keep radiation levels to below 1E10 n/cm ² at the photodetectors.	475.08.05 475.05.09	
108.06.2.1	Electronics Mu2e building	The readout and power cables from the front-end boards must be routed to the readout controllers situated in the electronics room by cable trays installed in the detector hall. Power supplies for the readout controllers will be placed in the electronics room, adjacent to the readout controllers. The electrical distribution system should provide adequate power for the CRV electronics.	475.08.06 475.03	
108.06.2.2	Electronics Trigger and DAQ	The front-end board readout controllers must communicate with the DAQ and slow control system to allow data to be taken from the CRV and controls to be sent to the CRV front-end electronics. The DAQ must provide a clock with 1 ns timing resolution for the front-end boards.	475.08.06 475.09	

10/21/2014

Fermilab

Example – Conventional Construction Interface Document

Conventional Construction has a final design, so we have signed agreements between all responsible parties. Owners and relevant drawings referenced (docdb #1537 – linked to Review page)

Item Interface		Description	Owners	Reference Documents/ Drawings[2]		
103.06.2.15	Mechanical Room	Space/room is needed for vacuum pumps, and detector/electronic cooling. Utility chase and penetrations are provided. Proper sealing of penetration are needed to be provided by user.	WBS475.03/ &WBS475.05, &WBS475.06, &WBS475.07, &WBS475.09 &OFF 475	A-3, M-5, M-7, M-8, M-9, M-21		
103.06.2.16	Solenoid Support	Track Plates are provided to transport and support the solenoid system. Each solenoid will be mounted to a support frame. This frame will transfer the loads from the cryostat to the Mu2e building floor. Clearance around this frame is required for the CRV and shielding. Base plates anchored to the mat foundation resists the solenoid loadings. The flatness requirement and installation tolerance of the steel plate and surrounding concrete is specified at half mill tollerance.	WBS475.03/ WBS475.04	SC-29 TO SC-33		
103.06.2.17	Diagnostic Abort	MC Beamline Enclosure project constructs the Abort system, comprised of cast in place concrete and place steel core. The abort was designed by WBS475.02 and will be installed under the MC Beamline Enclosure project 6-10-22.	WBS475.03/ WBS475.02	6-10-22/SC-20		

10/21/2014

Fermilab

Example – Conventional Construction Interface Document

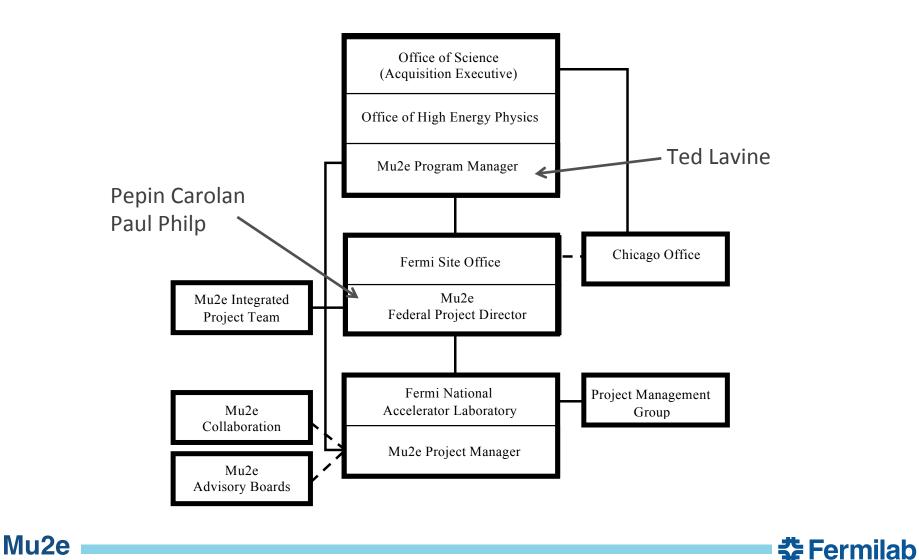
103.6.2.1	1537v15 (cert)	Interface CF: NEPA/Environment		approved
103.6.2.2	<u>1537v15 (cert)</u>	Interface CF: ESH&Q	Web-based	l approval
103.6.2.3	<u>1537v15 (cert)</u>	Interface CF: Access Roads, Parking and Hardstand	system set	· ·
103.6.2.4	1537v15 (cert)	Interface CF: Utilities-DWS	Configurati	
103.6.2.5	1537v15 (cert)	Interface CF: Utilities-ICW	Manager (H	H. Glass)
103.6.2.6	1537v15 (cert)	Interface CF: Utilities-CHW		approved
103.6.2.7	1537v15 (cert)	Interface CF: Utilities-LCW		approved
103.6.2.8	1537v15 (cert)	Interface CF: Utilities-San		approved
103.6.2.9	1537v15 (cert)	Interface CF: Utilities-Nat Gas		approved
103.6.2.10	1537v15 (cert)	Interface CF: Utilities-FIRUS		approved
103.6.2.11	1537v15 (cert)	Interface CF: Utilities-Electric		approved
103.6.2.12	1537v15 (cert)	Interface CF: High Bay Area		approved
103.6.2.13	1537v15 (cert)	Interface CF: Solenoid Power Supply Room		approved
103.6.2.14	1537v15 (cert)	Interface CF: DAQ Rack Room		approved
103.6.2.15	1537v15 (cert)	Interface CF: Mechanical Room		approved
103.6.2.16	1537v15 (cert)	Interface CF: Solenoid Support		approved
100 10 10	40 Interface a	greements for Conventional		
	Construction			

Mu2e

10/21/2014

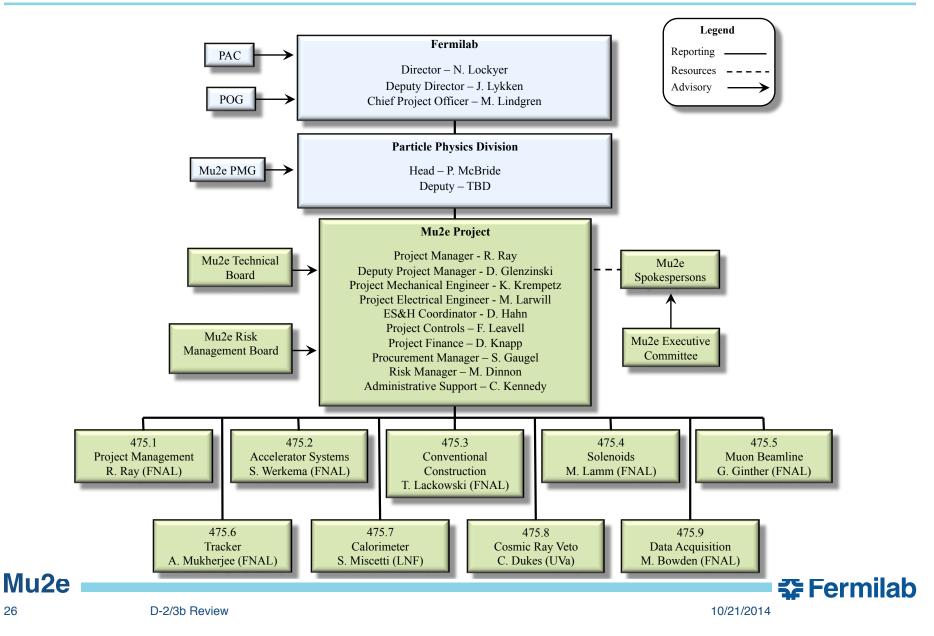
‡Fermilab

Example – Conventional Construction Interface Document

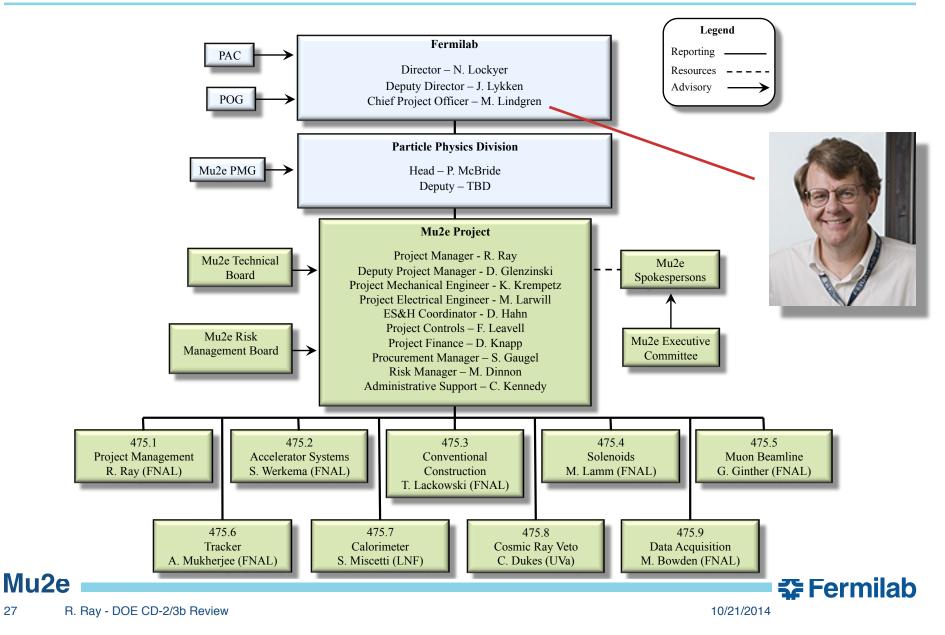

									\frown
103	3.6.2.1	<u>1537v15 (c</u>	ert)	Inter	rface CF: NEPA/Enviror	approved			
103	3.6.2.2	1537v15 (c	<u>ert</u>)	Inter	rface CF: ESH&Q	approved			
103	3.6.2.3	<u>1537v15 (c</u>	<u>ert</u>)	Inter	rface CF: Access Roads,	, Parking and Hardstand	1		approved
103	3.6.2.4	1537v15 (c	<u>ert</u>)	Inter	rface CF: Utilities-DWS	1			approved
103	3.6.2.5	1537v15 (c	<u>ert</u>)	Inter	rface CF: Utilities-ICW				approved
103	3.6.2.6	1537v15 (c	<u>ert</u>)	Inter	rface CF: Utilities-CHW	T			approved
103	3.6.2.7	<u>1537v15 (c</u>	<u>ert</u>)	Inter	rface CF: Utilities-LCW	7			approved
103	3.6.2.8	<u>1537v15 (c</u>	<u>ert</u>)	Inter	Interface CF: Utilities-San		approved		
103	3.6.2.9	<u>1537v15 (c</u>	<u>ert</u>)	Inter	rface CF: Utilities-Nat C	Jas			approved
103	3.6.2.10	<u>1537v15 (c</u>	<u>ert</u>)	Inter	rface CF: Utilities-FIRU	IS			approved
103	3.6.2.11	.6.2.11 1537v15 (cert)		Inter	rface CF: Utilities-Elect	ric			approved
103	3.6.2.12	<u>1537v15 (c</u>	ert)	Inter	rface CF: High Bay Area	a			approved
1					approved				
1	First Name Last Nan			le	Signoff Status	Signoff Date			approved
1				signed	2014-09-29			approved	
1	Thor	nas	Lackowsk	i	signed	2014-10-02			approved .

Mu₂e

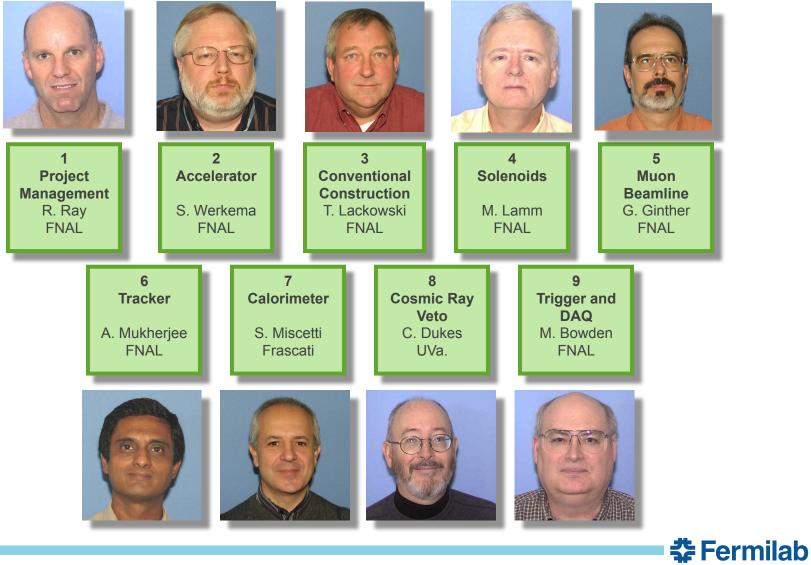
10/21/2014


‡Fermilab

Management and Organization



25 R. Ray - DOE CD-2/3b Review


Management and Organization

Management and Organization

L2 Managers

Mu2e

Project Office

- Ron Ray
- Doug Glenzinski
- Kurt Krempetz
- Marcus Larwill
- Fran Leavell
- David Leeb
- Halley Brown
- Mike Gardner
- Dale Knapp
- Dee Hahn
- Cindy Kennedy
- Steve Gaugel
- Mike Dinnon
- Hank Glass
- Eric James
- Dervin Allen

PM **Deputy PM - outgoing** Project Mechanical Engineer/ Systems Integration Project Electrical Engineer/ Systems Integration Lead Project Controls **Project Controls Project Controls Project Controls Financial Officer** ES&H Coordinator Admin support **Procurement Manager**

- **Risk Management**
- Configuration Management
 - Installation and Integration Coordinator Installation and Integration Floor Manager

‡Fermilab

29 R. Ray - DOE CD-2/3b Review

Project Office

- Ron Ray
- Julie Whitmore
- Kurt Krempetz
- Marcus Larwill
- Fran Leavell
- David Leeb
- Halley Brown ۰
- Mike Gardner
- Dale Knapp
- Dee Hahn
- Cindy Kennedy
- **Steve Gaugel**
- Mike Dinnon
- Hank Glass
- **Eric James**
- Dervin Allen Mu₂e

PM

Deputy PM - incoming Project Mechanical Engineer/

- Systems Integration Project Electrical Engineer/
- Systems Integration
- Lead Project Controls
 - **Project Controls**
 - **Project Controls**
 - **Project Controls**
 - **Financial Officer**
 - ES&H Coordinator
 - Admin support
 - **Procurement Manager**
- **Risk Management**
- **Configuration Management**
 - Installation and Integration Coordinator Installation and Integration Floor Manager

‡Fermilab 10/21/2014

30 R. Ray - DOE CD-2/3b Review

ESH&Q

- Fermilab and Mu2e Project firmly committed to safety and quality.
- Safety integrated into Lab management at all levels.
 - Project embedded in Lab's line Management
- Oversight by Lab ESH&Q organization as well as by Division & Section ES&H organizations
- Project ES&H coordinator Dee Hahn
- Integrated Safety Management Plan developed (docdb 785)
- Hazard Analysis Report including evaluation and mitigation of safety risks developed and posted (docdb 4229)
- NEPA approval obtained in 2012 (docdb 2274)
- Preliminary Shielding Assessment approval (docdb 4313)
- Preliminary approval of Total Loss Monitors (TLM) as a credited safety system (docdb 4132)
- Quality Assurance Program (docdb 677)
- Custom QA/QC plan tailored to each L2 subsystem discussed in TDR subsystem chapters
- Extensive QA plan developed for solenoid conductor

Mu2e

ESH&Q

- Fermilab and Mu2e Project firmly committed to safety and quality.
- Safety integrated into Lab management at all levels.
 - Project embedded in Lab's line Manageme
- Oversight by Lab ESH&Q organization as organizations
- Project ES&H coordinator Dee Hahn
- Dedicated ES&H talk by D. Hahn in Management Breakout
- Dedicated QA talk by D. Glenzinski in Management Breakout
- Integrated Safety Management Plan developed (docdb 785)
- Hazard Analysis Report including evaluation and mitigation of safety risks developed and posted (docdb 4229)
- NEPA approval obtained in 2012 (docdb 2274)
- Preliminary Shielding Assessment approval (docdb 4313)
- Preliminary approval of Total Loss Monitors (TLM) as a credited safety system (docdb 4132)
- Quality Assurance Program (docdb 677)
- Custom QA/QC plan tailored to each L2 subsystem discussed in TDR subsystem chapters
- Extensive QA plan developed for solenoid conductor

Mu2e

10/21/2014

🚰 Fermilab

Cost and Schedule

Mu2e R. Ray - DOE CD-2/3b Review 33

Cost Methodology

General Procedure

- Activity-based RLS. M&S, labor hours, resources and durations established at activity level.
- Estimators instructed to use 85% C.L. base estimates
- Estimate uncertainty is added to each activity based on the level of design maturity.
- A statistical evaluation of the cost associated with risk exposure adds additional contingency to the Project

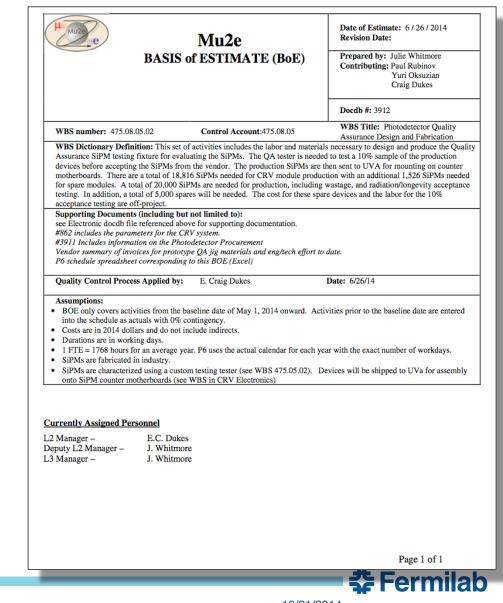
TPC = base estimate + 100% estimation uncertainty + statistical evaluation of risks at 80% C.L. + application of burdening and escalation

5 Fermilab

WBS Dictionary

- WBS defines Project ٠ Scope
- **Dictionary describes** Scope, objective, deliverables and assumptions for each Control Account.
- Describes activities that make up the Control Account.

Control Account	WBS Name	WBS Extended Definition
475.02.05	Resonant Extraction System	Cost Account Manager: V. Nagaslaev
	System	A. Technical Objective The technical objective is to design, manufacture, and install the systems necessary for the resonar extraction of beam from the Delivery Ring synchrotron.
		 B. Scope of Work Statement General engineering design of the Delivery Ring resonant extraction system.
		• Design, manufacture, and installation of the resonant extraction electrostatic septum modules (tw modules) and power supply.
		 Design, procurement, and installation of the resonant extraction tune quadrupole magnets ar power supplies.
		 Design, manufacture, and installation of the resonant extraction harmonic sextupole magnets ar power supplies.
		 Design, procurement/manufacture, and installation of the resonant extraction dynamic burn magnets and power supplies.
		• Design, manufacture, and installation of the RF knock out (RFKO) kicker and power supply.
		• Design, manufacture, and installation of the resonant extraction fast feedback devices ar electronics.
		 C. Deliverables Two resonant extraction electrostatic septum modules and power supply installed plus two spare ESS modules (one spare of each type).
		• 3 CQA tune quadrupole magnets and power supplies.
		• 7 ISA harmonic sextupole magnets (6 + 1 spare) and power supplies.
		• RFKO kicker and power supply.
		• 4 NDB dynamic bump dipole magnets and power supplies.
		Wall current monitor and associated feedback electronics.



35

BOEs

- Support the resources, cost, effort and durations in P6
- Include
 - Definition of scope covered
 - Supporting documents
 - Assumptions

36 R. Ray - DOE CD-2/3b Review

Mu₂e

BOEs

- Resources
- Hours
- M&S costs
- Estimate type/ contingency
- Durations at 85% C.L.

	abricate QA prototype t	ester – M&S
M&S cost for prototype to	ester.	
M&S Cost Duration Estimate Type	60 days	Cost for tester chassis and misc electronics components M&S purchases for rebuild after prototype design changes. Contingency of 20% based on contingency rule M3. M&S based on fabrication of boards with similar design.
Task 475.8.5.2.1055	Fabricate QA prototype (tester – remaining - FNAL
		ns to procure components, fabricate, assemble and test the QA t assembly is nearly completed. Tester assembly and testing is not.
Total Labor Electrical Design Engined	er 292 hours 100 hours	Engineering estimate based on previous experience testing simil items. Assumes EE working 3 months at 0.25 FTE.
Engineering Physicist Electrical Drafter Electrical Technician Electrical Assembly Tech Electronics Technician	40 hours 8 hours nician 24 hours	Engineering estimate based on previous NIU experience. Engineering estimate based on previous board layout work. Engineering estimate based on previous experience procuring pa Engineering estimate based on previous board assembly work. Engineering estimate based on previous NIU experience. Assumes 3 month at 10% FTE.
Duration Estimate Type		Assumes 3 months of above eng/tech effort. Contingency of 35% based on contingency rule L4.
Task 475.8.5.2.1062 F	abricate QA prototype t	ester – Labor – NIU remaining
Labor for NIU undergrad	uate student to write softw	are for QA SiPM tester.
M&S	\$16,131	595 Hours software support remaining. Engineering estimate based on similar projects.
Duration Estimate Type		Assumes student working for 4 FTE months. Contingency of 50% based on contingency rule L5. Higher end of range due to inexperienced student labor.
Task 475.8.5.2.1065 F	abricate QA dark box –	Labor - NIU
	technicians to design, pr duction, and production Si	ocure components, and fabricate temperature stabilized dark bo iPMs.
Mechanical Engineer – N	orthern Ill Univ 120 h	Engineering estimate based on similar projects with large modifications.
Duration		Assumes tech working for 0.75 FTE month. Contingency of 50% based on contingency rule L5. Higher end of range due to design immaturity.

Page 3 of 3

‡ Fermilab

Mu₂e

BOEs

Often include supporting details

Details of the Base Estimate

The activities covered in this BOE include M&S purchases, procurement activities related to the M&S, and labor associated with producing a Quality Assurance tester for the Cosmic Ray Veto photodetectors. M&S estimates are based on previous experience with fabricating prototype testers used at NIU for the proton tomography project.

The plan for SiPM Quality Assurance testing is to measure the I-V curves of 10% of the 20,000 production SiPMs. This SiPM QA testing procedure has been used previously on a joint NIU/FNAL proton tomography project with a SiPM test facility at NIU. SiPMs for the Fall 2013 FNAL beam test were also tested at this facility. Based on the experience from that facility, a stand-alone test tester has been designed that does not require the additional support infrastructure (power supplies, picoammeter, etc.) that the NIU test stand needs to test the SiPMs.

The QA testing box is a stand-alone tester that will be used to simultaneously apply bias voltages to 32-SiPMs, measure the currents of each SiPM, and send the data off to a PC via a USB connection. The 32 SiPMs are mounted in a reusable waffle-pack fixture, with electrical connections to each surface mount SiPM being made by elastometric ZEBRA connectors. The SiPMs fixture will be placed in a temperature stabilized dark box.

A prototype of the QA tester is being developed and will be used to test the initial 320 SiPMs for radiation damage studies. Modifications to the final production design will come from experience with that prototype tester and dark box. The production tester will be built by Fermilab. NIU is responsible for producing the temperature controlled dark box. Production SiPMs will be tested at NIU with NIU undergraduates. Ten percent of the SiPMs will be QA tested before accepting the production devices.

Estimate SiPM Tester jig Labor and M&S

This document summarizes the labor and M&S for fabricating the SiPM tester jig that Fermilab is developing. It does not include the cost for the dark box that NIU is developing. The documentation includes a summary of the labor from the initial development of the prototype SiPM tester jig. Also attached is a parts list for the prototype jig. The total amount for the components is ~\$8k. We assume that this is the cost for the components for the production testers.

Labor summary: Estimate for remaining development work is based on the actuals from the initial development work. Prototype jig Fabrication FNAL Electrical Design Engineer (David Huffman + Mark Kozlovsky) – 100 hours FNAL Electrical Drafter (Nina Moibenko) – 80 hours FNAL Electrical Technician (Johnny Green) – 8 hours FNAL Electrical Technician (Johnny Green) – 8 hours FNAL Electorical Technician (Paula Lippert) – 24 hours FNAL Electronics Technician (Merle Watson) – 40 hours

Production Jig Fabrication FNAL Electrical Design Engineer (David Huffman + Mark Kozlovsky) – 55 hours FNAL Engineering Physicist (Paul Rubinov) – 40 hours FNAL Electrical Drafter (Nina Moibenko) – 40 hours FNAL Electrical Technician (Johnny Green) – 24 hours

FNAL Electrical Assembly Technician (Paula Lippert) - 32 hours

Page 7 of 7

🛟 Fermilab

Mu2e

Resource Loaded Schedule

- Activity based RLS contains
 - 6885 activities
 - 4806 Work Packages
 - 3600 current budget
 - 815 contracted labor/material purchases
 - 391 obligations
 - 74 Control Accounts and 30 CAMs
 - 1100 milestones
 - 224 Constraints
 - 7 are accelerator shutdowns
 - 7 are Muon Campus milestones
 - 199 are reporting milestones
- Critical Path, Near Critical Path and sub-project Critical Paths all identified using the RLS.
- · Work schedule, obligations, resource profiles are derived from the RLS

Mu ₂	e
-----------------	---

 Mu2e CD-2/3 Schedule

 Keiniy I/a
 Activity Name
 Duration
 Samt
 Fresh
 Preside asses
 B02 Exacts
 Colve
 Resource Information
 P2016

 417502.01.03.001070
 Project Management LOE FV18 Equipment & Trixel
 230.00
 100117
 92818
 P11802
 1888
 A
 MAS Bandardi IV12 Base

 417502.01.03.001090
 Project Management LOE from FV19 to CD-4 Review Labor
 395.00
 10118
 317/20
 P11802
 1888
 A
 MAS Bandardi IV12 Base

 417502.01.03.001090
 Project Management LOE from FV19 to CD-4 Review Labor
 395.00
 10118
 317/20
 P11802
 1888
 A
 MAS Bandardi IV12 Base

 417502.01.03.00100
 Ling Project Management LOE from FV19 to CD-4 Review
 395.00
 10118
 317/20
 P11802
 1888
 A
 MAS Bandardi IV12 Base

 417502.01.03.001100
 Ling Project Management LOE from FV19 to CD-4 Review
 395.00
 10118
 317/20
 P11802
 1888
 A
 MAS Bandardi IV12 Base

 417502.01.03.001100
 Ling Project Management LOE from Vire Resource from Revire Resource Revire Resource Resource Resource Resource Revire Re

10/21/2014

🛟 Fermilab

Rates and Assumptions

- Schedule trued-up with actuals through end of April 2014 and statused through September 2014.
- Estimate developed in FY14\$
- One person-year = 1768 hours
 - 52 weeks x 40 hrs/week x 0.85
- Applied burdening rates are based on where work is being done
 - Every Division/Section at Fermilab has different overhead rates.
 - Every Mu2e institution has their own rates.
 - Rates are subject to change.
- Average salary rates are used for each distinct resource
- Escalation rates for M&S, Labor.

Escalation

	FY15	FY16	FY17	FY18	FY19	FY20	FY21
Labor	2.7%	2.8%	3.0%	3.1%	3.3%	3.4%	3.5%
M&S	1.9%	1.9%	2.0%	2.0%	2.0%	2.0%	2.0%


• Labor and M&S rates from Fermilab Budget Office.

- Use information from the Congressional Budget Office (CBO) annual pricing forecast done each February
- CFO and Budget office interpret trends in prices and normalize for lab expectations and DOE funding constraints
- Risk Registry addresses risk that commodities (steel, aluminum, copper, gold) escalate faster than inflation (docdb 3845).

Contingency

- Contingency is the combination of Estimate Uncertainty and risk exposure.
- Estimate Uncertainty is based on maturity of design.
- Estimate Uncertainty Rules for labor and M&S posted on review web site (docdb 459).
 - Standard rules, similar (or identical) to those used by other Fermilab Projects
 - Do not reflect risk.
- Risk was addressed in a quantitative analysis process using a Monte Carlo
 - Primavera Risk Analysis Tool used to validate cost and schedule risk.

Fermilab Estimate Uncertainty Rules

M&S

Code	Type of Estimate	Contingency %	Description
M&S Guide			
M1	Existing Purchase Order	0%-15%	Items that have been completed or obligated. Non-zero contingency may be appropriate in some cases because of potential changes that may occur over the life of the procurement.
M2	Procurements for LOE / Oversight work	0%-20%	M&S items such as travel, software purchases and upgrades, computers, etc. estimated to support LOE efforts and other work activities.
M3	Advanced	10%-20%	Items for which there is a catalog price or recent vendor quote based on a completed or nearly completed design or an existing design with little or no modifications and for which the costs are documented.
M4	Preliminary	20%-40%	Items that can be readily estimated from a reasonably detailed but not completed design; items adapted from existing designs but with moderate modifications, which have documented costs from past projects. A recent vendor survey (e.g., budgetary quote, vendor RFI response) based on a preliminary design belongs here.
M5	Conceptual	40%-60%	Items with a documented conceptual level of design; items adapted from existing designs but with extensive modifications, which have documented costs from past projects
M6	Pre-Conceptual - Common work	60%-80%	Items that do not have a documented conceptual design, but do have documented costs from past projects. Use of this estimate type indicates little confidence in the estimate. Its use should be minimized when completing the final estimate.
M7	Pre-Conceptual - Uncommon work	80%-100%	Items that do not have a documented conceptual design, and have no documented costs from past projects. Its use should be minimized when completing the final estimate.
M8	Beyond state of the art	>100%	Items that do not have a documented conceptual design, and have no documented costs from past projects. Technical requirements are beyond the state of the art.

10/21/2014

‡Fermilab

Fermilab Estimate Uncertainty Rules

Labor


Code	Type of Estimate	Contingency %	Description
L1	Actual	0%	Actual costs incurred on activities completed to date.
L2	Level of Effort Tasks	0%-20%	Support type activities that must be done to support other work activities or the entire project effort, where estimated effort is based on the duration of the activities it is supporting.
L3	Advanced	10%-25%	Based on experience with documented identical or nearly identical work. Development of activities, resource requirements, and schedule constraints are highly mature. Technical requirements are very straightforward to achieve.
L4	Preliminary	25%-40%	Based on direct experience with similar work. Development of activities, resource requirements, and schedule constraints are defined at a preliminary (beyond conceptual) design level. Technical requirements are achievable and with some precedent.
L5	Conceptual	40%-60%	Based on expert judgment using some experience as a reference. Development of activities, resource requirements, and schedule constraints are defined at a conceptual level. Technical requirements are moderately challenging.
L6	Pre-conceptual	60%-80%	Based only on expert judgment without similar experience. Development of activities, resource requirements, and schedule constraints are defined at a pre-conceptual level. Technical requirements are moderately challenging.
L7	Rough Estimate	80%-100%	Based only on expert judgment without similar experience. Development of activities, resource requirements, and schedule constraints is largely incomplete. Technical requirements are challenging.
L8	Beyond state of the art	>100%	No experience available for reference. Activities, resource requirements, and schedule constraints are completely undeveloped. Technical requirements are beyond the state of the art.

10/21/2014

‡Fermilab

Risk Management

- Project risks documented in risk registry
- Risks continuously monitored. Living document. lacksquare
 - Monitor, mitigate and retire risks as part of design and implementation process.
- Actively managing 84 risks lacksquare
 - 69 Threats
 - 15 Opportunities
 - 31 risks retired
 - 6 opportunities realized at a savings of \$1.7M
 - > \$8.5M spent to mitigate risks
 - Included in Project baseline cost.

10/21/2014

Mu₂e

Largest Remaining Risks

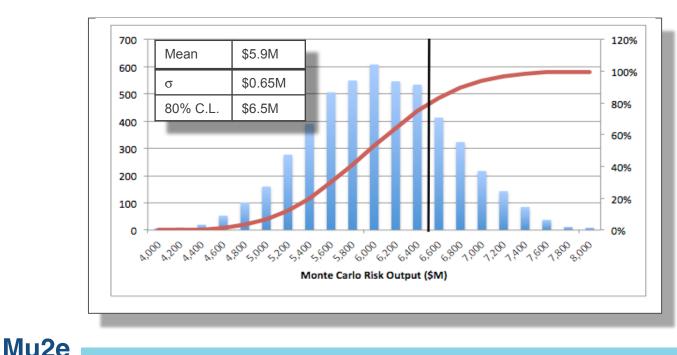
Risk									Post-miti	igation				
Risk ID	Risk Form DocDb #	Туре	Title	Date of Risk	Mitigation Cost (Included in baseline)	Category	Probability	Schedule- Delays Level 3 Milestone or Project Critical Path by X Days	Cost	Technical	ES&H	Score	Owner	Point estimate (cost k\$)
	3333		Cannot use TLMs to control					N	VH	N	N	н		\$ 2,000
ACCEL-020		Threat		FY15-FY19		Current Risk	-		***				T. Leveling	\$ 2,000
ACCEL-151	<u>3833</u>	Threat	Redesign the Remote Handling System for Water cooled target	FY16-FY18	\$ 100,00	Current Risk	VL	N	VH	м	N	н	M.Campbell, R.Coleman	\$ 3,300
	3347		INFN cannot deliver full in-kind				1	N	N	VH	N	н		\$ -
CAL-108	5547	Threat		FY16-FY20		Current Risk	-			***			R. Ray	Ŷ
CONST-049	<u>3351</u>	Opportunity	Conventional construction bids are lower than estimated cost.	FY15		Current Risk	м	N	VH	N	N	н	T. Lackowski	\$ (1,200)
045		opportunity	Increase in Fermilab overhead	115		Current Risk	+						1. Edekowski	
PM-010	3366	Threat		FY16-FY20		Current Risk	м	N	VH	N	N	н	Ron Ray	\$ 1,500
PM-153	<u>3844</u>	Opportunity	Commodity prices decrease	FY16-FY18		Current Risk	L	N	VH	N	N	н	Ron Ray	\$ (1,173)
	2045	opportantly	Commodity prices escalate faster				· .	N	VH	N	N			Å 1172
PM-154	<u>3845</u>	Threat	than inflation	FY16-FY18		Current Risk	L	N	VH	N	N	н	Ron Ray	\$ 1,173
SOL-070	<u>3368</u>	Threat	Interface problems with the solenoids.	FY17-FY20		Current Risk	L	н	VH	N	N	н	M. Lamm	\$ 1,000
SOL-155	<u>3954</u>	Opportunity	Cryo Distribution Box Funded by Cryo AIP	FY15-FY17		Current Risk	м	VH	VH	N	N	н	M. Lamm	\$ (2,500)
	3331		Injection damper required for				L	N	N	VH	N	н		\$ 185
ACCEL-015		Threat	Delivery Ring solid state photodetector that is	FY16-FY19		Current Risk							J. Morgan	+
CAL-148	<u>3834</u>	Threat		FY15	\$ 100,00	Current Risk	м	м	N	н	N	н	D. Hitlin	\$ -
SOL-183	<u>4568</u>	Threat	TS Magnet fabrication failure due supplied process or component	FY20	\$ 200,00	Current Risk	м	L	м	N	N	н	M.Lamm	\$ 620
ACCEL-200	<u>4589</u>	Threat	Need to add new power supplies to the beam line.	FY15-FY16	20,0	00 Current Risk	м	VL	н	VL	N	н	D. Still	\$ 400
MUON-138	<u>3360</u>	Threat	Detector installation takes longer than expected.	FY19		Current Risk	м	м	н	N	N	н	G. Ginther	\$ 400
	<u>3837</u>		Production Solenoid must be installed through PS hatch using				м	N	н	N	N	н		\$ 300
SOL-148 TRACK-169	<u>4444</u>	Threat Threat	Background levels >4x expectation necessitate	FY18-19 FY15		Current Risk Current Risk	м	N	н	м	N	н	T. Page A. Mukherjee	\$ 1,000
TRIG-128	<u>3393</u>	Threat	Insufficient manpower for DAQ software.	FY17-FY20		Current Risk	м	N	н	N	N	н	M. Bowden	\$ 500

R. Ray - DOE CD-2/3b Review

46

Risk Management

High and Moderate Risks have detailed individual risk forms describing the risk and mitigation strategies.


Risk	Mu	2e Risk F	orm			New Mitigat	ion Plan or	Additional Risk N	litigation Measu	ures Description	n:		Analysis of Risk
Identifier: Ron Ray Risk ID: PM-010 Date: 9/20/20:) D	Risk T	wner: Ron Ra ype: THREA revised: 8/15/1	T		Response Type (Accept, Reduc Transfer)	e, Avoid,	New or Additional M Cost Range (\$) Low Bound Uppe	the mit 3 mil er Bound Lowe	ule impact of und tigation plan – del lestone or project path (Days) tr Bound Upper	ays Level fai critical exp	bbability of plan iling to achieve ected mitigation (H,MH,ML,L)	The Fermilab Financial Section has provided historical data for overhead rates, going back to 2007. The individual components, plotted in Figure 1a are: <i>PS</i> - Program Support for AD, CD, PPD and TD
Risk Title: Increase in	n Fermilab overhead rates	5			1	Accept	C	0	None	None			CSS – Common Site Support
increases in future yea vulnerable to this beca Detailed Risk Cause: E	milab overhead rates hav ears. If the increases are g cause of our large percent Base support for Fermila	reater than our estimation tage of Fermilab labor.	tes we will have a	shortfall. We are	particularly	Residual/Curre Residual/ Current Probability	nt Risk Probal Residual Schedule Impact (Delays Lev 3 milestone	vel Upper Round	Residual Cost Impact	If HIGH COST IMPACT, Upper Bound of Residual	Residual Scope Impact	Residual ES&H and Quality Impact	 TSCS – Technical and Scientific Common Support G&A – General and Administrative. Overhead rates for AD, CD, PPD and TD are obtained by combining the Divisional Program
Detailed Risk Effect: C WBS Affected: all labo Other WBS Affected:	or activities					(VH,H,M, L,VL)	project criti path (Day (VH,H,M, L,	ical of Residual Schedule	(VH,H,M, L,VL)	Cost Impact (\$)	(VH,H,M, L,VL)	(VH,H,M, L,VL)	Support rate with CSS, TSCS and G&A. For example: AD Overhead rate = (1+PS)*(1+CSS)*(1+TSCS)*(1+G&A) - 1.
Actual Start Date (when available from schedule) FY16	Actual Finish Date (when available from schedule) FY20						N es: Analysis of	historical data in spr Analysis is summari		Unbounded ith this form on do	N ocdb results in a S	N 90% C.L. cost of	Overhead rates for other organizations are obtained in the same way, but without the Program Support component. The historical overall rates for the various Divisions and Sections are show in Figure 1b.
													in Figure 1D.
complexity): All Fermi work is done. Overhea	sis – (description of sele nilab labor has overheads eads have been going up i ty and Impact scores sele	applied. The overhead in recent years and the	l varies depending re is a risk that th	; on the organizati ey will continue to	on where the rise.	Point estimat (cost k\$)			Point estimate (probability)	EXPECTATIO VALUE IN k		TATION VALUE IN Days	To evaluate the risk to the Mu2e project from potential increases in overhead rates, we have evaluated low, medium and high scenarios as follows:
complexity): All Ferm work is done. Overhea Initial Risk Probability S Initial (De	nilab labor has overheads eads have been going up ty and Impact scores sele Initial Schedule Impact SCHEDU Delays Level	s applied. The overhead in recent years and the scted from Mu2e Risk M H HLE T, Initial Cost	l varies depending re is a risk that th	on the organizati y will continue to (Mu2e-doc-461) Initial Scope	on where the rise.								To evaluate the risk to the Mu2e project from potential increases in overhead rates, we have
complexity): All Ferm work is done. Overhea Initial Risk Probability initial Probability (VH,H,M, L,VL) proj pa	nilab labor has overheads eads have been going up i ty and Impact scores sele Initial Schedule Impact SCHEDU	applied. The overhead in recent years and the ected from Mu2e Risk f H LE T, und Initial Cost Impact (H,H,M,V,VL) Ie ays)	I varies depending re is a risk that th Management Plar If HIGH COST IMPACT,	; on the organizati ey will continue to (Mu2e-doc-461)	ion where the prise. Tables 1 and 2 Initial ES&H	(cost k\$)		dule-days)	(probability)	VALUE IN k		IN Days	To evaluate the risk to the Mu2e project from potential increases in overhead rates, we have evaluated low, medium and high scenarios as follows: Accelerator Division Program Support (AD PS) – Steadily decreasing from FY08 to FY13, but a significant jump in FY14. In a band between 28% and 35% for the last 6 years. Currently at 34%
complexity): All Ferm work is done. Overheim Initial Risk Probability Initial Probability (VH,H,M, L,VL) H Exposure (What the r year. Changes a the completion and can h remains into the futur Initial Risk Mitigation	nilab labor has overheads ads have been going up juty and impact scores sele initial Impact Schedule Impact Schedule Impact Schedule Impact Schedule Impact Schedule Impact Schedule Impact OL Impact De Schedule Impact De Schedule Impact De Schedule Impact CP Impact De Schedule Impact CP Impact Schedule Impact CP Impact Schedule Impact CP Impact CP Impa	appled. The overhead increant years and the teted from Mu2e Risk f LE This increant years and the LE This increases and the tete of the tete of the tete of tete of tete of tete of tete of tete tete of tete of tete of tete of tete of tete of tete tete of tete of tete of tete of tete of tete of tete of tete tete of tete of tete tete of tete o	I varies depending re is a risk that th Management Plar If HIGH COST IMPACT, Upper Bound of Current Cost impact (\$) Unbounded re adjusted at the f the year. The ris pact diminishes e s.	con the organizati ay will continue to: (Mu2e-doc-461) Initial Scope Impact (VH,H,M,L,VL) N beginning and er & continues until F ach year as less PI Base Plan Cost an	on where the rise. Tables 1 and 2 Initial ES&H and Quality Impact (VH,H,M,L,VL) N Id of each fiscal roject d Schedule:	(cost k\$)		dule-days)	(probability)	VALUE IN k		IN Days	To evaluate the risk to the Mu2e project from potential increases in overhead rates, we have evaluated low, medium and high scenarios as follows: Accelerator Division Program Support (AD PS) – Steadily decreasing from FY08 to FY13, but a significant jump in FY14. In a band between 28% and 35% for the last 6 years. Currently at 34% Assume: Low: 28% Medium: 30%
complexity): All Ferm work is done. Overhei Initial Risk Probability Initial Risk Probability Probability (VH, H, M, L, VL) Probability (VH, H, M, L, VL) Probability (VH, M, M, L, VL) Probability (VH, M, M, L, VL) Probability Probabil	nilab labor has overheads action have been going up in ty and Impact scores sele Initial Impact Schedule Impact Schedule Impact Classical Schedule Impact (In High Schedule Impact (In High Schedule Impact (In High Impact (In Hight) Impact (In High Impact (In High Impact (In High Impact (In High Impact (In High Impact (In High Impact (In Hight) Impact (In Hight) Impac	a applied. The overheads in recent years and the left in recent years and the left (HH,H,M,V,VI) le away VH VH VH VH VH VH VH VH VH VH VH VH VH	I varies depending re is a risk that th Management Plar I HIGH COST IMPACT, Upper Bound of Current Cost impact (\$) Unbounded re adjusted at the t fue year. The ris pact diminishes e s.	on the organizati (Mu2e-doc-461) Initial Scope Impact (VH,H,M,L,VL) N beginning and er beginning and er kontinues until fach year as less Pr Base Plan Cost an incry exits year-by and Finish Dates or	on where the rise. Tables 1 and 2 Initial ES&H and Quality Impact (VH,H,M,L,VL) N di of each fiscal roject roject Labor di Schedule: +year to cover	(cost k\$)		dule-days)	(probability)	VALUE IN k		IN Days	To evaluate the risk to the Mu2e project from potential increases in overhead rates, we have evaluated low, medium and high scenarios as follows: Accelerator Division Program Support (AD PS) – Steadily decreasing from FY08 to FY13, but a significant jump in FY14. In a band between 28% and 35% for the last 6 years. Currently at 34% Assume: Low: 28% Medium: 30% High: 35% Computing Division Program Support (CD PS) - Steadily decreasing over the past 4 years. In a band between 9% and 13% for the last 5 years. Currently at 11.3%. Assume: Low: 9%

Mu₂e

‡Fermilab

Risk Analysis

- Monte Carlo performed on Risk Register to determine cost at 80% C.L.
- Schedule risks included and costed in analysis
 - Cost associated with schedule risks determined using PRA
 - Uses schedule logic and correlations
 - PRA analysis of overall schedule risk consistent with 24 months of float added to end of schedule.

L2	80% C.L. Risk
Project Management	\$1265
Accelerator	\$814
Conventional Construction	(\$637)
Solenoids	\$3455
Muon Beamline	\$468
Tracker	\$556
Calorimeter	\$51
Cosmic Ray Veto	\$318
DAQ	\$244
Total	\$6534k

Fermilab

Total Project Cost

Fully burdened AY \$k

(Values in AY \$k)	Performed	ETC	Contingency EU + Risk	% Cont on ETC	Total
Project Management	9,565	11,104	2,125	19%	22,794
Accelerator Conventional	11,790	29,016	9,433	33%	50,239
Construction	2,642	18,603	2,825	15%	24,070
Solenoids	16,743	71,225	24,322	34%	112,290
Muon Beamline	4,406	15,161	5,922	39%	25,490
Tracker	2,941	8,582	3,760	44%	15,283
Calorimeter	522	4,406	1,164	26%	6,092
Cosmic Ray Veto	1,543	5,229	1,963	38%	8,735
Trigger & DAQ	1,829	2,971	1,207	41%	6,007
Total	51,982	166,296	52,722	32%	271,000

Mu2e

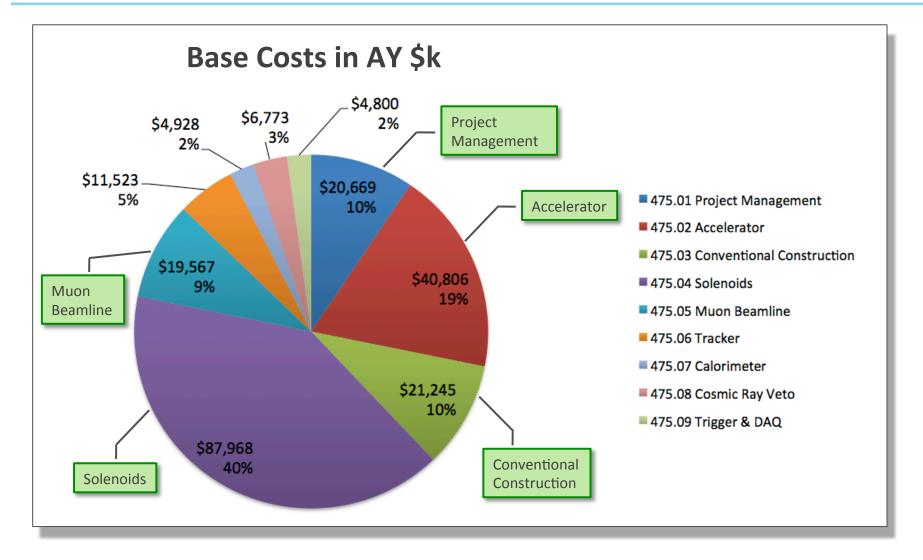
Total Project Cost

(Values in AY \$k)	Performed	ETC	Contingency % Cont Total								
			DOE ICE performed over past 2 months								
Project Management	9,565		validated our base cost estimates.								
Accelerator	11,790										
Conventional			"The ICE Team recommends no adjustments to								
Construction	2,642		the cost estimate for BOP direct costs. The cos								
Solenoids	16,743		estimate is complete. The level of detail and								
Muon Beamline	4,406		backup information is impressive. The strength of the BOP cost estimate lies in the planning								
Tracker	2,941		and definition of the work to be performed for								
Calorimeter	522		each WBS activity. Likewise, materials and								
Cosmic Ray Veto	1,543		supplies (M&S) are very well identified. Quotes and purchase orders are available for all large								
Trigger & DAQ	1,829		procurements."								
Total	51,982	1	166,296 52,722 32% 271,000								

Mu2e

Contingency

- Overall contingency of 32% on cost to go, but risk is not evenly distributed
- \$39M of Project Management costs spread throughout the Project
 - \$24M cost-to-go
 - Primarily LOE based on assigned personnel and well established need, so contingencies are low
 - Example: I'm assigned at 100%. No contingency.
 - We do have a risk that more Project Management might be needed.
 - Conventional Construction is a big ticket item with low risk that is well understood. Similar to other recent construction on site. We have a bid that we are about to turn into a PO. Cost known.
- If we exclude PM costs and contingency, the contingency on the remaining cost-to-go is 35%.
- If we exclude PM and Conventional Construction, the contingency on the remaining "technical scope" of the Project is 37%.


🛟 Fermilab

Scope Contingency

- By running at 5x lower beam power we could eliminate ~\$3M of heavy concrete shielding around the TS and DS.
 - Shielding is purchased late in project
 - Shielding could be added later.
- The second calorimeter disk could be eliminated, deferred or provided by another agency or International partner. Saves ~\$4M while reducing acceptance by ~40%.
 - Second disk could be added later.
- We are pursuing additional opportunities that, if realized, would effectively increase available contingency
 - other agencies provide some part of existing scope
 - move more work from Laboratory to University groups
- Potentially an additional \$10M in contingency is possible
- Active management of scope contingency as we retire risks and reevaluate opportunities could free up more.
- More detail in Management Breakout
 Mu2e

🚰 Fermilab

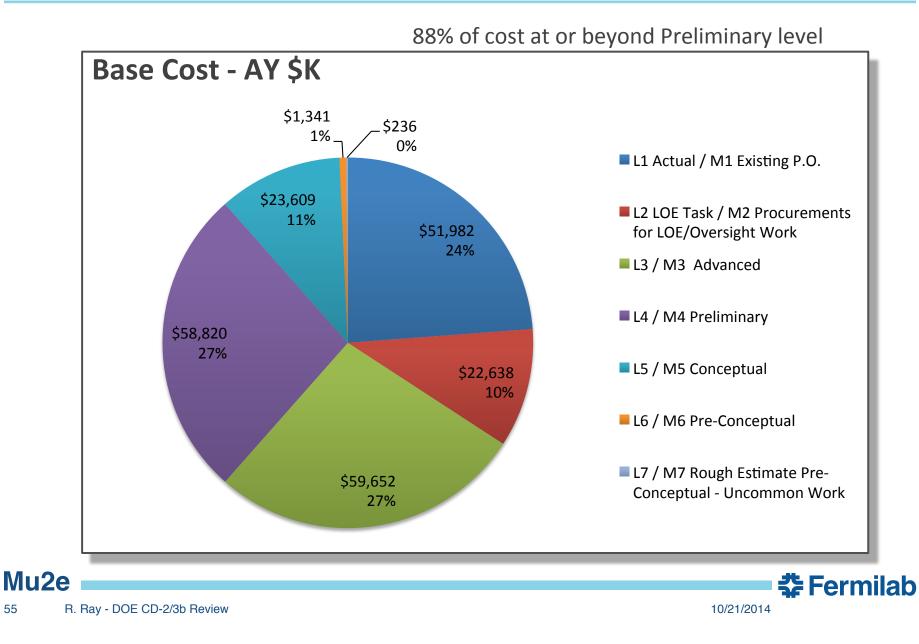
Cost Breakdown by L2

10/21/2014

7 Fermilab

Cost Breakdown

Resource Type: Base Cost (AY k\$) \$7,379 3% Fermilab Labor Materials and Services **Direct vs. Indirect Costs** Procured Labor \$107,158 49% \$103,742 48% Direct Costs 35% Indirect Costs 65%



10/21/2014

‡Fermilab

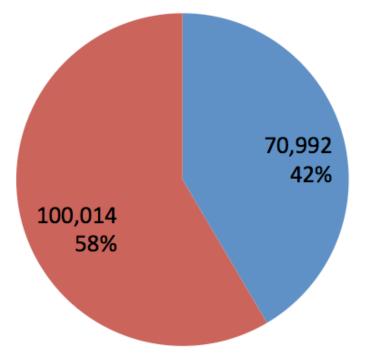
Quality of Estimate

55

Labor Resources

Agreement with Fermilab Divisions for required resources in FY15

Most scientific and engineering resources identified by name 363 FTEs from now to completion 90 400 FY14 Actuals 80 350 70 300 60 250 Cumulative FTE's Annual FTE's 50 200 40 150 30 100 20 50 10 0 0 FY21 FY14 FY15 FY16 FY17 FY18 FY20 FY19 AD Administrative ES Environmental, Safety & Health EN Engineering IT Information Technology TE Technical SC Costed Scientific SC Uncosted Scientific Cumulative Mu₂e **7** Fermilab


R. Ray - DOE CD-2/3b Review

56

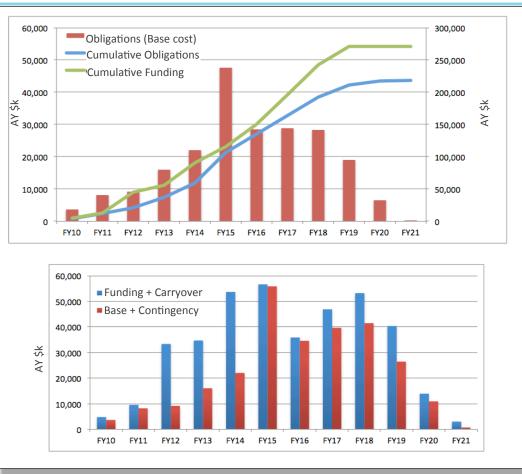
Scientists

Scientific Labor (Hours)

Includes Lab and University Scientists

- Un-costed scientists are included in RLS if they are required to satisfy CD-4
 - L3 or L4 managers
 - Scientists performing simulations needed for design.
- Costed (40 FTE)
- Un-costed (57 FTE)

Resource Availability


- Significant Fermilab resources required for success of Project, particularly for Solenoids, Accelerator, Muon Beamline.
 - Have generally been successful in securing needed resources, but not always.
 - Lots of other projects at Fermilab, sometimes with competing needs

10/21/2014

- Occasionally have to look outside the Lab for resources. We have been very successful in doing this when necessary.
 - RAL
 - Bartoszek Engineering
 - Argonne cryo group
 - New cryo hires
- Lab Management is working hard to understand resource needs, level resources and establish well communicated priorities – One of CPOs primary responsibilities.
 Mu2e

58 R. Ray - DOE CD-2/3b Review

Obligation and Funding Profile

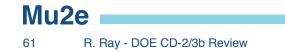
Fiscal Year	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	Total
OPC - R&D	0.5	0.5	1	2.5								4.5
OPC - Design	4.3	7.9	7									19.2
TEC - PED			24	8	15							47
TEC - Construction					20	25	35.1	45.6	46	28.6		200.3
126 Total Project Cost	4.8	8.4	32	10.5	35	25	35.1	45.6	46	28.6	0	271

59 R. Ray - DOE CD-2/3b Review

Degree of Project Definition

- No unique definition
- Based on DOE Cost Estimating Guide we have a Class 2 estimate for which engineering should be 30 - 70% complete.
 - "Class 2 estimates are generally prepared to form a detailed contractor control baseline against which all Project work is monitored."
- We looked at the number of performed design hours (engineers, designers, drafters, scientists) compared to the entire design process. Contract engineering included.
 - Design is not necessarily a linear process.
 - Based on this metric, the design process is 58% complete when weighted by cost.

L2	Project Definition
Accelerator	77%
Conventional Construction	100%
Solenoids	55%
Muon Beamline	43%
Tracker	60%
Calorimeter	40%
Cosmic Ray Veto	66%
DAQ	60%
Total	58%


Mu₂e

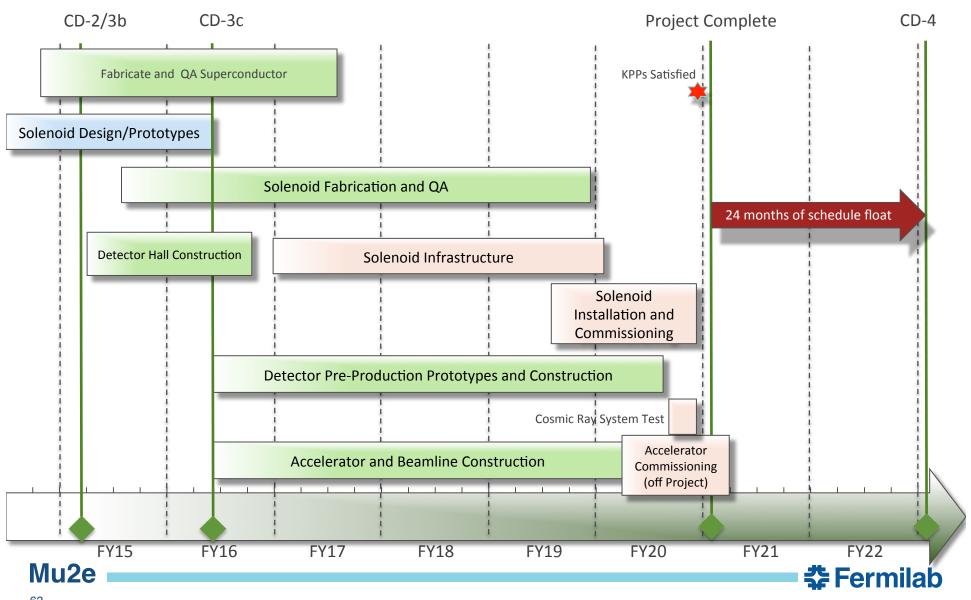
Tailoring Strategy

- CD-3a for long-lead solenoid conductor
 - Granted July 10, 2014
- CD-2 for entire Project and CD-3b for the Detector Hall and Transport Solenoid Modules

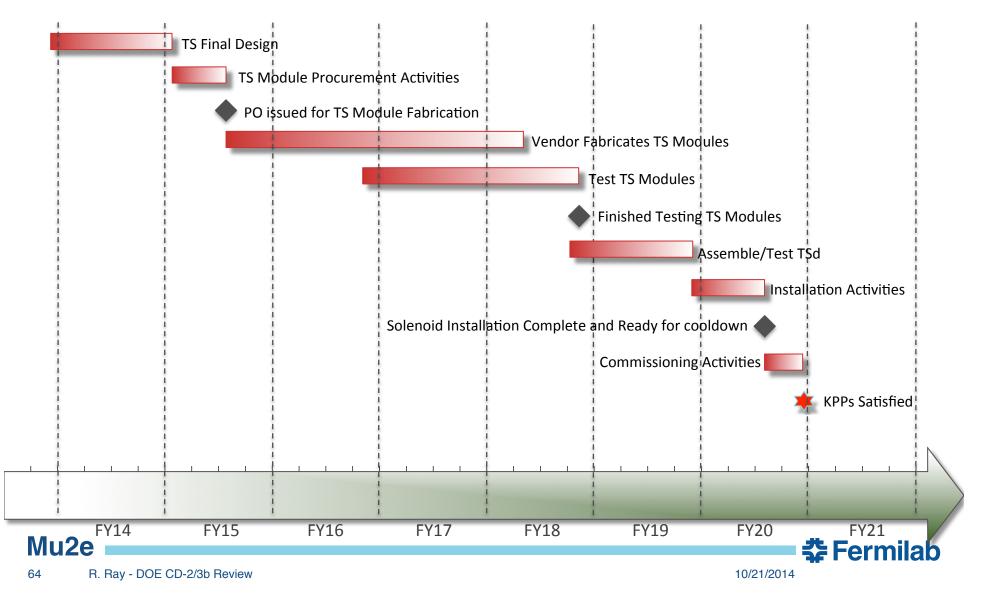
This Review

- CD-3c approval in mid FY16.
 - Timed to keep the solenoids moving on a technically limited schedule since they define the critical path.
 - Most final designs will be complete by CD-3c, but a few will not.
 - The designs that are not complete will be well along and the risk associated with the remaining design is small.
 - Final Design Plan is available on the Review web page.

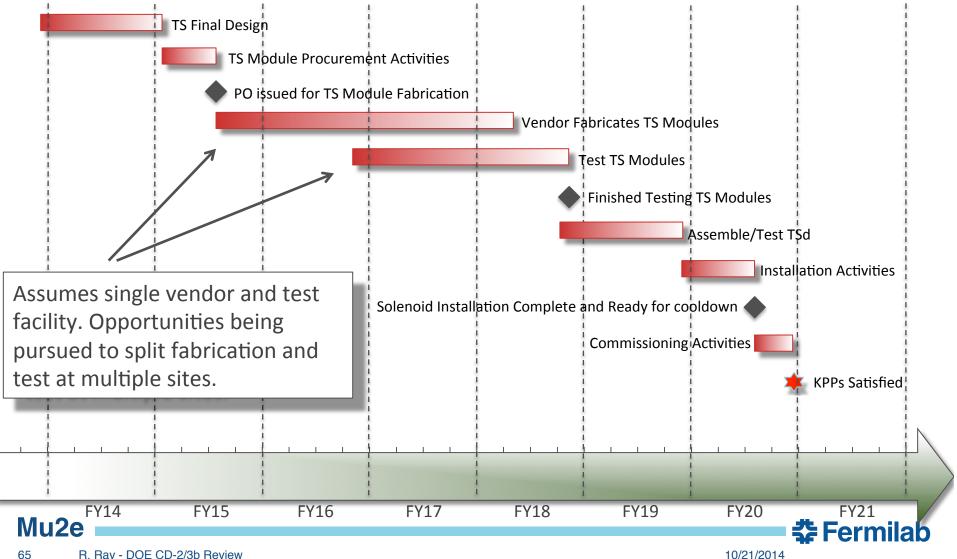
CD Milestones


Major Milestone Events	Preliminary Schedule
CD-0 (Approve Mission Need)	1 st Qtr, FY10 (A)
CD-1 (Approve Alternative Selection and Cost Range)	4 th Qtr, FY12 (A)
CD-3a (Approve Start of Long-lead Procurement)	4 th Qtr, FY14 (A)
CD-2 (Approve Performance Baseline)	1 st Qtr, FY15
CD-3b (Start of Phased Construction/Fabrication)	1 st Qtr, FY15
CD-3c (Approve Start of Construction)	2 ^d Qtr, FY16
Key Performance Parameters Satisfied	1 st Qtr, FY21
CD-4 (Includes 24 months of programmatic float)	1 st Qtr, FY23

• CD date is defined as official sign-off.


10/21/2014 **Fermilab**

Schedule


Critical Path

Detailed Gantt Chart of critical path posted on Review web page

Critical Path

Detailed Gantt Chart of critical path posted on Review web page

65 R. Ray - DOE CD-2/3b Review

CD-3b Request – Detector Hall

- We are requesting CD-3b for the Mu2e Detector Hall and the Transport Solenoid Modules.
- Recommendation from DOE CD-1 Review to accelerate procurement of building
 - "Consider accelerating the start of civil construction to take advantage of the recent aggressive construction market conditions"
 - We have bids on the detector hall from a well known contractor at a good price, so this strategy has worked.
- Detector Hall Design is 100% complete.
- 100% drawings from the A&E completed several months ago
- Interfaces defined and signed off
- Bids in hand
- Ready to go.

Mu2e

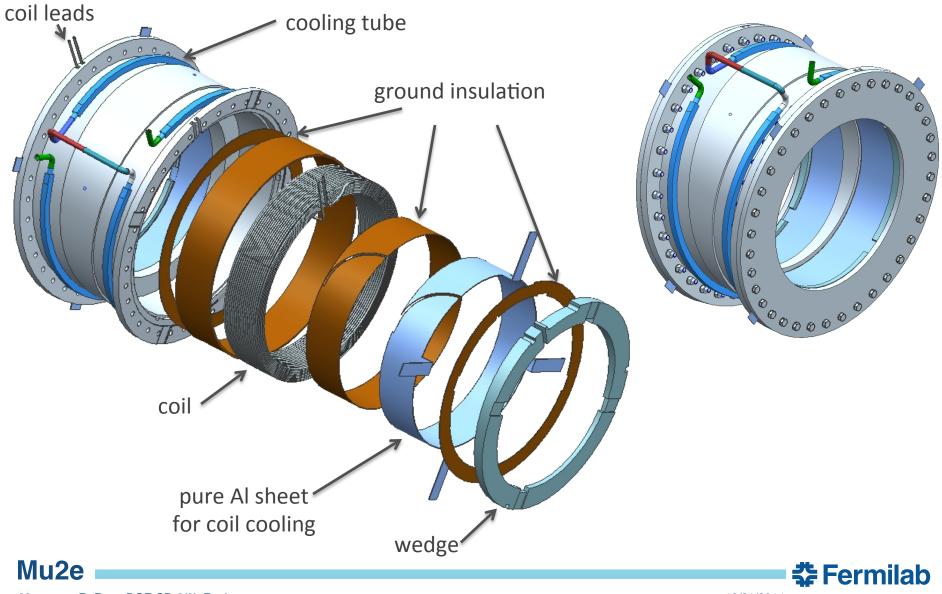
5 Fermilab

CD-3b Request – Detector Hall

- Building interfaces well understood.
- Solenoid dimensions stable for several years.
- Confident that this is the building we need.

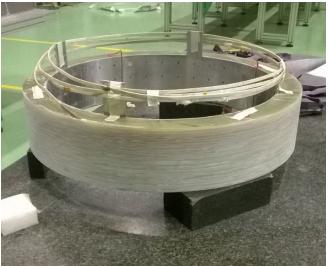
67 R. Ray - DOE CD-2/3b Review

Mu₂e


- TS Modules are on the critical path.
 - Delay of TS Modules to CD-3c delays the overall Project by 10 months
- TS Module design 90% complete. 70% of drawings complete.
 - List of remaining drawings presented in Solenoid Breakout
- 2 TS conductor coils inserted inside an aluminum shell.
 - 27 Modules in all
 - Natural extension of CD-3a decision that approved procurement of long-lead conductor. TS conductor fabrication currently underway.

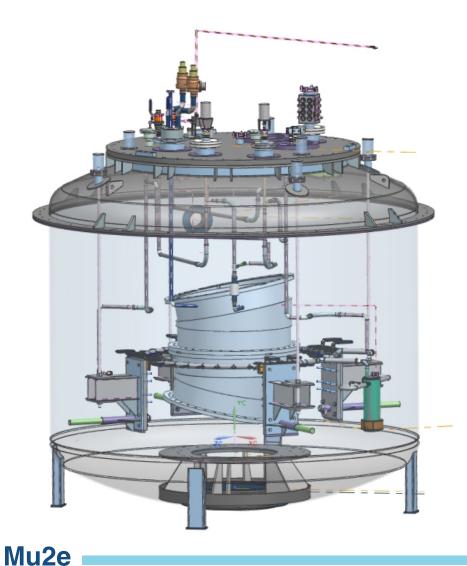
5 Fermilab


10/21/2014

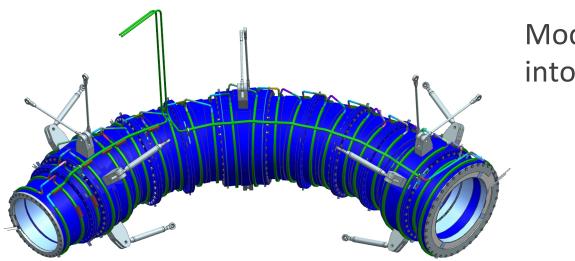

- Remaining TS Module design work well understood.
- Overall solenoid designs stable
- Risk on remaining design work is low.
- Nearly complete prototype module. Detailed test plan.
- See M. Lopes' breakout talk

Mu2e

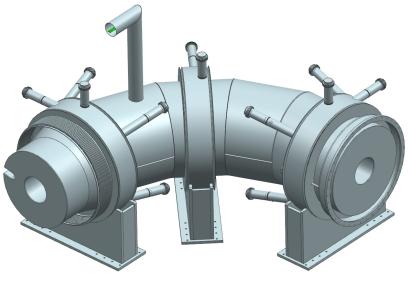
69 R. Ray - DOE CD-2/3b Review


- Two coils are inserted into an aluminum shell to form a module.
- INFN collaborating on prototype.

70 R. Ray - DOE CD-2/3b Review


Mu₂e

Modules are fully tested in test cryostat at Fermilab.

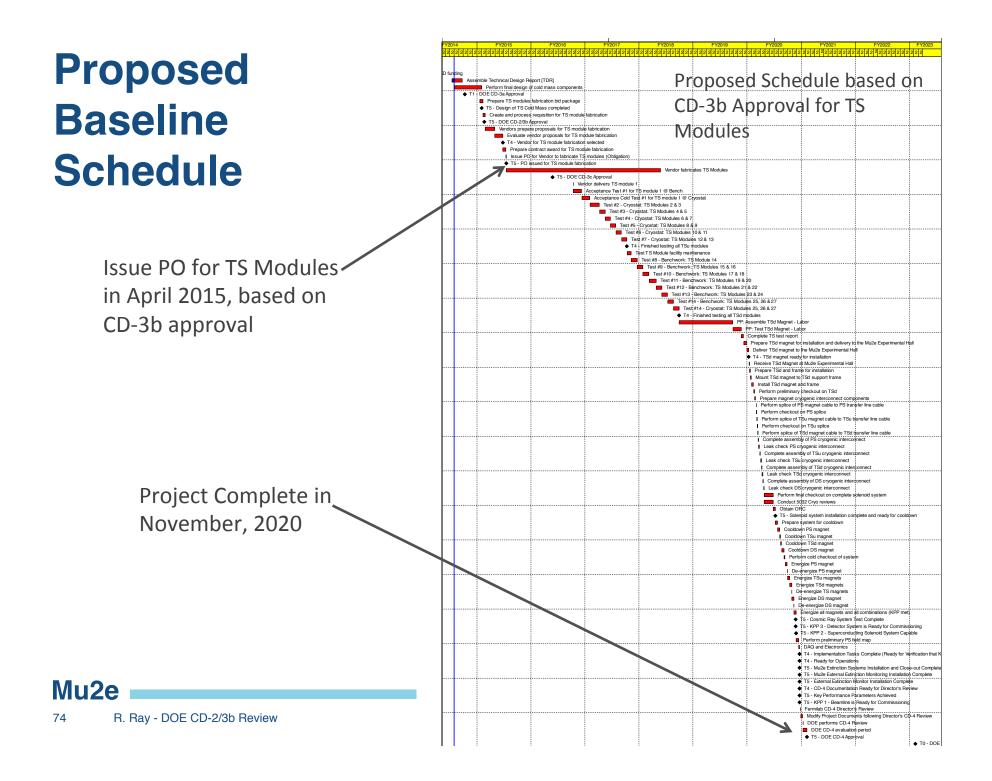


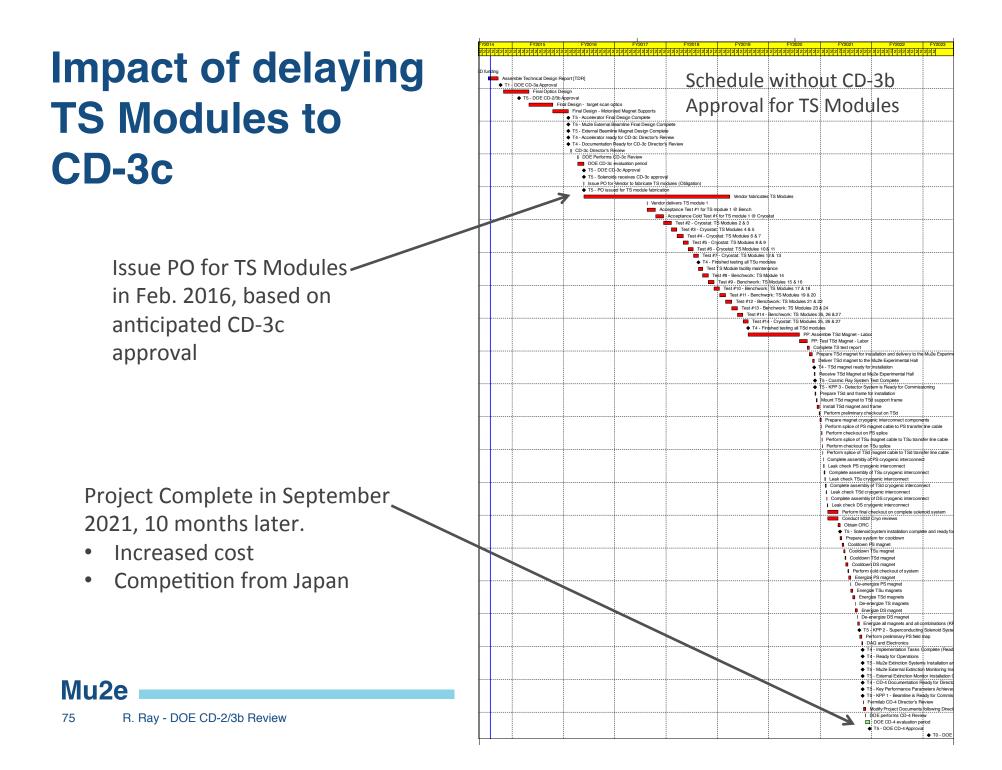
71 R. Ray - DOE CD-2/3b Review

Modules are assembled into cold mass

Assembled cold mass is installed in cryostat.

10/21/2014


7 Fermilab


CD-3b Request

	Base Cost	Contingency	Total
Detector Hall	\$13M	\$2.4M	\$15.4M
TS Modules	\$5.9M	\$3.0M	\$8.9M
Total	\$18.9M	\$5.4M	\$24.3M

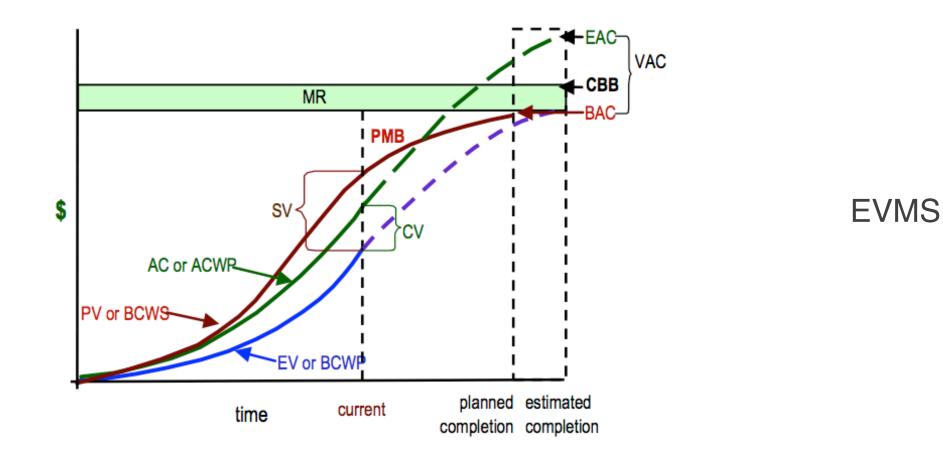
- We have the money in hand to make these purchases. We just need the authority to proceed.
 - Want to proceed immediately on Detector Hall.
 - Need PO in place for TS Modules by April to maintain schedule.

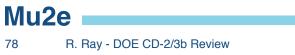
Status of Recommendations

Review	Total no.	Open
Director's pre-CD-2/3b review	53	3
DOE CD-3a review	2	1
DOE Briefing (Feb2014)	3	0
DOE Briefing (Sep2014)	1	0
DOE mini-review (Apr2013)	1	0
DOE mini-review (Nov2012)	3	0
DOE-CD-1 review	24	1
Director's pre-CD-1 review	49	0
Independent Design Review	48	0

- 184 Recommendations/Action Items total.
- 179 Closed. 5 Open.
- Detailed talk in Management Breakout.
 Mu2e

KPPs


Key Parameters	Threshold Performance	Objective Performance
Accelerator	All accelerator components, RF and resonant extraction components are installed and tested at specified voltages and currents. The production target and support hardware is complete, delivered to Fermilab and ready for installation. Heat and Radiation Shield is installed in Production Solenoid. Shielding designed for 1.5 kW operation delivered to Fermilab and ready for installation	Protons are delivered to the diagnostic absorber in the M4 beamline. Shielding designed for 8 kW operation delivered to Fermilab and ready for installation.
Superconducting Solenoids	The Production, Transport and Detector Solenoids have been cooled and powered to the settings necessary to take physics data.	The Production, Transport and Detector Solenoids have been cooled and powered to their nominal field settings.
Detector Components	Cosmic ray tracks are observed in the Tracker, Calorimeter and a subset of the Cosmic Ray Veto and acquired by the Data Acquisition System after they are installed in the garage position behind the DS. The balance of the CRV counters are at Fermilab and ready for installation.	The cosmic ray data in the detectors is acquired by the Data Acquisition System, reconstructed in the online processors, visualized in the event display and stored on disk.


Objective KPPs are preferred outcome and are costed.

Threshold KPPs still allow for good physics

Details in Management Breakout

Mu2e

EVMS

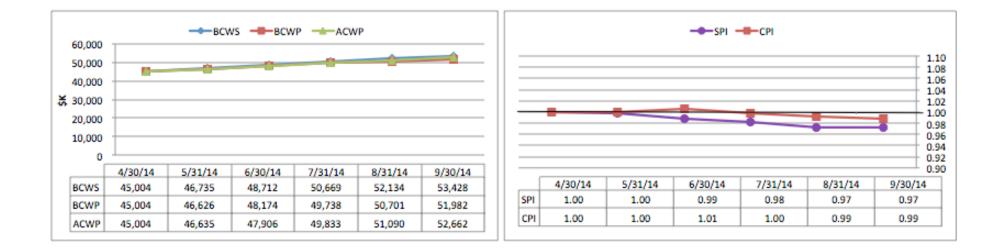
- All CAMS have received EVMS training.
- Have been statusing the schedule since January
- Most statusing is done face-to-face between CAM and Project Controls leads.
- Cost and schedule trued up to actuals through April.
- Cost Performance Reports generated for April September and included in Monthly Reports (available from Review web page).

EVMS – Report by L2 - June through Sept

June 30, 2014 Currency in: SK			Current	t Period						e	nulative to D	-t						At Complete			
					01100	en 1 (Å)	m 1 40 43														
Work Package.WBS (2)	Budget	Earned	Actuals	SV (\$)	SV (%)	CV (\$)	CV (%)	Budget	Earned	Actuals	SV (\$)	SV (%)	CV (\$)	CV (%)	SPI	CPI	BAC	EAC	VAC	% Spent	% Complete
475.01 Project Management	217	217	202	0	0%	15	7%	8,893	8,893	8,866	0	0%	27	0%	1.00	1.00	20,669	20,647	21	43%	439
475.02 Accelerator	747	689	330	(58)	-8%	359	52%	11,122	10,858	10,712	(265)	-2%	145	1%	0.98	1.01	40,806	40,437	369	26%	279
475.03 Conventional Construction	87	80	25	(7)	-8%	55	68%	2,458	2,421	2,337	(37)	-1%	84	3%	0.99	1.04	21,245	21,124	121	11%	119
475.04 Solenoids	325	171	382	(155)	-48%	(212)	-124%	15,488	15,650	15,747	162	1%	(97)		1.01	0.99	87,968	88,276	(309)	18%	18%
475.05 Muon Beamline	147	116	111	(31)	-21%	5	5%	4,290	4,142	4,136	(148)	-3%	7	0%	0.97	1.00	19,567	19,525	42	21%	219
475.06 Tracker	135	67	72	(67)	-50%	(5)	-7%	2,931	2,762	2,864	(168)	-6%	(102)		0.94	0.96	11,523	11,598	(75)	25%	249
475.07 Calorimeter	71	49	6	(23)	-32%	43	88%	276	396	211	120	43%	185	47%	1.43	1.88	4,928	4,831	96	4%	89
475.08 Cosmic Ray Veto	165	78	72	(87)	-53%	6	8%	1,570	1,389	1,380	(181)	-12%	8	1%	0.88	1.01	6,773	6,727	45	21%	219
475.09 Trigger & DAQ	83	80	72	(2)		9	11%	1,684	1,663	1,653	(21)	-1%	10	1%	0.99	1.01	4,800	4,781	20	35%	359
Total	1,977	1,547	1,272	(430)	-22%	276	18%	48,712	48,174	47,906	(538)	-1%	267	1%	0.99	1.01	218,278	217,947	331	22%	229
July 31, 2014																					
Currency in: \$K				t Period							nulative to D							At Complete			
Work Package.WBS (2)	Budget	Earned	Actuals	SV (\$)	SV (%)	CV (\$)	CV (%)	Budget	Earned	Actuals	SV (\$)	SV (%)	CV (\$)	CV (%)	SPI	CPI	BAC	EAC	VAC	% Spent	% Complete
475.01 Project Management	231	231	223	0	0%	8	4%	9,124	9,124	9,089	0	0%	35	0%	1.00	1.00	20,669	20,639	29	44%	449
475.02 Accelerator	395	549	433	154	39%	116	21%	11,517	11,406	11,146	(111)	-1%	261	2%	0.99	1.02	40,806	40,178	627	28%	28%
475.03 Conventional Construction	71	72	51	1	2%	21	29%	2,529	2,493	2,388	(36)	-1%	105	4%	0.99	1.04	21,245	21,106	139	11%	12%
475.04 Solenoids	767	383	885	(383)		(502)	-131%	16,254	16,033	16,632	(221)	-1%	(599)	-4%	0.99	0.96	87,968	88,425	(457)	19%	18%
475.05 Muon Beamline	72	94	93	22	30%	1	2%	4,362	4,236	4,228	(126)	-3%	8		0.97	1.00	19,567	19,586	(19)	22%	22%
475.06 Tracker	97	56	72	(41)		(16)	-29%	3,027	2,818	2,936	(209)	-7%	(118)		0.93	0.96	11,523	11,585	(62)	25%	24%
475.07 Calorimeter	80	46	6	(34)	-43%	40	87%	356	442	217	85	24%	225	51%	1.24	2.04	4,928	4,745	182	5%	9%
475.08 Cosmic Ray Veto	165	62	100	(102)	-62%	(38)	-61%	1,735	1,451	1,481	(284)	-16%	(30)	-2%	0.84	0.98	6,773	6,640	133	22%	21%
475.09 Trigger & DAQ	80	71	63	(9)	-12%	7	10%	1,764	1,734	1,717	(30)	-2%	17	1%	0.98	1.01	4,800	4,836	(36)	36%	36%
Total	1,957	1,564	1,927	(393)	-20%	(363)	-23%	50,669	49,738	49,833	(931)	-2%	(95)	0%	0.98	1.00	218,278	217,741	537	23%	23%
August 31, 2014 Currency in: \$K			Curren	t Period						Cun	nulative to D	ate						At Complete			
Work Package.WBS (2)	Budget	Earned	Actuals	SV (\$)	SV (%)	CV (\$)	CV (%)	Budget	Earned	Actuals	SV (\$)	SV (%)	CV (\$)	CV (%)	SPI	CPI	BAC	EAC	VAC	% Spent	% Complete
475.01 Project Management	221	221	244	0	0%	(23)	-10%	9,345	9,345	9,332	0	0%	12	0%	1.00	1.00	20,669	20,668	1	45%	45%
475.02 Accelerator	386	204	313	(182)	-47%	(109)	-53%	11,904	11,611	11,459	(293)	-2%	152	1%	0.98	1.01	40,806	40,257	549	28%	28%
475.03 Conventional Construction	68	80	26	13	19%	55	68%	2,596	2,574	2,414	(23)	-1%	160	6%	0.99	1.07	21,245	21,080	165	11%	12%
475.04 Solenoids	386	199	388	(187)	-48%	(189)	-95%	16,640	16,232	17,020	(408)	-2%	(788)	-5%	0.98	0.95	87,968	88,585	(617)	19%	18%
475.05 Muon Beamline	52	74	104	22	42%	(31)	-42%	4,414	4,310	4,332	(104)	-2%	(22)	-1%	0.98	0.99	19,567	19,632	(65)	22%	22%
475.06 Tracker	104	55	63	(49)	-47%	(8)	-15%	3,131	2,873	2,999	(258)	-8%	(126)	-4%	0.92	0.96	11,523	11,589	(66)	26%	25%
475.07 Calorimeter	56	39	2	(17)	-30%	37	96%	412	481	218	69	17%	262	55%	1.17	2.20	4,928	4,700	228	5%	10%
475.08 Cosmic Ray Veto	117	37	45	(80)	-69%	(8)	-23%	1,851	1,488	1,526	(363)	-20%	(38)	-3%	0.80	0.98	6,773	6,591	182	23%	22%
475.09 Trigger & DAQ	76	55	72	(22)	-28%	(18)	-32%	1,841	1,789	1,789	(52)	-3%	(1)	0%	0.97	1.00	4,800	4,826	(25)	37%	37%
Total	1,465	963	1,257	(502)	-34%	(294)	-31%	52,134	50,701	51,090	(1,433)	-3%	(389)	-1%	0.97	0.99	218,278	217,928	351	23%	23%
September 30, 2014																					
Currency in: \$K			Curren	t Period						Cun	nulative to D	ate						At Complete			
Work Package.WBS (2)	Budget	Earned	Actuals	SV (\$)	SV (%)	CV (\$)	CV (%)	Budget	Earned	Actuals	SV (\$)	SV (%)	CV (\$)	CV (%)	SPI	CPI	BAC	EAC	VAC	% Spent	% Complete
475.01 Project Management	221	221	158	0	0%	63	28%	9,565	9,565	9,490	0	0%	75	1%	1.00	1.01	20,669	20,600	69	46%	46%
475.02 Accelerator	302	179	154	(123)	-41%	26	14%	12,206	11,790	11,612	(416)	-3%	178	2%	0.97	1.02	40,806	40,830	(24)	28%	29%
475.03 Conventional Construction	65	68	25	4	6%	43	63%	2,661	2,642	2,439	(19)	-1%	203	8%	0.99	1.08	21,245	21,055	190	12%	129
475.04 Solenoids	291	511	860	220	75%	(349)	-68%	16,931	16,743	17,880	(188)	-1%	(1,137)	-7%	0.99	0.94	87,968	89,129	(1,161)	20%	199
475.05 Muon Beamline	69	96	50	27	39%	46	48%	4,483	4,406	4,382	(78)	-2%	24	1%	0.98	1.01	19,567	19,567	0	22%	239
475.06 Tracker	107	69	57	(39)	-36%	12	18%	3,238	2,941	3,056	(296)	-9%	(114)	-4%	0.91	0.96	11,523	11,579	(56)	26%	26
475.07 Calorimeter	52	41	101	(11)		(59)	-142%	464	522	319	58	12%	203	39%	1.12	1.64	4,928	4,763	165	7%	119
475.08 Cosmic Ray Veto	111	56	130	(55)	-50%	(74)	-134%	1,962	1,543	1,656	(419)	-21%	(112)	-7%	0.79	0.93	6,773	6,640	133	25%	23
		40	39	(36)	-47%	2	4%	1.017	1.000	1,828	(00)	-5%	1	0%	0.95	1.00	4,800	4,800	(0)	38%	38
475.09 Trigger & DAQ	76	40	39	(30)	-4770	4	470	1,917	1,829	1,020	(88)	-376	1	070	0.95	1.00	4,000	4,000	(0)		

80

10/21/2014


‡Fermilab

Earned Value Report for September by Control Account

Mu2e Project September 30, 2014																					
Currency in: SK	-		Cur	rent Period							Cumula	tive to Dat	te			-	A	t Complete			
Control Account	Budget	Earned	Actuals	SV (\$)	SV (%)	CV (\$)	CV (%)	Budget	Earned	Actuals	Contracto	SV (%)		CV (%)	SPI	CPI	BAC	EAC	VAC	% Spent	% Complete
.01.02 Project Office Conceptual Design (Post CD-0: OPC)	31	31	2	0	0%	29	94%	4,832	4,832	4,688	0	0%	144	3%	1.00	0 1.03	4,951	4,806	144	98%	98%
01.03 Project Office Preliminary & Final Design Phase to CD-2/3	190	190	156	0	0%	- 34	18%	4,733	4,733	4,802	0	0%	(69)	-1%	1.00	0.99	4,733	4,802	(69)	100%	100%
1.04 Project Office Implementation & Close-out to CD-4	0	0	0	0	0%	0	0%	0	0	0	0	0%	0	0%			10,985	10,991	(6)	0%	0%
02.01 Project Management	39	39	14	0	0%	25	64%	1,157	1,157	1,219	0	0%	(62)	-5%	1.00		3,568	3,650	(82)	33%	
02.03 Instruments and Controls	6	6 5	10	0	0% 18%	(5)	-79% 18%	390 342	399 328	391 376	9	-4%	8	2%	1.02		2,225	2,138	88 (47)	18% 18%	18%
2.04 Radiation Safety and Improvments 2.05 Resonant Extraction System	54	31	4	(22)	-42%	(21)	-68%	1.139	328 962	3/6	(14)	-4%	(48)	-15%	0.96		2,021	2,067	(47)	18%	10%
12.06 Rings RF	3	3	(2)	0	0%	5	175%	260	260	277	0	0%	(18)	-7%	1.00		1.806	1,826	(20)	15%	14%
02.07 External Beamline	74	3	19	(70)	-95%	(15)	-441%	972	864	861	(108)	-11%	3	0%	0.89		7,240	7,223	16	12%	12%
.02.08 Extinction Systems	45	54	18	9	20%	36	66%	845	774	727	(71)	-8%	47	6%	0.92		3,027	3,045	(18)	24%	
02.09 Target Station	78	38	38	(40)	-51%	(0)	-1%	2,055	2,001	1,820	(55)	-3%	181	9%	0.97		10,346	10,298	48	18%	19%
02.10 Accelerator Conceptual Design/R&D (OPC)	0	0	(0)	0	0%	0	-	5,045	5,045	5,045	0	0%	0	0%	1.00		5,045	5,045	0		100%
3.01 Conv.Constr. Conceptual Design	0	0	0	0	0%	(0)	-	537	537	537	0	-1%	(0)	0%	1.00		537	537	(0)	100%	100%
3.02 Conv.Constr. Preliminary/Final Design 3.03 Conv.Constr. Construction Phase Oversight	65	68	25	4	6% 0%	44 0	64% 0%	2,124	2,105	1,902	(19)	-1%	203	10%	0.99	9 1.11	2,255 2,485	2,064 2,485	192	92% 0%	93% 0%
03.04.01 Mu2e Detector Service Building & Hall Fixed Price	0	0	0	0	0%	0	0%	0	0	0	0	0%	0	0%			2,485	2,485	0	0%	
03.04.02 Delivery Ring Upgrades	0	0	0	0	0%	0	0%	0	0	0	0	0%	0	0%			353	353	0	0%	
13.04.03 Fermi Procured Items and T&M	0	0	0	0	0%	0		0	0	0	0		0	0%			1,892	1,894	(1)	0%	
03.04.04 Absorber Fabrication	0	0	0	0	0%	0	0%	0	0	0	0	0%	0	0%			275	275	0	0%	0%
03.04.05 Building Controls	0	0	0	0	0%	0	0%	0	0	0	0	0%	0	0%			112	112	0	0%	0%
5.03.05 Conv.Constr. Project Close	0	0	0	0	0%	0	0%	0	0	0	0	0%	0	0%			367	367	0	0%	0%
.04.01 Solenoids Project Management	24	24	61	0	0%	(37)	-158%	1,086	1,086	1,098	0	0%	(12)	-1%	1.00		3,456	3,470	(14)	32%	31%
.04.02 Production Solenoid	1	0	460	(1)	-90%	(460)		1,550	1,549	1,732	(1)		(183)	-12%	1.00		15,391	15,575	(185)	11%	10%
04.03 Transport Solenoids 04.04 Detector Solenoid	195	402	265 (8)	207	106% 1217%	137	34%	5,196 929	4,953	5,362	(242) 29	-5% 3%	(409)	-8%	0.99		23,856	24,296	(440)	22%	21%
04.04 Detector Solenoid 04.05 Cryagenic Distribution System	44	53	(8)	19	1217%	(20)	-38%	1,044	958 1,068	1,378	29		(421)	-44%	1.0		15,901	16,339	(438)	8%	6% 9%
04.06 Magnet Power System	7	0	1	(7)	-100%	(20)	-2070	282	276	268	(6)	-2%	8	-1%	0.98		1,514	1,509	5	18%	
04.07 Quench Protection and Monitoring System	6	6	16	(1)	-9%	(10)	-175%	420	410	467	(10)		(57)	-14%	0.98		2,942	3,006	(64)	16%	14%
04.08 Magnetic Field Mapping System	1	0	0	(1)	-95%	(0)	-147%	24	21	38	(3)	-13%	(17)	-82%	0.87	7 0.55	1,053	1,071	(18)	4%	2%
04.09 Solenoids Ancillary Equipment	0	0	(0)	(0)	-100%	0	-	0	18	1	17	3724%	17	97%	38.24	4 35.67	988	966	22	0%	2%
4.10 Solenoids System Integration, Installation &	11	7	(3)	(4)	-40%	9	138%	373	375	425	3	1%	(50)	-13%	1.01	0.88	5,195	5,250	(56)	8%	7%
hissioning											-						-,		()		
4.11 Solenoids Conceptual Design/R&D (OPC) 5.01 Muon Beamline Project Management	0	0	(5)	0	0%	5 20	- 55%	6,029 724	6,029	6,028 681	0	0%	43	0%	1.00		6,029	6,028	42	100%	100%
.02 Vacuum System	5/	37	10	30	564%	20	80%	288	724	206	(39)		43	17%	0.86		3,314	3,272	42	6%	22%
03 Collimators	5	33	10	(2)	-38%	(7)	-214%	170	172	154	2	1%	18	10%	1.01		1,364	1,348	17	11%	13%
04 Upstream External Shielding	9	10		1	10%	5	47%	283	267	252	(17)		14	5%	0.94		1,973	1,964	9	13%	14%
05 Stopping Target	0	0	0	0	0%	(0)		10	10	12	0	0%	(2)	-20%	1.00		178	181	(2)	7%	
06 Stopping Target Monitor	0	0	(0)	(0)	-100%	0	-	18	3	0	(15)	-85%	2	88%	0.15	5 8.25	334	332	2	0%	1%
.07 DS Internal Shielding	1	1	(1)	(1)	-49%	1	221%	48	47	49	(0)	-1%	(2)	-4%	0.99		390	391	(2)	13%	12%
08 Muon Beam Stop	6	4	11	(2)	-34%	(7)	-175%	174	171	197	(3)		(26)	-15%	0.98		764	795	(31)	25%	
.09 Downstream External Shielding	2	1	(3)	(1)	-68%	4	657%	359	358	400	(1)		(42)	-12%	1.00		3,367	3,412	(45)	12%	
.10 Detector Support Structure	2	1	4	(1)	-51% 100%	(3)	-409% 93%	383 46	383	421	(1)	-8%	(38)	-10%	1.00		2,425	2,466	(41)	17%	16%
.11 Muon Beamline Systems Integration .13 Muon Beamline Conceptual Design/R&D (OPC)	3	6	0 (1)	3	100%	5	93%	46	42	30 1.979	(3)	-8% 0%	13	30%	0.92		164	150	14	20%	26%
.01 Tracker Project Management	13	13	(1)	0	0%	8	- 65%	539	539	484	0	0%	54	10%	1.00		1,980	1,979	54	28%	30%
5.02 Straws	5	2	23	(3)	-67%	(22)	-1323%	149	132	245	(17)		(113)	-86%	0.89		1,268	1,386	(118)	18%	10%
.03 Straw Assemblies	37	39	12	3	8%	27	70%	401	323	417	(78)		(93)	-29%	0.81	1 0.78	3,519	3,623	(104)	11%	9%
.04 Tracker Front End Electronics	45	15	22	(30)	-67%	(6)	-43%	441	273	213	(168)		59	22%	0.62		2,267	2,158	109		
06.05 Tracker Infrastructure	8	0	(1)	(8)	-100%	1	-	56	22	40	(34)		(18)	-81%	0.39	9 0.55	940	934	7	4%	
16.06 Detector Assembly & Installation	0	0	0	0	0%	0	0%	0	0	0	0	0%	0	0%			70	70	0	0%	0%
6.07 Tracker Conceptual Design/R&D (OPC)	0	0	(4)	0	0%	4	-	1,653	1,653	1,656	0	0%	(3)	0%	1.00		1,653	1,656	(3)	100%	100%
7.01 Calorimeter Project Management 7.02 Crystals	1	1	(1)	(4)	0% -23%	2	236% 74%	119 36	119 33	123 46	(2)		(4)	-4% -40%	1.00		269 2,612	273 2,617	(4)	45%	
7.02 Crystals 7.03.02 Radiation & Temperature Monitoring David Hitlin	16	0	3	(4)	-23%	0	74%	36	33	46	(2)	-7%	(13)	-40%	0.95	0.72	2,612	2,617	(5)	2%	
07.04 Photodetectors	19	10	89	(10)	-49%	(80)	-815%	136	107	98	(29)	070	9	9%	0.79	9 1.10	748	730	18	13%	
07.05 Electronics	0	0	9	0	0%	(9)	-	108	109	48	0	0%	59	55%	1.00		108	48	59	100%	100%
7.06 Calibration System	16	19	(0)	3	16%	19	100%	66	155	3	89	135%	152	98%	2.35		718	620	98	1%	22%
7.07 Calorimeter Power	0	0	0	0	0%	0	0%	0	0	0	0	0%	0	0%			4	4	0	0%	0%
07.08 Calorimeter Installation	0	0	0	0	0%	0	0%	0	0	0	0		0	0%			308	309	(1)	0%	0%
8.01 Cosmic Ray Veto Project Management	5	5	50	0	0%	(45)	-985%	94	94	171	0		(76)	-81%	1.00	-	445	521	(76)	33%	21%
8.02 Cosmic Ray Veto Mechanical Design 8.03 Scintillator extrusions	4	4	14 23	0	0%	(10)	-231%	226	75 201	70	(25)	-11%	5	7%	1.00		138	138 971	(0)	51% 15%	54% 20%
1.03 Scintillator extrusions 1.04 Cosmic Ray Veto Fibers	0	0	23	0 (6)	0% -90%	(23)	-1737%	226	201	143 29	(25) (10)	-11% -38%	58 (14)	29% -87%	0.85		1,029	971 474	58 (11)	15%	
.05 Photodetectors	35	25	(1)	(10)	-90%	26	-1/3/%	372	310	29	(10)		(14)	-87%	0.83		462	714	(11)	41%	3% 40%
1.06 Cosmic Ray Veto Electronics	54	23	60	(10)	-25%	(58)	-2436%	418	150	295	(268)		(112)	-75%	0.36		1,720	1,662	58	16%	
8.07 Cosmic Ray Veto Module Fabrication	6	19	(26)	13	199%	45	238%	218	164	150	(54)		14	9%	0.75		1,490	1,437	53	10%	11%
8.08 Detector assembly and installation	0	0	(1)	0	0%	1	-	23	23	33	0		(11)	-46%	1.00		208	219		15%	
8.09 Cosmic Ray Veto Conceptual Design/R&D (OPC)	0	0	(1)	0	0%	1	-	511	511	503	0	0%	8	2%	1.00	1.02	511	503	8	100%	
9.01 TDAQ Project Management	10	10	6	0	0%	- 4	41%	661	661	660	0	0%	0	0%	1.00		1,165	1,166	(1)	57%	
.09.02 TDAQ System Design and Test	0	0	(0)	0	0%	0	-	294	294	294	0	0%	0	0%	1.00		361	361	0	81%	81%
5.09.03 Data Acquisition	38	24	32	(14)	-37%	(8)	-34%	595	578	586	(17)	-3%	(8)	-1%	0.97		1,831	1,845	(15)	32%	
5.09.04 Data Processing 5.09.05 Controls and Networking	16	3	(2)	(13)	-81% -71%	5	153% 29%	213 153	170	160	(44) (27)		10 (1)	6% -1%	0.79		860	843 584	17	19%	20%
75.09.05 Controls and Networking	13			(9)		(291)		153 53,428					(1)	-1%				218,961	1-1		
viai	1,294	1,281	1,572	(13)	-1%	(531)	-23%	33,428	51,982	32,002	(1,440)	-5%	(080)	-1%	0.97	0.99	210,278	210,901	(683)	24%	24%

Overall Performance

Tools are all in place and working

CD-2/	APPROVE PERFORMANCE BASELINE	SC-2				
	Approve updated Acquisition Strategy if changes are major	SC-1 with SC-28 concurrence				
	Establish a Performance Baseline (PB)	FPD				
	Approve updated PEP	SC-2				
	Prepare a Baseline Fund. Profile & reflect in budget docs. & PEP. Consider full funding if TPC < \$50M	SC-2				
	Approval of Long-Lead Procurement	SC-2				
	Develop Project Management Plan, if applicable	N/A				
	Complete Preliminary Design	Project				
PRIOR TO CD-2PRELIMINARY DESIGN	Incorporate High Perf. & Sustainable Bldg. & Sustainable Environmental Stewardship	Project				
	Conduct a Preliminary Design Review	Team external to project				
	Complete Preliminary Design Report	Project				
IAR	Perform Baseline Validation Review	ICE by OECM with OPA				
	Conduct a Project Definition Rating Index analysis as part of an EIR	N/A				
-PRE	Conduct a Technical Readiness Assessment & develop a Technical Maturation Plan	N/A				
:D-2-	Employ an EVMS compliant with ANSI/EIA-748A, or as defined in the contract	Contractor				
TO 0	Prepare a Hazard Analysis Report	Site Office or Lab				
IOR	Continue with Quality Assurance Program	Site Office or Lab				
РК	Conduct Preliminary Security Vulnerability Assessment, if necessary	Site Office or Lab				
	Issue Final NEPA determination (i.e., FONSI)	SC-1 or Site Office				
	Update budget documents and Exhibit 300 if applicable	SC-AD				

http://science.energy.gov/~/media/opa/pdf/processes-and-proceduresProject_Decision_Matrix_11_2010_n.pdf

Mu2e

- Acquisition Strategy
 - Document complete and signed (Mu2e-doc-1074)
- Establish a Performance Baseline
 - Cost, schedule, scope and scope contingency defined.
- Approve Updated PEP
 - Mature draft exists (Mu2e-doc-1172)
- Approval of Long-Lead Procurement
 - CD-3a granted July 10, 2014
- Complete Preliminary Design
 - Design documented in TDR (Mu2e-doc-4299)
- Incorporate High Performance & Sustainable Environmental Stewardship
 - Comply with DOE Guiding Principles (Mu2e-doc-2005)
 - High Performance and Sustainability Checklist (Mu2e-doc-2081)
- Conduct a Preliminary Design Review
 - Director's Review, IDR, this review.

5 Fermilab

- Complete Preliminary Design Report
 - TDR (Mu2e-doc-4299)
- Perform Baseline Validation Review
 - ICE performed over past 2 months. Draft report issued.
- Employ an EVM System
 - Mu2e is in compliance with Fermilab certified EVM System. Tools and processes in place. Reports for April - September generated.
- Prepare a Hazard Analysis Report
 - Mu2e-doc-4229 See D. Hahn's Management breakout talk.
- Continue with QA Program
 - Rigorous QA program for solenoid conductor in place and serves as an example for the rest of the Project.
- Conduct Preliminary Security Vulnerability Assessment
 - Mu2e-doc-676. Theft, vandalism, computer security are the primary issues.
- Issue Final NEPA determination
 - Categorical Exclusion obtained in June, 2012 (Mu2e-doc-2274).

Mu2e

🚰 Fermilab

Additional Requirements for CD-3

CD-3	APPROVE START OF CONSTRUCTION	SC-2
	Approve updated CD-2 Project Documentation (PEP, AS, PDS, etc) if major changes	Reviewed by SC-28 Approved by SC-2
	Complete Final Design	Project
	Incorporate High Performance & Sustainable Bldg. & Sustainable Env. Stewardship	Project
	Conduct a Final Design Review	Team external to project
	Complete Final Design Report	Project
sign	Employ a certified EVMS compliant with ANSI/EIA-748A, or as defined in the contract	Certified by SC-28
DĔ	Execution Readiness Review	ICE by OECM if warranted IPR by OPA
PRIOR TO CD-3FINAL DESIGN	Conduct a Technology Readiness Assessment, where significant CTE modification occurs	N/A
-31	Update the Hazard Analysis Report	Site Office or Lab
ОС	Prepare Construction Project Safety and Health Plan	Site Office or Lab
OR T	Update the Quality Assurance Program	Site Office or Lab
PRIC	Finalize the Security Vulnerability Assessment Report, if necessary	Site Office or Lab

Final Design

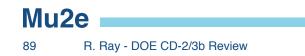
- 100% design completed for Conventional Construction
 - Details in Conventional Construction Breakout
- TS Module design 90% complete. 70% of final drawings complete.
 - Prototype module nearly complete
 - Test plan in place
 - Internal design review scheduled
 - Readiness Review in early 2015
 - Issue P.O. in April 2015 to maintain schedule.
 - Detailed TS Module presentation in Solenoid Breakout

87 R. Ray - DOE CD-2/3b Review

Mu₂e

Summary/Charge Questions for CD-2

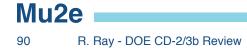
- 1. Do the proposed technical design and associated implementation approach satisfy the performance requirements? How has the project team ensured that the subsystems will be fully integrated? Are CD-4 goals reasonable and well defined?
- Technical design at or beyond Preliminary design stage for vast majority of components.
 - Design satisfies requirements (see following talks from L2 Managers)
 - Integration incorporated into design process. Integration team in place. Signed agreements between responsible parties required as part of final design.
 - KPPs developed in consultation with OHEP. Define CD-4 requirements. Threshold and Objective KPPs defined. Threshold KPPs produce good physics. (See Management breakout)
- 2. Is the cost estimate and schedule consistent with the plan to deliver the technical scope? Is the contingency adequate for the risk?
- Comprehensive RLS has been constructed consistent with Fermilab standards including the certified EVM System.
 - Overall contingency of 32%. 37% contingency on technical scope.
 - Have identified scope contingency that could further increase contingency, if necessary.
 Fermilab



Mu₂e

10/21/2014

Summary/Charge Questions for CD-2


- 3. Are the management structure and resources adequate to deliver the proposed technical scope within the baseline budget and schedule as specified in the PEP?
- Lab management reorganized to better support Projects
- Mature, experienced Project team in place and functioning.
- Resource needs understood. Most resources required for FY15 identified by name.
- 4. Is the documentation required by DOE Order 413.3B for CD-2 complete?
- CD-2 documentation is complete
- 5. Are ES&H aspects being properly addressed given the Project's current stage of development?
- ES&H embedded into all aspects of Lab/Project work (see management Breakout)
- 6. Has the Project responded satisfactorily to the recommendations from the previous independent project review?
- Have positively responded to recommendations from all previous reviews (see Management Breakout)

Summary/Charge Questions for CD-3b

- 7. Is the detailed design sufficiently mature so that the Project can continue with procurement and fabrication? Has there been adequate progress on the long-lead procurement activities approved under CD-3a?
- Conventional Construction design 100% complete. Interfaces defined, understood and signed off by all owners.
- TS Module design
 - 90% complete.
 - Drawings 70% complete.
 - Prototype module nearly complete. Detailed test plan in place for prototype Good progress on solenoid conductor authorized by CD-3a.
 - Much more detail in Solenoid Breakout
- 8. Is the documentation required by DOE Order 413.3B for CD-3b complete?
- Documentation is complete.

Summary

- We are ready for CD-2!
- The Detector Hall and TS Modules are ready for CD-3!

