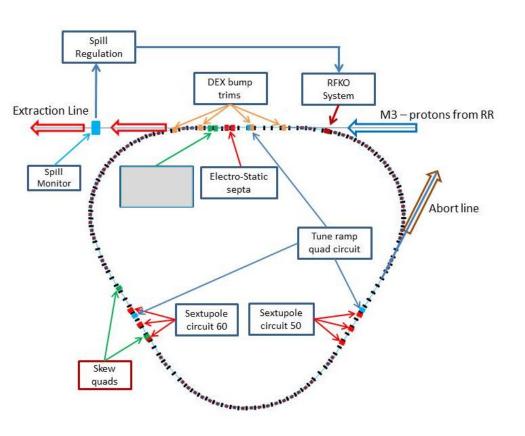


Mu2e DOE CD-2 Review: Resonant Extraction L3



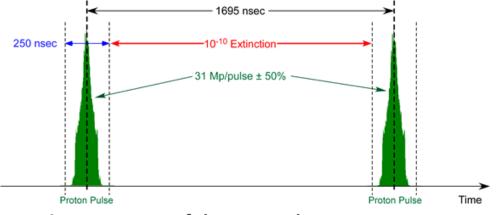
Vladimir Nagaslaev Resonant Extraction L3 Manager 10/22/2014

WBS 475.02.05 **Resonant Extraction System**

The scope of the Resonant **Extraction Systems includes:**

- 1. Development of the physics model
- 2. Design, fabrication and installation of:
 - Tune quad magnets (3)
 - Sextupole magnets (6)
 - Dynamic bump correctors (4)
 - Skew quad magnets (2)
 - Electro static septa (2)
 - Spill Monitor (1)
 - RFKO system (1)
 - Spill regulation electronics (1)

Map of Resonant Extraction elements in the Delivery Ring (L=505m)



Mu2e

10/22/14

Requirements

Slow extraction preserves the time structure of the proton beam circulating in the Delivery Ring

Time structure of the proton beam on target

Mu2e Proton Beam Requirements (doc-1105)

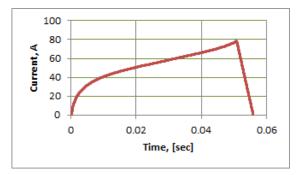
	Parameter	Design	Limit
\star	Length of slow spill period	54 ms	>20 ms
*	Average intensity per pulse on target	31 Mp	<50 Mp
*	Maximum variation of pulse intensity on target	±50%	±50%

Mu₂e

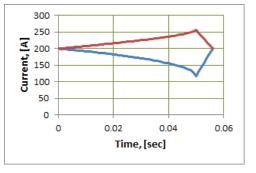
Delivery Ring Spill Parameters Design:

	Parameter	Value	Units
	MI Cycle time	1.333	sec
	Number of spills per MI cycle	8	
	Number of protons per micro-pulse	3.1×10 ⁷	protons
, ,	Maximum Delivery Ring Beam Intensity	1.0×10 ¹²	protons
	Instantaneous spill rate	18.5×10 ¹²	protons/sec
	Average spill rate	6.0×10 ¹²	protons/sec
	Duty Factor (Total Spill Time ÷ MI Cycle Length)	32	%
$\mathbf{\mathbf{x}}$	Duration of each spill	54	msec
	Spill On Time per MI cycle	497	msec
	Spill Off Time per MI cycle	836	msec
	Time Gap between 1 st set of 4 and 2 nd set of 4 spills	36	msec
	Time Gap between spills	5	msec
	Pulse-to-pulse intensity variation	±50	%
	Extraction efficiency	98	%

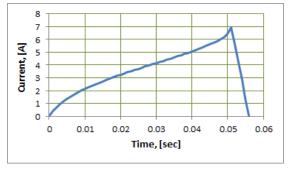
Design



Design: Main Magnets and Power Supplies


Derived requirements/specs for 3 families of specialized magnets to drive the slow extraction

- 1. Sextupole magnets
- 2. Tune ramp quad magnets
- 3. DEX dynamic bump correctors


Magnet	Quantity	Integrated gradient excursion	Base* Current, [A]	Max Current Excursion, [A]	Max supply Current [A]	Max dl/dt [A/sec]	Regulation accuracy, %	Regulation stability	Curve accuracy	Ripple, %
Tune Quad	3	0.2 T	0	80	100	16,000	<0.5%	<0.5%	<0.5%	<0.05%
Sextupoles	6	32 T/m	200	+-80	300	16,000	<0.5%	<0.5%	<0.5%	<1%
DEX trims	4	0.014 Tm	ND	14	+-40	2,800	<1%	<1%	<1%	<1%

Tune quad ramp curve I(t)

Sextupole ramp curve I(t)

DEX bump ramp curve I(t)

Mu₂e

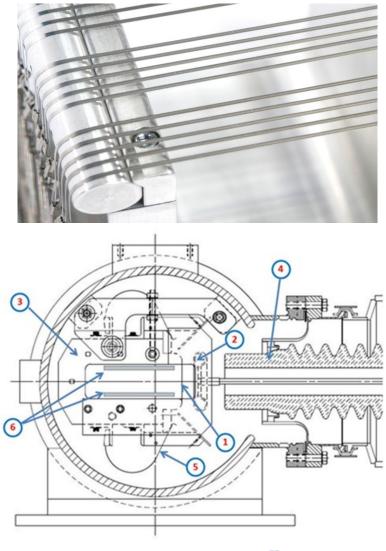
6

Design: Solution for Magnets and PS

Tune quad magnets : CQA	Sextupole magnets : ISA	Dynamic bump trims: NDB				
Cooling Ring magnets, available in abundance.	Existing design of Main Injector sextupoles.	Debuncher style correctors.				
Some refurbishing may be needed.	Spare magnets are not available – will be built.	Available in working conditions				
for all magnet types will b	Power supplies e built on the basis of the Booster s	witch-mode 65A 180 V units				
2 units in parallel 3 independent bulk supplies;	6 units in parallel to provide 300A current for each circuit	Split magnet coils in 2; Upgrade bulk supply to 350V with higher voltage FETs and filter module				
Status: building PS prototypes and testing magnets with representative ramps will complete the Final design for magnets and their power supplies.						
7 V.Nagaslaev - Mu2e DOE CD-2 Review						

Design: Electrostatic Septa

Design considerations for ESS:

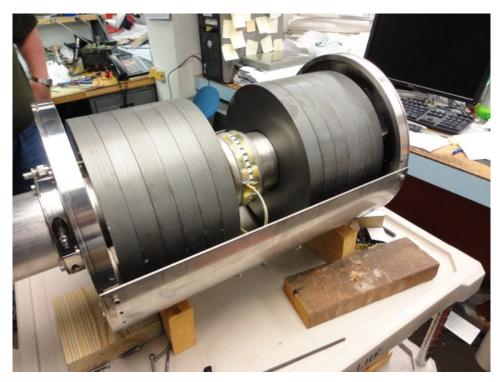

- 1. Foils instead of wires (advantages!)
- 2. Rad levels \rightarrow Minimize service time in tunnel and maximize septa lifetime
- 3. 2 septa straddle the focusing quad Q203

Main technical challenge:

- 1. Strive to achieve HV>100kV
- 2. Vacuum conditions in Delivery Ring

Using prior experience:

- 1. Building ESS for MI at FNAL
- 2. Building ES Separators for Tevatron
- 3. Other labs experience with ESS


8 V.Nagaslaev - Mu2e DOE CD-2 Review

8

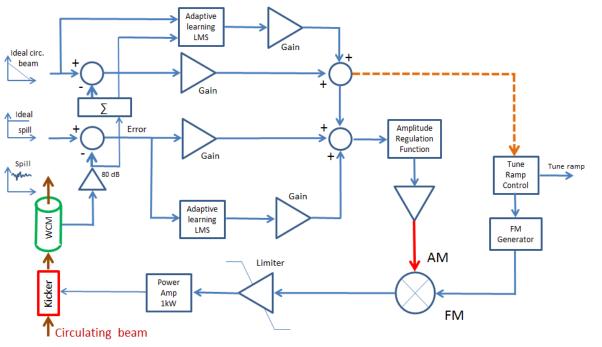
Mu2e

Design: Spill Monitoring

- Fast spill rate monitoring is required for effective regulation. A WCM Spill Monitor prototype has been built and tested.
- This device will be used as a working module no new fabrication is needed.

Design: RF Knock-Out

- Fast ripples on the spill rate will be regulated with the RF Knock-Out method that employs transverse heating of the beam.
- Kicker waveform is FM-ed to cover the beam betatron frequency spread.
- AM is provided by the regulation logic
- Reuse old Tevatron damper kicker as the RFKO device.
- RFKO beam heating rates have been measured with beam
- The kicker has been identified, prepped and tested with the beam: **Ready for use.**



Mu₂e

Design: Spill regulation electronics

- Regulation logic is realized in the MVME5500 processor
- Slow regulation (feedforward) to the tune quad ramp
- Fast regulation (feedback) to the RFKO kicker

Currently we are doing prototyping in order to validate design solutions. This will complete the Final Design of Spill Regulation Electronics

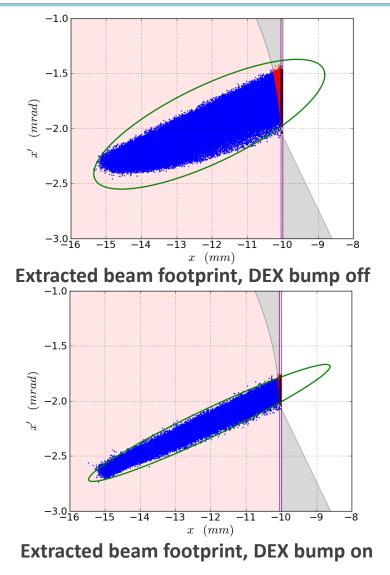
Mu₂e

🔂 Fermilab

Performance

- Physics Design
- ESS R&D

 12
 V.Nagaslaev - Mu2e DOE CD-2 Review


Performance: Synergia tracking simulations

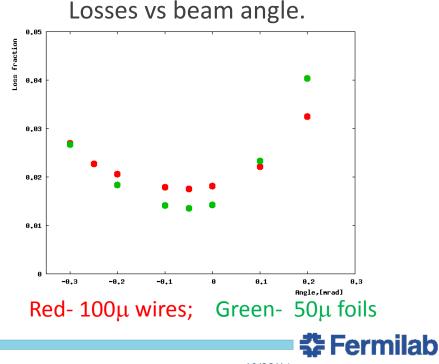
Synergia – state of the art tool

- Model improved since CD1
- All features: DEX, RF, RFKO, aperture, ramping
- ➢ Full spill
- Substantially sped up

Main results:

- Main parameters verified and optimized through the entire spill
- Performance consistent with earlier ORBIT simulations and physics model; no showstoppers within known physics
- RFKO process heating rates consistent with expected

Complete


Status:

10/22/14

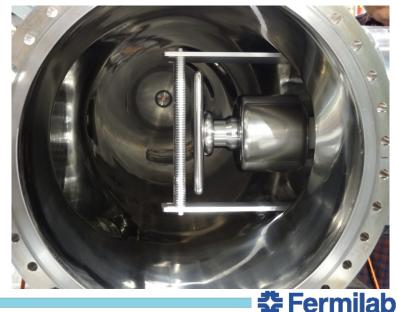
🔁 Fermilab

Performance: MARS tracking simulations

- Tracking extracted beam with MARS code:
 - ✓ Tracking particles in media and DC fields
 - ✓ Detailed calculations of interaction with materials
 - ✓ Radiation levels, Residual activation, Energy deposition, etc
 - \checkmark Essential for beam loss calculations and geometry optimization
- Main outcomes include:
 - ✓ Wires do not have advantage over foils in terms of losses
 - ✓ Fine alignment is important
 - Performance can be improved by making septa asymmetric
 - ✓ Using a pre-scattering diffuser reduces losses further

Mu2e


Status: Complete


10/22/14

Performance: ESS studies

- 1. FEA field calculations:
 - Determined optimal geometries with foils and electrodes
- 2. Prototype-I:
 - Built a prototype to study mechanical properties, techniques for clamping, stretching, measuring.
 - Developed a strategy to achieve good performance
- 3. Prototype-II for HV testing in vacuum:
 - Testing cave is made available and ready
 - Old Tevatron separator vessel reused to house the structure
 - Stage-0 prototype structure fabricated and tests are in progress

Status: in progress

Mu2e

10/22/14

Essential Project information

Changes since CD-1

- Magnetic septa have been moved out from our scope as a synergy with g-2 project
- Added new scope to improve performance:
 - Dynamic bump
 - Skew quadrupole magnets
- Change in the extraction geometry: *flipped direction* as part of integration plan with the Muon Campus

Value Engineering since CD-1

- Used synergy with Main Injector operations in preparations of the septa testing cave at the NWA building.
- Use the prototype WCM as a working instrument
- Reuse existing hardware:
 - ✓ Old style Tevatron damper kicker as RFKO kicker
 - ✓ CQA magnets for tune ramping
 - ✓ NDB magnets for Dynamic Bump
 - ✓ TeV separators for the HV/vac prototyping

Mu2e

Downselects

- The choice of the machine resonance for the slow extraction has been finalized in favor of the third integer one.
- Selection has been made for use of foils in the ESS instead of wires. Milestone has been met.

Remaining work before CD-3

- Complete ESS prototyping studies with HV in vacuum
- Fabricate prototypes of power supplies for each type of ramped magnets and complete magnet testing with representative ramps
- Develop a prototype of the timing module for spill regulation and complete its testing.

Quality Assurance

- QA standards and guidelines
 - Fermilab Integrated QA Program esh-docdb#2469
 - Fermilab Engineering Manual
 - QA Management Plan for Mu2e Experiment mu2e-docdb# 677
- Design Level QA
 - Design analysis tools (simulations, FEA)
 - Prototyping, performance tests
 - Beam studies
 - Reviews, reports, communications
- Fabrication and installation QA
 - Built in process QA (written procedures, travelers)
 - Personnel training

Mu2e

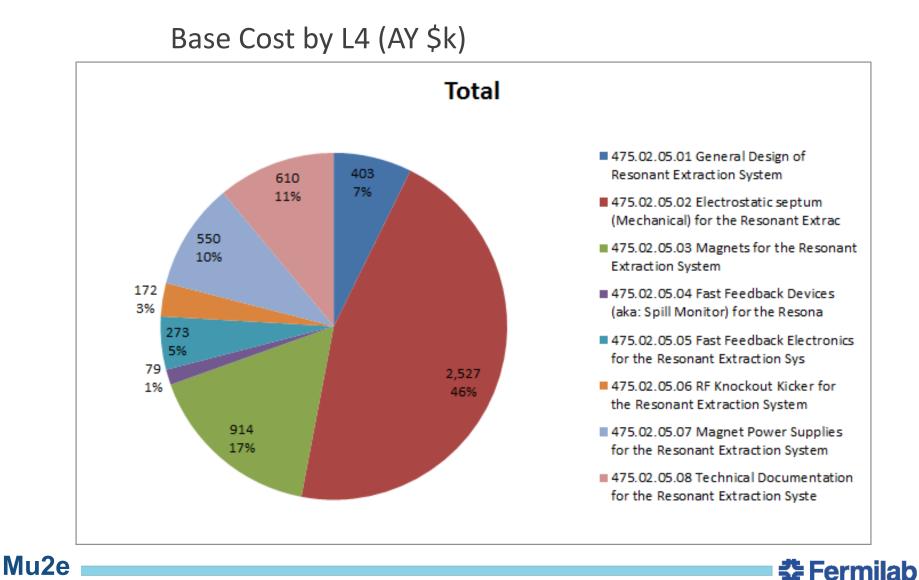
Risks

- 6 risk items considered:
 - 1 absorbed in the BL
 - 1 realized
 - 1 mitigated by an external project (AIP)
 - 2 risks transferred to operations
- Presently only one item in the Risk Registry (opportunity)

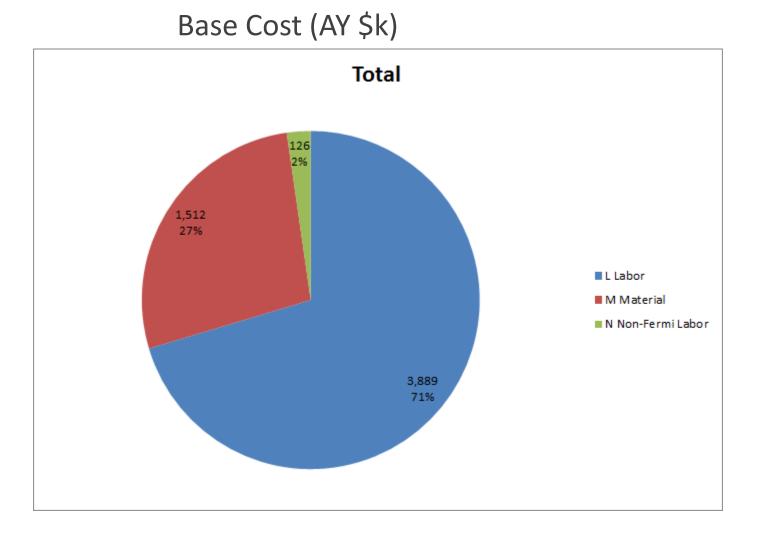
RR index	Risk/ Opportunity	Impact	Probability	Point estimate	Status
203	Opportunity to reuse existing spare sextupoles	Cost	L	\$164k	Current

ES&H

- Radiation hazard during operations and service
- Tunnel hazards during installation
- Specific hazards in the prototype testing area (UV and HV):
 - Testing cave is interlocked and operation protocol is included in the AD operations procedures.
 - LOTO procedure has been written and approved with AD ES&H
- Fermilab Environment, Safety and Health Manual (FESHM)
- Safety practices discussed in the Mu2e Hazard Analysis Report (Mu2e-doc-675).

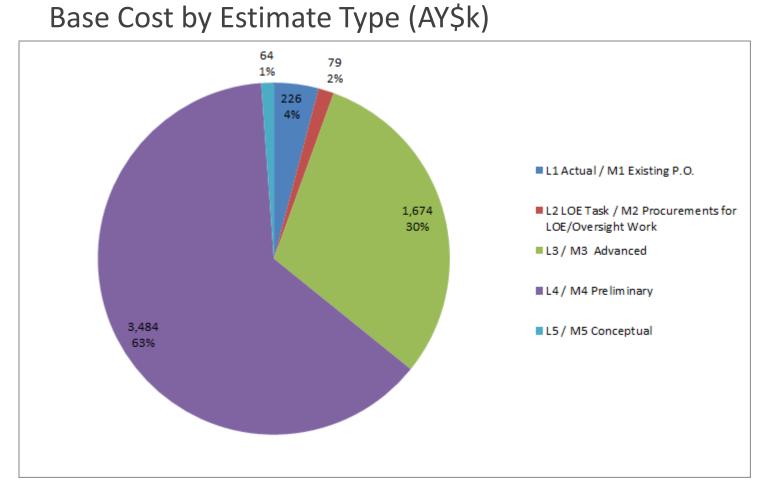


Cost & Schedule


Cost Distribution by L4

25 V.Nagaslaev - Mu2e DOE CD-2 Review

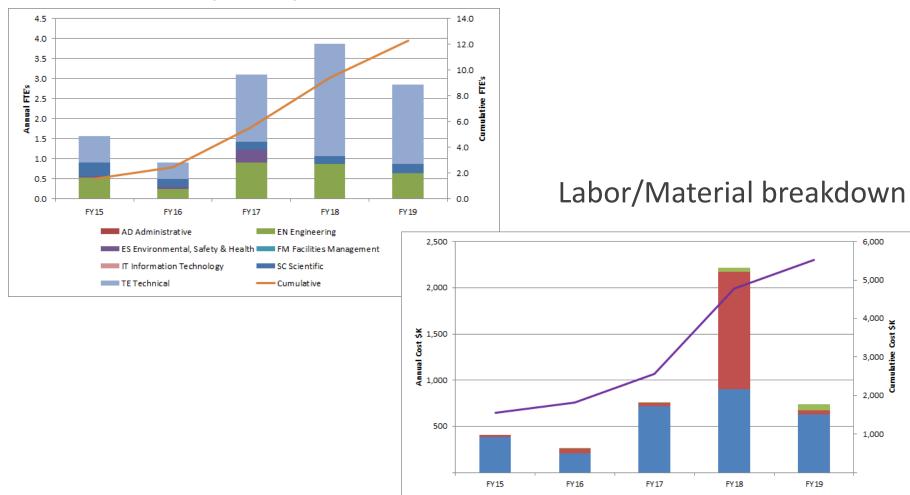
10/22/14


Cost Distribution by Resource Type

26 V.Nagaslaev - Mu2e DOE CD-2 Review

🛟 Fermilab

Quality of Estimate



99% of estimate is at Preliminary level or better

Labor Resources

L Labor

M Material

FTEs by Discipline

10/22/14

——Cumulative Total

🛟 Fermilab

Non-Fermi Labor

Cost Table

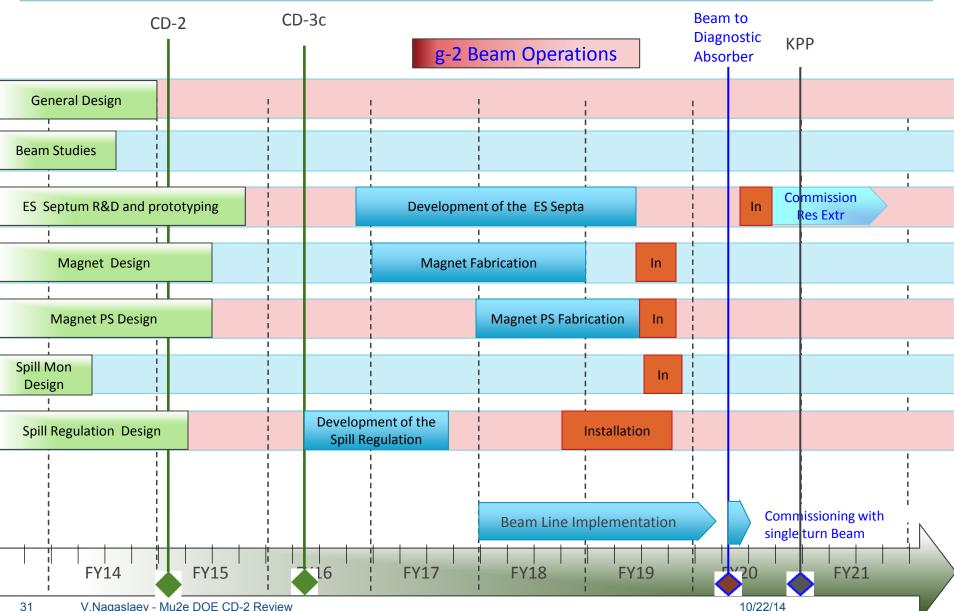
WBS 2.5 Accelerator Resonant Extraction System

Costs are fully burdened in AY \$k

	Base Cost (AY K\$)					
	M&S	Labor	Total	Estimate Uncertainty (on remaining budget)	% Contingency on (on remaining budget)	Total Cost
475.02.05.01 General Design		403	403	15	143%	418
475.02.05.02 Electrostatic septum (Mechanical)	528	1,999	2,527	939	41%	3,466
475.02.05.03 Magnets	594	320	914	237	26%	1,152
475.02.05.04 Fast Feedback Devices (aka: Spill Monitor)	15	65	79	14	30%	93
475.02.05.05 Fast Feedback	40	233	273	81	41%	354
475.02.05.06 RF Knockout Kicker	143	29	172	60	35%	232
475.02.05.07 Magnet Power Supplies	317	232	550	132	26%	682
475.02.05.08 Technical Documentation		610	610	137	30%	747
Grand Total	1,638	3,889	5,527	1,616	35%	7,143

 29
 V.Nagaslaev - Mu2e DOE CD-2 Review

Major Milestones


Total 53 tier-5 milestones in the MS dictionary 14 most significant in the table below

47502.05.001020	T5 - Septum Technology Choice Complete	12-Dec-12
47502.05.03.000500	T5 - Resonant Extraction Magnet Design Complete	26-Feb-14
47502.05.01.001070	T5 - Milestone: Beamline Studies Complete	18-Apr-14
47502.05.05.001105	T5 - Resonant Extraction Fast Feedback Electronics Design Complete	24-Nov-14
47502.05.07.000500	T5 - Resonant Extraction Magnet Power Supply Design Complete	27-Feb-15
47502.05.02.001215	T5 - Resonant Extraction Electro-Static Septum Design Complete	22-May-15
47502.05.001050	T5 - DOE CD-3c Accelerator Resonant Extraction Approval	24-Feb-16
47502.05.03.2.001020	T5 - Start of Resonant Extraction Harmonic Sextupole Magnet Fabrication	3-Oct-16
47502.05.03.2.001095	T5 - Resonant Extraction Harmonic Sextupole Magnet Fabrication Complete	29-Jan-18
47502.05.03.001000	T5 - Resonant Extraction Magnet Installation Complete	30-Oct-18
47502.05.07.001000	T5 - Resonant Extraction Magnet Power Supply Installation Complete	13-Dec-18
47502.05.02.001315	T5 - Resonant Extraction Electro-Static Septum Assembly Complete	11-Jul-19
47502.05.02.001318	T5 - Start Resonant Extraction Electro-static Septum Installation	12-Jul-19
47502.05.02.001350	T5 - Installation of Electrostatic Septum Modules Complete	13-Sep-19

30 V.Nagaslaev - Mu2e DOE CD-2 Review

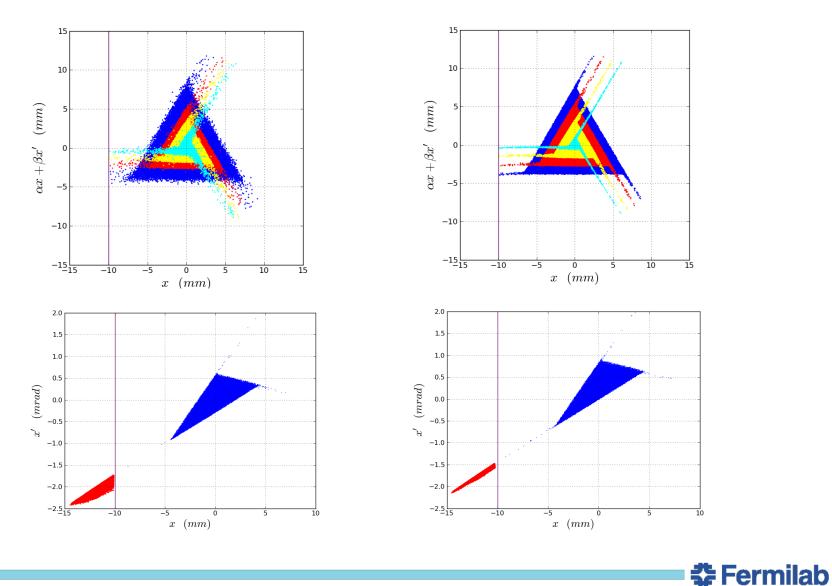
Schedule

10/22/14

Summary

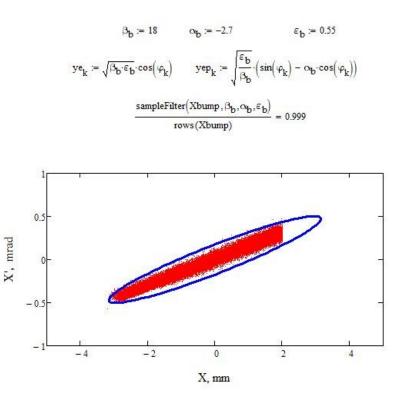
- Resonant Extraction Systems Preliminary Design is complete
- Design of the Resonant Extraction meets the requirements
- The final studies are underway with the high confidence of success
- Cost and schedule estimates are well understood and ready to establish the baseline

Backup slides



Organizational Breakdown

- Key people in the subproject:
 - V. Nagaslaev, AD, L3 Manager
 - C. S. Park, CD, L3 Deputy Manager, Synergia
 - D. Tinsley, AD, Sr. Mechanical Engineer, ESS design
 - P. Prieto, AD, Sr. Electronics Engineer, Spill Controls
 - G. Krafczyk, AD, Sr. Electrical Engineer, Power Supplies
 - TJ Gardner, TD, liaison for magnet production

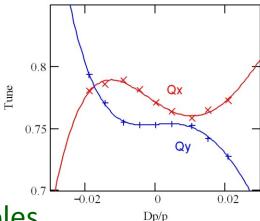


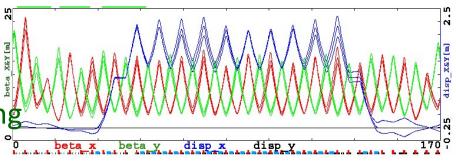
Phase space diagrams

Extracted beam footprint

10/22/14 **Fermilab**

36 V.Nagaslaev - Mu2e DOE CD-2 Review


Optics of the Debuncher: chromaticity


Chromaticity:

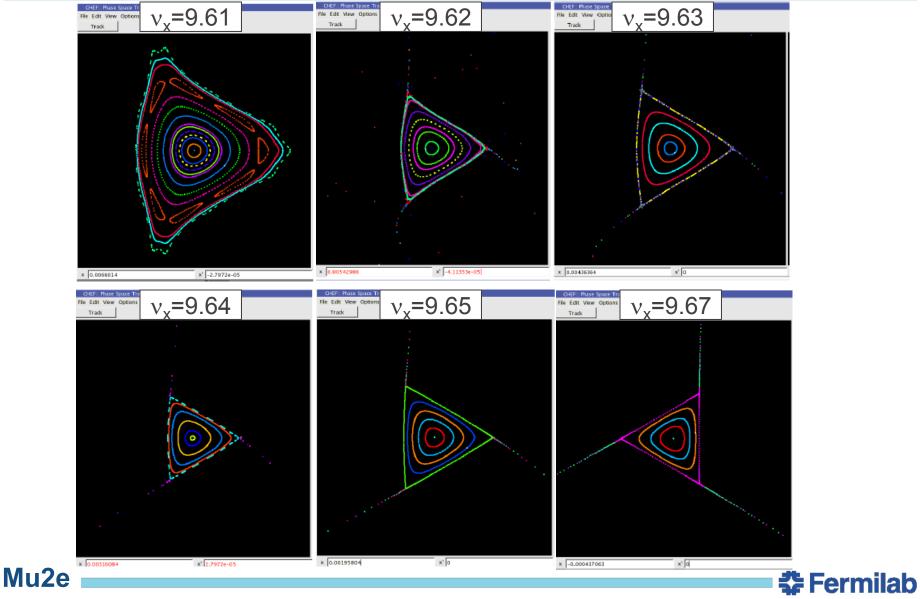
- Large momentum spread
- 2 families of sextupoles in arcs
- > Tunes vs $\Delta p/p$
- Fit: 6- and 10-pole harmonics in dipoles
- Included in the model

Chromaticity of functions

No problem for injection matching No dynamic aperture limitation

05/17/07

Mu2e


Risks

Presently only one item in the Risk Registry (opportunity)

RR index	Risk/ Opportunity	Impact	Probability	Point estimate	Status
203	Opportunity to reuse existing spare sextupoles	Cost	L	\$164k	Current
025	Need to ramp Delivery Ring sextupoles	Technical	М		Mitigated in BL
024	Inability to locate and reuse tooling for ESS	Cost	М	ND	Realized
023	Inacceptable amount of beam left in the DR	Technical	L		Mitigated by AIP
022	High Beam Loss	Technical, Schedule	М		Transferred
012	Mu2e beam commissioning delayed.	Schedule	L		Transferred

‡ Fermilab

Tune space

39 V.Nagaslaev - Mu2e DOE CD-2 Review

10/22/14