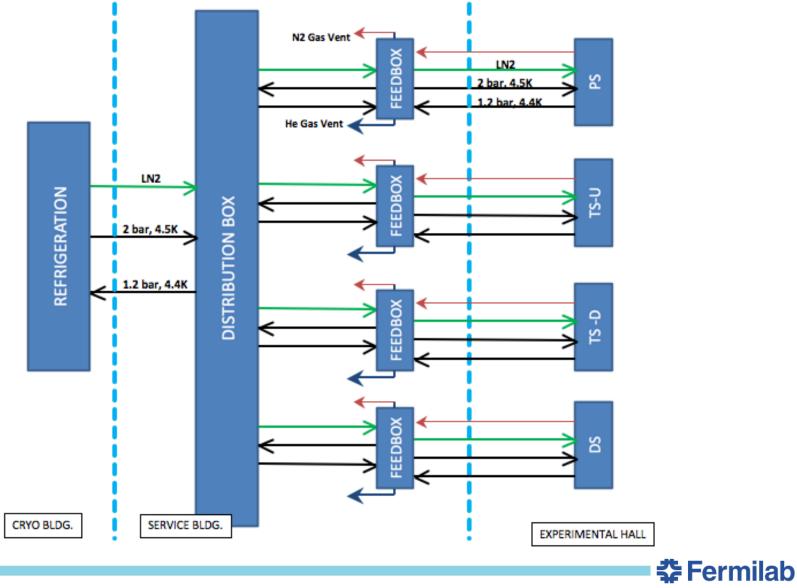
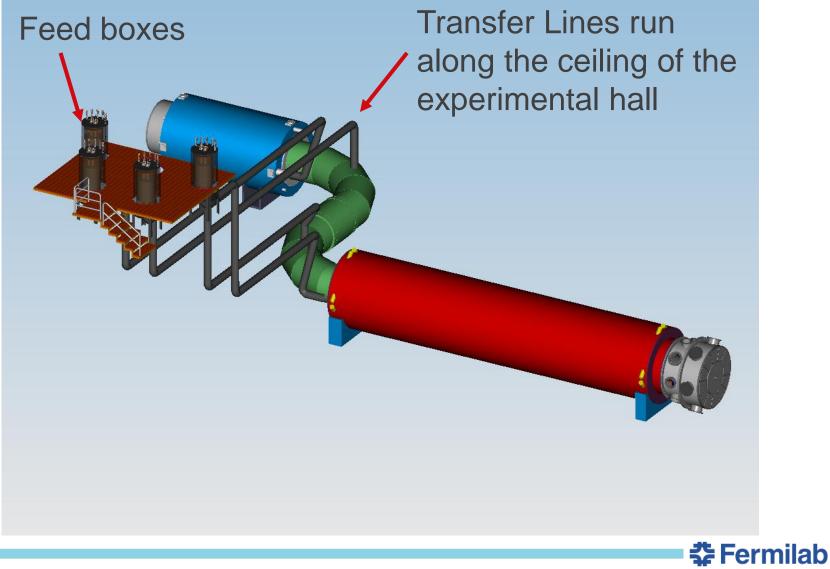


WBS 475.04.05 Cryogenic Distribution

Thomas Page Project Engineer DOE CD-2/3b Review October 21-24, 2014

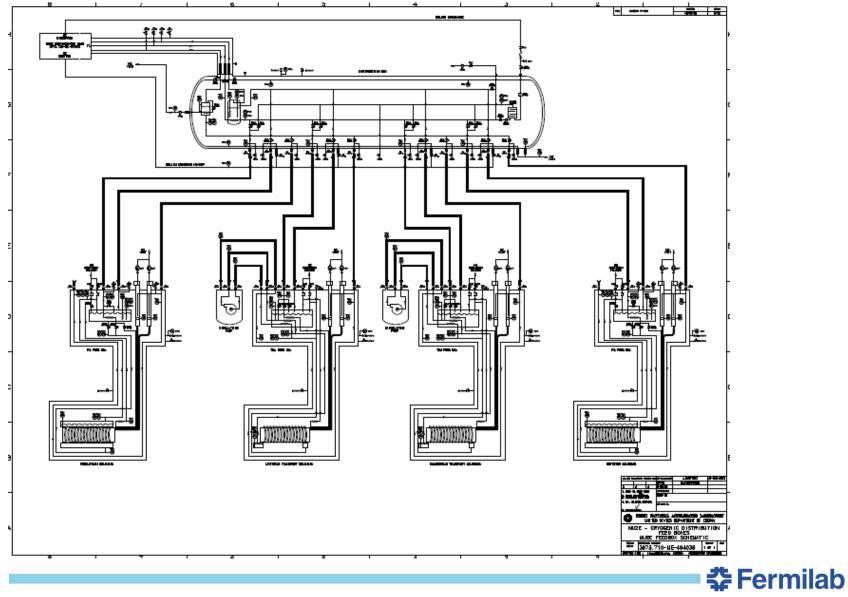

Requirements

- Cryogenic Distribution Requirements Document: DocDB 1244
- Distribution Box Functional Requirements Document: DocDB 3784
- Summary of requirements
 - The solenoids are divided into 4 separate cryogenic circuits fed from a common distribution box. This allows the magnets to be cooled down and warmed up independent of each other.
 - All solenoid coils will be indirectly (conduction) cooled by liquid helium.
 - PS and DS magnets are cooled using a thermal siphon system.
 - TSu and TSd magnets are cooled using a forced flow system.
 - Liquid nitrogen will be used to cool the thermal shields and thermal intercepts within the magnet cryostats and transfer lines.
 - During operation the insulating vacuum should be below 10e-6 torr.
 - Feed boxes will be installed on the main level of the Mu2e building, the magnets are installed in the lower level of the Mu2e building.
 - Steady state operation will be within the limits of one satellite refrigerator.


Block Diagram of Mu2e Cryogenic System

Mu_{2e}

3


Cryogenic Distribution model

Mu_{2e}

4

Preliminary P&ID

Mu_{2e}

5

Design

- A distribution box in the service building interconnects the refrigeration system with the solenoid feed boxes.
 Interconnections will be for:
 - Liquid helium supply
 - Helium vapor return
 - Liquid nitrogen supply
- Liquid nitrogen comes from LN2 storage to the distribution box
- Distribution box passes cryogens to four feed boxes, one for each magnet assembly
- Transfer lines and bayonets allow isolation of feed boxes from distribution box

Design

- Control valves in feed boxes
 - No cryogenic control valves in high radiation / high magnetic field areas
- Transfer lines from feed boxes to magnets carry cryogens to and from its magnet as well as electrical bus to the same magnet
- Insulating vacuum is separate for each feed box / magnet system such that separate warm up and isolation of magnets is possible.
- 10kA power leads for PS/DS
 - Re-purpose Tevatron HTS leads.
 - Validate each pair and reconfigure lower end for conduction cooling.

7

5 Fermilab

Improvements since CD-1

- The transfer line routing has changed since CD-1
 - The DS transfer line penetrates through shielding near the downstream end of the DS magnet.
 - The TSd transfer line is routed under the shielding in a trench in the Mu2e building floor.
- Cryogenic Controls WBS (formally 475.04.05.06) has been moved to Quench Protection WBS (475.04.07.03).

Downselects

- The Detector Solenoid will be cooled using a thermal siphon system.
- The Transport Solenoids will be cooled using a forced flow system.

Performance – Heat Load to 80 K

Best Estimates (no contingency)	Production Solenoid	TSu	TSd	Detector Solenoid	Total
Nominal Temperature			80 K		
80 K Magnet Heat (W)	129	252	252	539	1172
80 K Feedbox and Transfer Line* Heat (W)	140	140	140	140	560
Total 80 K Heat (W)	269	392	392	679	1732
Nitrogen usage for Magnet (liquid liters/day)	148	215	215	373	951
Number of 10kA HTS Leads	2	0	0	2	4
Number of 2kA Leads	0	2	2	0	4
N2 10kA lead flow per magnet (g/s)	2.2	0	0	2.2	4.4
N2 usage for 10kA leads (liquid liters/day)	236	0	0	236	472
He vapor 2kA lead flow per magnet (g/s)	0	0.16	0.16	0	0.32
He vapor usage for 2kA leads (liquid liters/day)	0	111	111	0	222

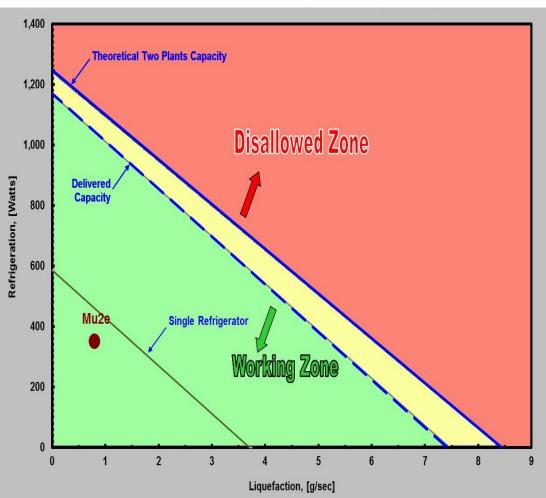
*Transfer Line length only from feedbox to magnet considered

Fermilab

Performance – Heat Load to 4.7 K

Best Estimates (no contingency)	PS	TSu	TSd	DS	Total
Nominal Temperature			4.7 K		
4.7 K Magnet Heat (W)	67	44	42	32	185
4.7 K Feedbox and Transfer Line** Heat (W)	14	14	14	14	56
Thermosiphon					
Total heat load (W)	81	0	0	46	127
Total helium flow (g/s)	4.8	0	0	2.8	
3.0 bar to 2.7 bar forced flow					
Helium inlet temperature (K)		4.7	4.7		
Total heat added (W)		58	56		
Selected flow rate (g/s)		50	50		
Exit temperature (K)		4.82	4.81		
Circulating pump real work (W)		25	25		
Circulating pump system static heat (W)		15	15		
Total load for forced flow (W)	0	98	96	0	194
Total refrigerator cooling load at 4.7 K (W)					321

**Transfer Line length only from feedbox to magnet considered



11 Thomas Page - DOE CD-2/3b Review

Mu₂e

Performance – One Satellite Refrigerator

- Two satellite refrigerators dedicated to Mu2e.
- Steady state operation will utilize one refrigerator.
- Second refrigerator is used during cooldown and upset conditions.
- Refrigerators are part of the Muon Campus Cryo AIP.

Mu₂e

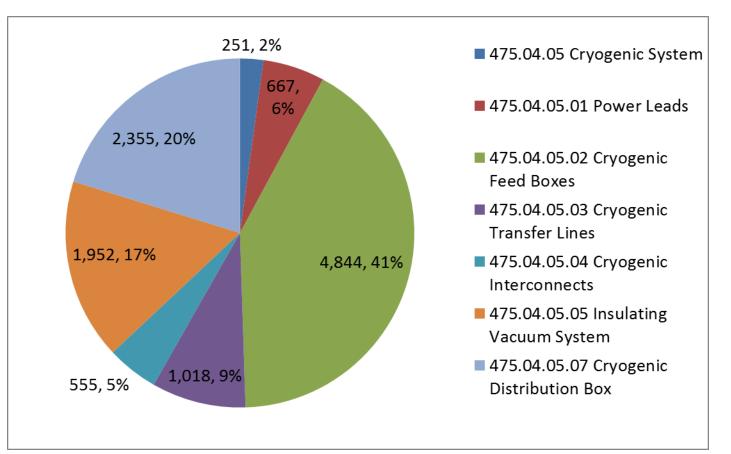
Remaining work before CD-3

- Complete qualification of the existing HTS power leads.
- Develop feed through for 2kA power leads.
- Complete the detailed final design and specification of the feed boxes and transfer lines.
- Complete the detailed final design and specification of the insulating vacuum system.
- Complete the detailed final design and specification of the distribution box.

Organizational Breakdown

Quality Assurance

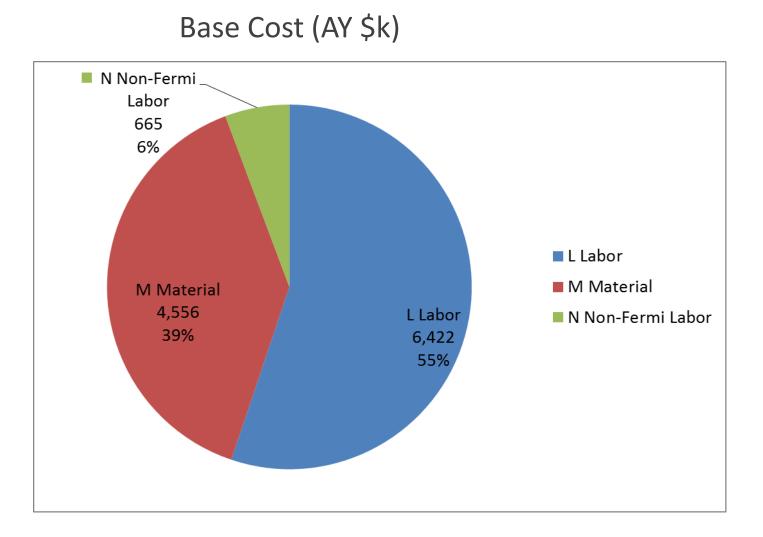
- Power leads are tested to full current prior to sending to vendor for integration.
- Inspections, leak checks and pressure tests during fabrication prior to vessel closure.
- Regular vendor meetings and vendor visits during fabrication.
- Travelers will be written for installation at FNAL.


ES&H

- Oxygen Deficiency Hazards (ODH)
 - FESHM chapter 5064 (ODH) will be followed
- Pressure vessel, pressure piping, vacuum vessels, cryogenic system review
 - FESHM chapters 5031, 5031.1, 5032, 5033 and associated material
- General cryogenic safety practices
 - "Burn" protection, PPE
 - Written procedures and training as required

Mu2e

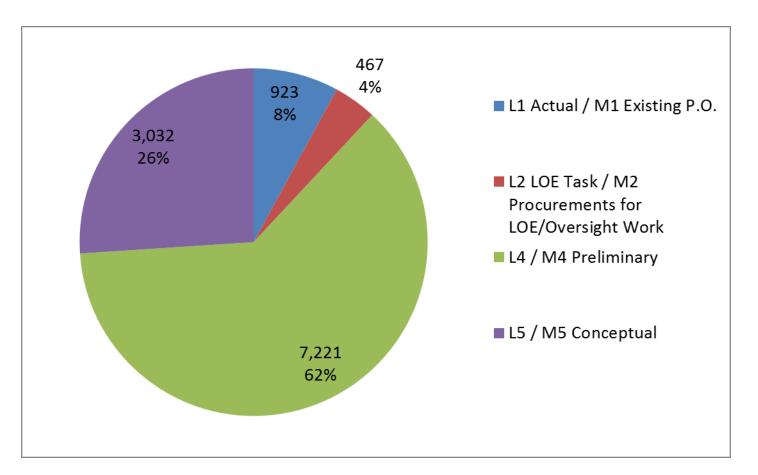
Cost Distribution by L4



Base Cost by L4 (AY \$k)

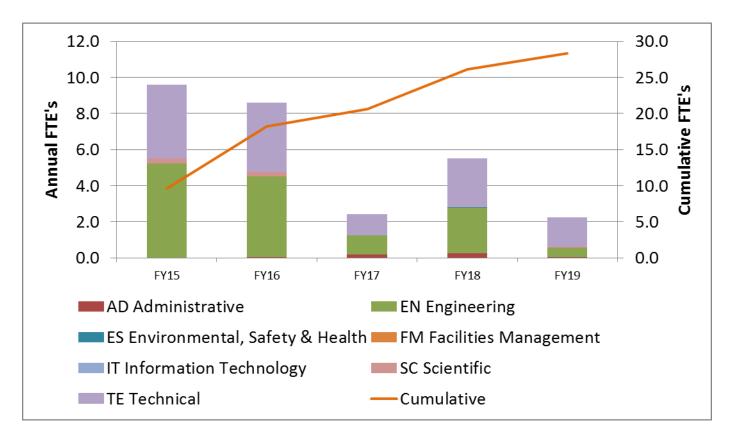
17 Thomas Page - DOE CD-2/3b Review

Cost Distribution by Resource Type



Quality of Estimate

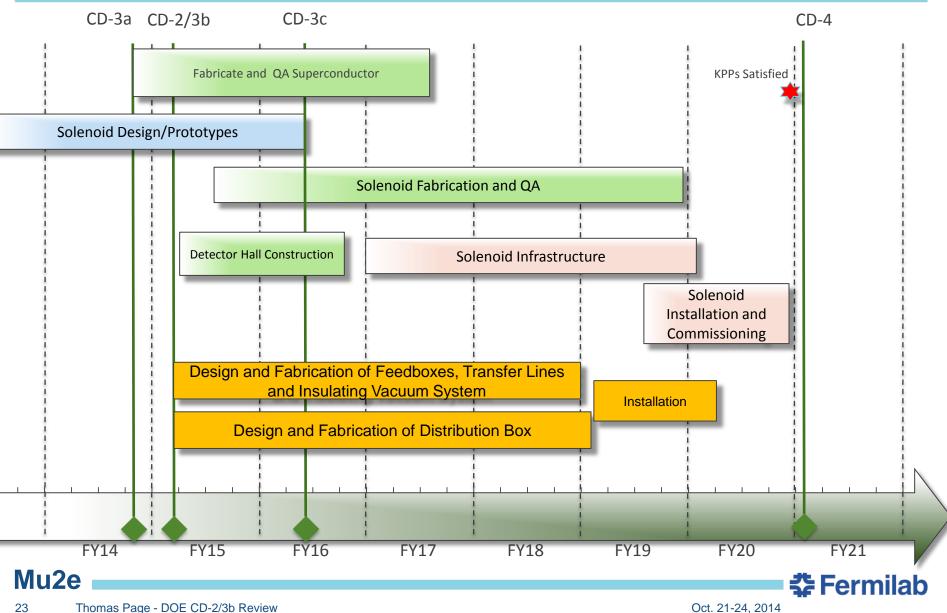
Base Cost by Estimate Type (AY \$k)



Labor Resources

Cost Table

WBS 4.5 Cryogenic Distribution System


Costs are fully burdened in AY \$k

	Bas	se Cost (AY l	K\$)			
	M&S	Labor	Total	Estimate Uncertainty (on remaining budget)	% Contingency on (on remaining budget)	Total Cost
475.04.05 Cryogenic System						
475.04.05 Cryogenic System		251	251			251
475.04.05.01 Power Leads	70	598	667	199	42%	867
475.04.05.02 Cryogenic Feed Boxes	2,596	2,248	4,844	1,734	39%	6,578
475.04.05.03 Cryogenic Transfer Lines	268	750	1,018	385	41%	1,403
475.04.05.04 Cryogenic Interconnects	121	434	555	194	36%	749
475.04.05.05 Insulating Vacuum System	1,104	848	1,952	623	33%	2,575
475.04.05.07 Cryogenic Distribution Box	1,061	1,294	2,355	874	38%	3,229
Grand Total	5,221	6,422	11,643	4,010	38%	15,652
Mu2e						

Major Milestones

Activity ID	Activity Name	Date
47504.5.1.001106	T5 - Final design of Cryogenic System Power Leads complete	5/4/2016
47504.5.2.001125	T5 - Advanced Procurement Plan for Feed Boxes Fabrication complete	3/28/2016
47504.5.2.001330	T5 - Final design of Cryogenic Feed Boxes complete	5/13/2016
47504.5.2.001336	T5 - Vendor for Feed Boxes Fabrication selected	8/29/2016
47504.5.2.001353	T5 - Final design of Cryogenic Feed Boxes Platform complete	8/1/2016
47504.5.2.001380	T5 - Vendor for Feed Box platform Fabrication selected	10/4/2016
47504.5.2.001400	T5 - PO issued for Feed Boxes Fabrication	1/3/2017
47504.5.2.001500	T5 - PO issued for Feed Box platform Fabrication	4/25/2018
47504.5.3.001150	T5 - Final design of Cryogenic Transfer Lines complete	3/25/2016
47504.5.3.001240	T5 - Vendor for cryogenic transfer lines Fabrication selected	3/24/2017
47504.5.3.001270	T5 - PO issued for cryogenic transfer lines Fabrication	4/5/2017
47504.5.4.001140	T5 - Final design of Cryogenic Interconnects complete	6/13/2016
47504.5.5.001170	T5 - Advanced Procurement Plan for purchased vacuum system items complete	2/27/2015
47504.5.5.001220	T5 - Final design of Insulating Vacuum System complete	12/16/2015
47504.5.5.001280	T5 - Vendor for purchased vacuum system items selected	9/25/2017
47504.5.5.001300	T5 - PO issued for purchased vacuum system items	10/2/2017
47504.5.7.002090	T5 - Advanced Procurement Plan for Distribution Box Fabrication complete	9/7/2016
47504.5.7.002120	T5 - Distribution Box Final Design Complete	10/5/2016
47504.5.7.002175	T5 - Vendor for Distribution Box Fabrication selected	5/9/2017
47504.5.7.002250	T5 - Deliver Distribution Box to Mu2e Experimental Hall Complete	10/5/2018

Schedule

Summary

- Preliminary design is complete.
- Resources are in place to complete the final design and specifications.
- The Cryogenic Distribution system is ready for CD-2.

