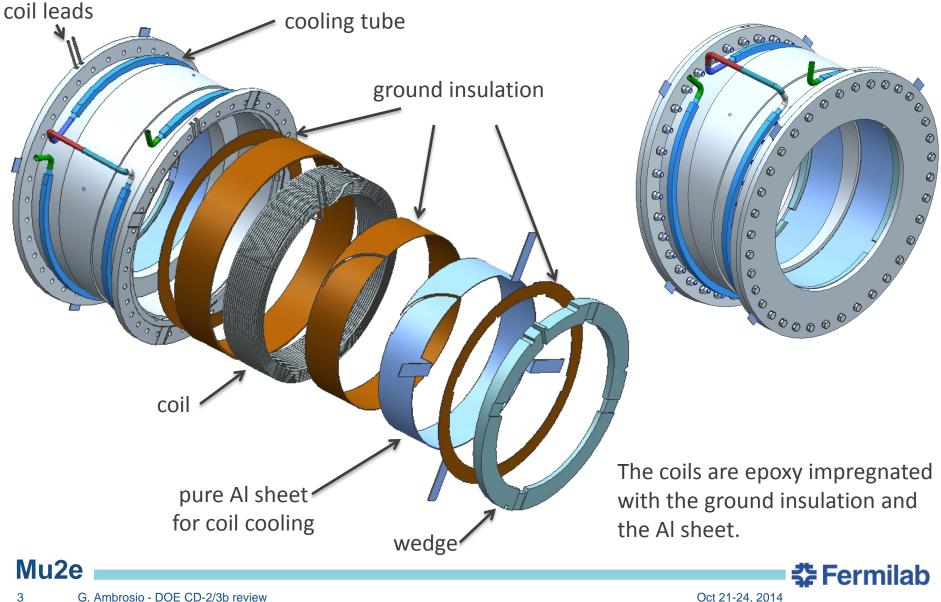


475.04.03.02.01 TS Cold Mass Prototype

Giorgio Ambrosio L3 deputy for the Transport Solenoid Oct 21-24, 2014

TS Cold mass assembly



Oct 21-24, 2014

TS Prototype = Coil#14#15 Module + Flanges

Goals

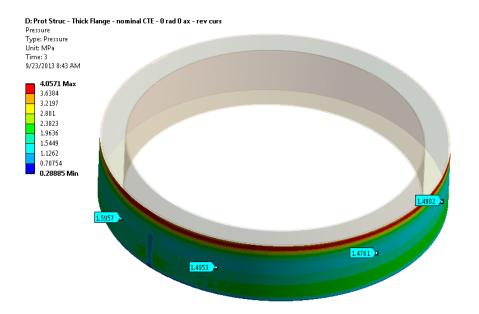
Allows validation of:

- Design concept
- Drawings
 - Tolerances, fabrication and integration details
- Coils and Shell Fabrication
 - Achievable tolerances, procedure for He pipe, QC plan
- Integration
 - − Procedure, gap → prestress
- Performance

Plan

The TS prototype is fabricated by FNAL-INFN collaboration

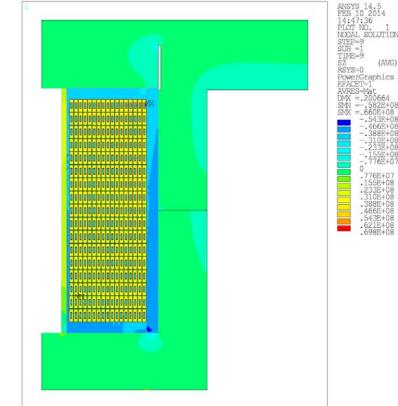
- INFN-Genoa group lead by P. Fabbricatore
- FNAL is in charge of:
- Prototype conductor procurement and QC
- Complete CAD model
- Coils drawings (envelope)
- Shell fabrication drawings
- Shell fabrication and QC
- Shell instrumentation and Test
- INFN is in charge of:
- Coil fabrication and integration (vendor selected by INFN)
- Supervision of work performed by vendor


FNAL & INFN: FEM modeling and interference decision

Mu2e

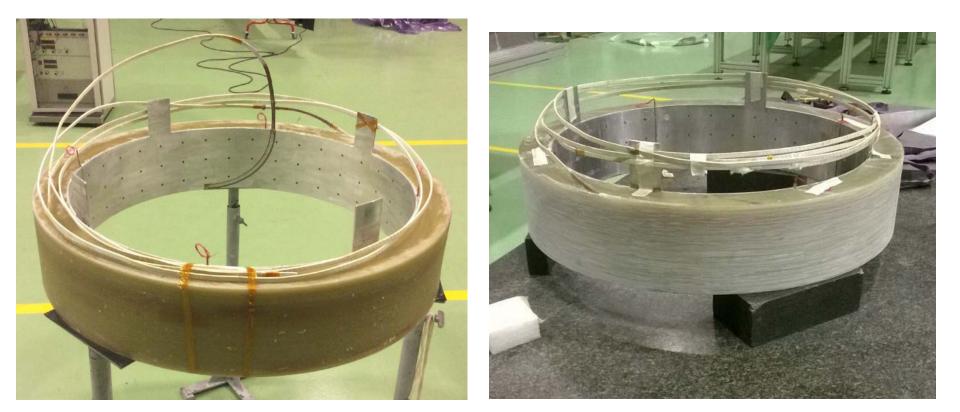
🛠 Fermilab

FEM Analysis


 3D model with average coil properties and actual dimensions (Wands)

Optimal rad. interference 3D: 100+ um Optimal rad. interference 2D: 100-300 um

→ Nominal rad. interference: 200 +/- 100 um Mu2e


 2D model with measured coil properties and simulation of all assembly steps (Farinon)

🚰 Fermilab

Coil Fabrication

Coil #14 17 layers

Coil #15 18 layers

7 G. Ambrosio - DOE CD-2/3b review

Mu2e

Oct 21-24, 2014

Coil Electrical QC

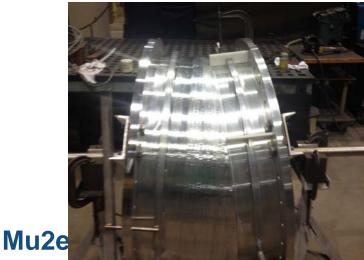
- Electrical tests:
 - During winding:
 - V_tot and layer-layer DV with 1 A
 - Coil to ground at 1kV
 - After impregnation:
 - Inductance and resistance
 - Coil to ground at 2 kV
 - Coil to heaters at 1 kV
 - After coil machining:
 - Inductance and resistance
 - Coil to ground at 2 kV
 - Coil to heaters at 1 kV
 - Impulse test at 1 kV

Both coils passed all tests

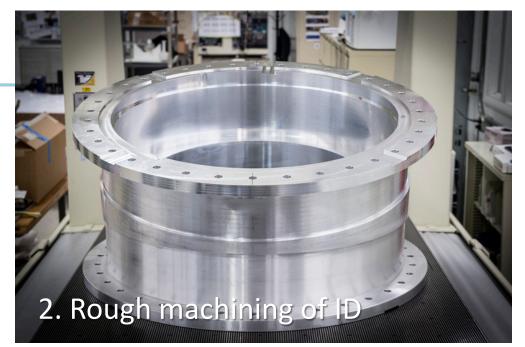
Mu2e

🛟 Fermilab

Coil Dimensional QC


- Dimensional tests:
 - During winding:
 - Min & Max radius at selected layers and positions
 - After impregnation:
 - ID, OD, height, coil sides parallelism
 - After final machining:
 - Inner radius (best fit, max inscribed, min circumscribed) and range
 - Outer radius (best fit, max inscribed, min circumscribed) and range
 - Sides: planarity and parallelism
 - Concentricity, Perpendicularity,
 - Roughness of outer surface.

Radius (mm)	Nominal	Tol.	Meas.	∆_max*	RMS	Temp.	
Coil #14	475.0	+/-0.1	475.00	-0.10/+0.08	0.05	21.8 °C	
Coil #15	479.0	+/-0.1	479.05	-0.11/+0.08	0.05	22.3 °C	
*With respect to measured Outer Radius			Oct 2				


Shell Fabrication

3. Weld cooling pipes

10

measurements at controlled temp.

Shell QC

- Cooling pipes ASME test:
 - Hydrostatic Pressure Test at 83 Psig for 10 min
- Dimensional tests:
 - The shell looks very good
 - All major dimensions are within tolerance
 - Seen the impact on the flange flatness of welding the pipes
 - Coil housing surfaces are acceptable
 - Tolerance were very tight requiring temperature adjustment

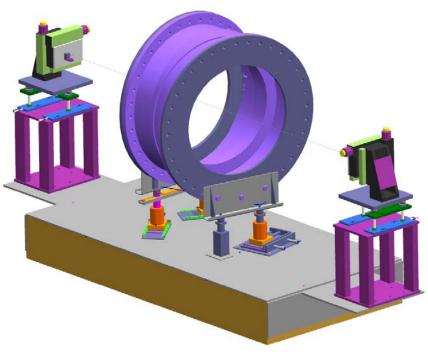
Radius (mm)	Nominal	Tol.*	Meas. Max In	Meas. LS	Temp.
Coil #14 ho	ouse	474.78	+/-0.025	474.78	474.83	20 °C
Coil #15 ho	ouse	478.83	+/-0.025	478.81	478.86	20 °C
Mu2e *	+/-50 um	on diameter				* Councilob
11 G. Ambrosio - DOE CD-2/3b review Oct 21-24, 2014						🕻 Fermilab

Integration

- Plan for shrink-fit integration:
 - 1. Warm up shell
 - 2. Insert coil A
 - 3. Lock coil A in place
 - 4. Insert coil B
 - 5. Lock coil B in place
 - 6. Let shell cold down
 - 7. Put stycast to fill gap between coil-side and wedge
 - 8. Install wedge and side flange
 - 9. Repeat steps 7 and 8 on the other side

Hard copy of integration tooling is available (proprietary)

Prototype Integration Oct 20-24


Integration QC & Acceptance Tests - I

- Electrical:
 - Coil to Ground
 - Heater to Coil
 - Inductance & Resistance of each coil
 - Impulse test
- Prestress:
 - Strain gauge readings (after vs. before integration)
 - Shell OD CMM measurements (after vs. before integration)

Integration QC & Acceptance Tests - II

- Dimensional tests:
 - CMM to evaluate impact of integration on all interfaces
- Cooling pipes and joints:
 - ASME pressure test
- Warm Magnetic Measurements:
 - Stretched wire measurements
 - Each coil separately

Oct 21-24, 2014

Cold Tests

- Cold electrical check out
 - Hi-pot tests (coil-ground; heaters-coil)
- Cooling tests:
 - Temperature profile vs. cooling rate
- Cold powering:
 - Up to nominal current
 - Up to 120% nominal current (same Ic margin as in operation)
 - Reverse polarity: up to 60% nominal current (Max axial force vs. flange)
- Warm up: measure RRR

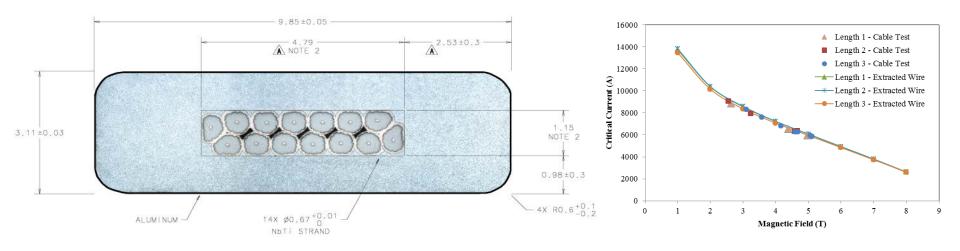
Mu2e

Goals Summary

Allows validation of The prototype has validated:

- Design concept
- Drawings
 - Tolerances, fabrication and integration details
- Coils and Shell Fabrication
 - Achievable tolerances, procedure for He pipe, QC plan
- Integration
 - − Procedure, gap → prestress
- Performance To be demonstrated in Feb./Mar. 2015

Drawings for tender in progress
Contract to be placed after Prototype test



Back-up Slides

Design - Conductor

Conductor Parameter	Unit	Design Value	Measured Value	
Cable critical current at 5T, 4.2K	А	5900	5950-6300	
Number of strands		14		
Strand diameter	mm	0.67	within tolerances	
Strand copper/SC ratio		1 ± 0.05	0.97-1.02	
Initial RRR of Cu matrix		150	100-104	
Filament size	μm	< 30	25.5-25.7	
Strand twist pitch	mm	15 ± 2	15.8-15.9	4720 4
Rutherford cable width	mm	4.79 ± 0.01	within tolerances	I _{op} = 1730 A
Rutherford cable thickness	mm	1.15 ± 0.006	within tolerances	J _{eng} ~ 50 A/mm ²
Al-stabilized cable width (bare) at room temperature	mm	9.85 ± 0.05	within tolerances	l _{op} /l _c ~= 58% (at 5.1 K, 3.4 T)
Al-stabilized cable thickness (bare) at room temperature	mm	3.11 ± 0.03	within tolerances	
Initial RRR of Aluminum stabilizer		> 800	925-1160	Temp margin = 1.5 K
Aluminum 0.2% yield strength at 300 K	MPa	> 30	45-56	
Aluminum 0.2% yield strength at 4.2 K	MPa	> 40	74-84	
Shear strength between Aluminum and NbTi strands	MPa	> 20	35-46	

Oct 21-24, 2014

Fermilab