

475.04.03 Transport Solenoid

Mauricio Lopes L3 for the Transport Solenoid Oct 21-24, 2014

Requirements - Mechanical Requirements

There are four collimator elements. COL3u and COL3d are located in TS3 and they are used to filter particles based on electric charge and momentum.

Due to space constraints, the primary proton beam pipe must be routed through the TS cryostat. When the TS is at full power, there is a net axial force of around 130 Tons pulling the TS and PS together.

There is a physical overlap of around 940 mm between the DS and TS cryostats. When the TS is at full power, there is a net axial force of around 100 Tons pulling the TS and the DS together.

Mu2e

Requirements - Magnetic Requirements

TS1 -6.58 -5.58 2.50 2.40 0.15 < -0.02 na na r=0, r=0.15 m TS2 -5.58 -0.98 na na 0.15 na > 0.275 ± 0.02 r < 0.15 m TS3 -0.98 0.98 2.40 2.10 0.15 < -0.02 na na r=0, r=0.15 m TS4 0.98 5.58 na na 0.15 na > 0.275 ± 0.02 r < 0.15 m TS5 5.58 6.58 2.10 2.00 0.15 < -0.02 na na r=0, r=0.15 m TS3 -0.92 $r < 0.15 m$ TS4 0.98 5.58 na na 0.15 na > 0.275 ± 0.02 r < 0.15 m TS5 5.58 6.58 2.10 2.00 0.15 < -0.02 na na r=0, r=0.15 m TS3 -0.15 m TS3 -0.94 0.94 0.94 0.94 0.95 0.95 ± 0.02 r < 0.15 m TS5 5.58 6.58 2.10 2.00 0.15 < -0.02 na na r=0, r=0.15 m TS3 -0.1 0.2 0.15 m TS3 -0.4 0.1 0.15 m TS3 -0.4 0.15 m TS3 -0.4 0.15 m TS3 -0.4 0.1 0.15 m TS3 -0.4 0.1	Region	s _{min} (m)	s _{max} (m)	B _{initial} (T) ±5 %	B _{final} (T) ±5%	R _{max} (m)	dB _s /d _s (T/m)	dB _s /d _r (T/m)	Ripple (T)	Where
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TS1	-6.58	-5.58	2.50	2.40	0.15	< -0.02	na	na	r=0, r=0.15 m
TS3 -0.98 0.98 2.40 2.10 0.15 <-0.02 na na r=0, r=0.15 m TS4 0.98 5.58 na na 0.15 na > 0.275 \pm 0.02 r < 0.15 m	TS2	-5.58	-0.98	na	na	0.15	na	> 0.275	±0.02	r < 0.15 m
TS4 0.98 5.58 na na na 0.15 na > 0.275 ± 0.02 r < 0.15 m TS5 5.58 6.58 2.10 2.00 0.15 < -0.02 na na r=0, r=0.15 m TS3	TS3	-0.98	0.98	2.40	2.10	0.15	< -0.02	na	na	r=0, r=0.15 m
TS5 5.58 6.58 2.10 2.00 0.15 < -0.02 na na r=0, r=0.15 m TS3 TS3 TS3 TS3 TS3 TS3 TS3 TS3 TS3 TS3	TS4	0.98	5.58	na	na	0.15	na	> 0.275	±0.02	r < 0.15 m
TS3 TS3 TS3 TS3 TS3 TS3 TS3 TS3	TS5	5.58	6.58	2.10	2.00	0.15	< -0.02	na	na	r=0, r=0.15 m
	2.7 2.6 2.5 2.4 E 2.3 g 2.2 2.1 2 1.9		<u>r = 0</u>		dBs/ds (T/m)	0 -0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8		- r = 0 - r = +0.1 - r = -0.15	5 m	

Requirements - Magnetic Requirements

	Error type	Maximum	Maximum logitudinal gradient (T/m)						
		error	TS1	TS3	TS5				
	Radial	10 mm	-0.072	-0.072	-0.083				
	Radial	2 mm	-0.114	-0.106	-0.115				
	Vertical	10 mm	-0.103	-0.082	-0.104				
	Longitudinal	10 mm	-0.023	-0.009	-0.060				
į	Longitudinal	2 mm	-0.111	-0.096	-0.109				
	Pitch	10 mrad	-0.120	-0.092	-0.116				
	Pitch	2 mrad	-0.124	-0.112	-0.12				
	Yaw	10 mrad	-0.108	-0.086	-0.105				
	Yaw	2 mrad	-0.121	-0.107	-0.119				

DocDB 2156

Oct 21-24, 2014

Fermilab

Requirements - Magnetic Requirements

Design – Magnet System

- TS is formed by 52 SC solenoid coils.
- Most coils have the same aperture. TS3 coils have slightly bigger aperture to help with the large gap between cryostats.
- Each cryostat is powered by a different 2kA power supply (nominal current 1730 A)
- Each magnet has a pair of two 200 A trim power supplies (TPS).
- The TPS allows field matching with the adjacent magnets and gives an extra knob to control backgrounds.
- The coils that form the curve sections had their angles adjusted to center the particle distribution with respect to the axis of the solenoids.

Design - Cold Mass Breakdown

• TS has 52 Coils:

TSu - 25 TSd - 27

• Coils are housed in Al Shells and they form a coil module. There are 27 Coil modules:

> TSu – 13 TSd – 14

• Modules are assembled together (bolted and cryogenic connections) and they form a test unit. There are 14 test units:

Mu2e

Oct 21-24, 2014

🛠 Fermilab

Design – TSu Coils

9

Mu2e

Design – TSu Coil Modules

10 M. Lopes - DOE CD-2/3b Review

Mu₂e

Design – TSu Test Units

Mu2e

11

Design – TSd Coils

Mu2e

Design – TSd Coil Modules

Mu2e

Design – TSd Test Units

Mu2e

Design - Conductor

mm

mm

mm

MPa

MPa

MPa

Successful conductor prototype program completed.

 9.85 ± 0.05

 3.11 ± 0.03

> 800

> 30

> 40

> 20

Al-stabilized cable width (bare) at room temperature

Shear strength between Aluminum and NbTi strands

Al-stabilized cable thickness (bare) at room temperature

Rutherford cable thickness

Mu₂e

Initial RRR of Aluminum stabilizer

Aluminum 0.2% yield strength at 300 K

Aluminum 0.2% yield strength at 4.2 K

The PO was placed in July 2014

Oct 21-24, 2014

🛠 Fermilab

within tolerances

within tolerances

within tolerances

925-1160

45-56

74-84

35-46

Conductor delivery / Module fabrication

Test Sequence	Module #	TS Coil #	Length	Length units code	Batch delivery S	Batch delivery L	Section #	Magnet					
	1	1	252	L1	-	2	1						
6	1	2	560	L2	-	1	S						
	2	3	513	L3	-	2	Ŧ						
	3	4	594	L4	-	2							
4	5	5	594	L5	-	1							
-	4	6	594	L6	-	1							
	·	7	799	\$1	2	-							
	5	8	799	S2	2	-							
3	-	9	799	S3	2	-							
-	6	10	799	S4	2	-							
	-	11	851	L2	-	1	\sim						
1	7	12	851	L10	-	1	S.	n					
		13	851	L11	-	1	\vdash	S					
	8	14	851	L12	-	1							
2		15	904	L5	-	1							
	9	10	904	L6	-	1							
		10	904	L7	-	2			Batch #				
	10	10	904	10	-	2			1 2 3* 4**				
5		20	1010	12	-	2							
	11	20	594	17		1			% total 24.6% 24.9% 25.1% 25.4%				
		22	907	14	-	2	-		L 7 <u>5</u> 3 1				
	12	23	355	\$5	3	-	TS3L		S 0 4 8 12 Total (m)				
7		24	848	L13	-	3							
	13	25	1253	L1	-	2		i	lotal length 10/80 10900 11020 11140 43840				
		26	1220	L14	-	3	7						
12	14	27	732	S6	4	-	ğ						
13	45	28	382	L13	-	3	Ś						
	15	29	790	S7	4	-							
	16	30	495	L10	-	1							
12	10	31	594	L9	-	2							
	17	32	594	L8	-	2							
		33	747	S8	4	-			* Long length are 2 + 1 spare				
	18	34	747	S9	3	-				** Long length is a spare. Short lengths are 10 + 2 spares			
9	-	35	747	\$10	3	-			Long tengting a spare. Short tengths are 10 + 2 spares				
	19	36	747	\$11	3	-							
		37	799	S12	3	-	4						
8	20	38	799	513	3	-	Ň	p					
		39	799	514	3	-		Ĕ					
	21	40	799	515	4	-							
10		41	799	S10	-	-							
	22	42	799	517 518	4	-			10 % of spara conductor included				
		43	799	\$19	4	_	1		10 % Of spare conductor included				
	23	45	696	S20	4	-							
11	24	46	696	S20	4	-							
		47	544	L11	-	1							
		48	348	S5	3	-							
	25	49	300	L14	-	3	10						
14	26	50	205	L13	-	3	S						
	20	51	158	L12	-	1							
	27	52	112	L11	-	1			alle and the second				
									52 Fermilab				

Mu2e

Coil Winding

Design – Coil Module

Design - Test units

We will test all 52 coils in our test cryostat (in the CHL building).

Mu20

20 M. Lopes - DOE CD-2/3b Review

‡Fermilab

24 M. Lopes - DOE CD-2/3b Review

26

27

29 M. Lopes - DOE CD-2/3b Review

- The magnetic forces for each load case were calculated by the ANSYS program and verified by comparison to the Opera forces from the magnetic design work.
- The results of the calculations show that the coils, the support system, cold mass support attachment points, cryostat support attachment points, and cryostat elements are sufficiently strong to withstand the expected loads.

Mu2e

Oct 21-24, 2014

🌫 Fermilab

Cold mass displacements due to the cooldown

Cold mass displacements due to energization (relative to cool down)

Oct 21-24, 2014

Fermilab

Mu2e

Support		Load Case		
	Normal Operation	PS off	TSd Off	
Upstream Axial 1	158	0	250	
Upstream Axial 2	169	0	262	
Upstream Axial 3	151	0	208	
Upstream Axial 4	164	0	220	
Downstream Axial 1	175	371	-121	
Downstream Axial 2	176	374	-119	
Downstream Axial 3	192	294	-62	
Downstream Axial 4	204	309	-53	
Upstream Radial 1	159	51	70	
Upstream Radial 2	154	18	64	
Downstream Radial 1	140	0	94	
Downstream Radial 2	134	3	88	
Center Radial 1	283	14	165	
Center Radial 2	263	18	145	
Gravity 1	24	24	24	
Gravity 2	28	27	28	
Gravity 3	20	19	20	

in kN

Design Values Maximum tension 414 kN Maximum compression -169 kN

Oct 21-24, 2014

Fermilab

1015Lopes - DOE CD-2/3b Review

B: Static Structural

Equivalent Stress - all but support bobbins Type: Equivalent (von-Mises) Stress Unit: MPa Time: 3 2/4/2014 8:48 AM

allowed: 107 MPa for Al 5083-O

Overall stress are below the maximum

B: Static Structural

Equivalent Stress - support bobbins 2 Type: Equivalent (von-Mises) Stress Unit: MPa Time: 3 2/4/2014 8:56 AM

0

Below 30 MPa

The high stresses are concentrations, numerical artifacts caused by discontinuities in the region of the lug-to-bobbin attachment. This attachment

was designed separately using local finite element models and standard

weld strength calculations, and not this global cold mass model

B: Bolting Analysis - bolt proof = 40 ksi, preload = 0.75 x proof Equivalent Stress 2 Type: Equivalent (xon-Mises) Stress Unit: MPa Time: 2 2/4/2014 10:24 AM

Mu2e 💼

Cryostat stresses (MPa)

38

Design - Radiation analysis

Peak power density 1.3[.]10⁻⁴ mW/g Dose 2.6 kGy/year DPA 2.6[.]10⁻⁶ (target <10⁻⁵)

Those numbers give a safety factor around 10

Mu2e

Oct 21-24, 2014

🛟 Fermilab

Mu2e

- Helium inlet parameters: T=4.7[K], P=3e5[Pa], flow rate=0.050[kg/s].
- Cooling tube:

Load Line

Oct 21-24, 2014

Fermilab

Helium temperature

Support	Celle		Heat	Helium temperature (K)			
section	COIIS	Radiation	Dynamic load	Support load	Total	in	out
	25-24	0.51	0.00	0.00	0.51	4.700	4.701
3	23-22	0.48	0.00	9.00	9.48	4.701	4.736
	21-14	2.11	0.00	0.00	2.11	4.736	4.743
2	13-12	0.60	0.00	3.00	3.60	4.743	4.756
	11-6	1.56	0.00	0.00	1.56	4.756	4.761
1	5-4	0.52	0.00	9.00	9.52	4.761	4.795
	3-1	0.76	0.05	0.00	0.81	4.795	4.797

Aluminum bobbin

45 M. Lopes - DOE CD-2/3b Review

Oct 21-24, 2014

Coil

Maximum temperature of coil

Scheme	Coil Temp. (K)	Shell Temp. (K)
1 strap	5.0532	8.8421
2 straps 2 sides	5.0183	8.6974
2 straps 1 side	4.9870	8.3832
4 straps	4.9515	8.1706

4 straps

2 straps fixed on 2 sides

1 strap

Fermilab

Design – Splices R&D

- Rutherford to Rutherford
- Aluminum soldered joints
- Aluminum weld
- EM pulse joints
- Explosive joints
- Ultrasonic weld

Туре	R (nOhm)	SC Degradation (%)
Rutherford-Rutherford #1	0.875	0
Rutherford-Rutherford #2	0.711	0
Rutherford-Rutherford #3	1.14	0
Rutherford-Rutherford #4	0.62	0
Soldered - SnPb	31.03	-
Soldered - SnAg	144.98	-
Soldered - SnZn	37.7	-
Ultrasonic welded #1	0.397	0
Ultrasonic welded #2	0.778	0
Ultrasonic sample #3	0.681	0
Standard welded #1	13.8	20
Standard welded #2	12	30

Improvements since CD-1

- Changes on the TSu nose that connects to PS due to the proton beam pipe.
- Change of the position of the Chimneys to accommodate the shield around the TS magnets.
- We removed the vertical supports located in the bottom of the magnet due to interference with the support feet.
- Trim power supplies included in TS

Value Engineering since CD-1

- TSu and TSd cryostat geometry nearly identical resulting in common parts, tooling, and assembly.
- TSu and TSd support feet positions identical resulting in common parts, tooling, support frames, and lifting fixtures.
- TSu and TSd axial and radial supports identical resulting in common parts, tooling, and assembly.
- Eliminated lower vertical supports resulting in lower cost, easier assembly, and easier cold mass alignment.

Downselects

- Forced flow was selected as the cooling scheme for TS (as opposed to thermo-syphoning).
- TS1 coils will be housed into a 2+1 coil modules (instead of a single 3-coils module)
- Coil modules will be fabricated in industry. Magnet assembly (cold mass and cryostat) will be done in-house.

CD3-b strategy

- The design of the complete magnet is still preliminary, but we have the details in hand to finish the coil module design.
- The design of coil modules is very advanced (~90% complete).
- Most of the design is based on the experience we had building the prototype.

Prototype

More details on G. Ambrosio's talk

Proprietary Information

Proprietary Information

Remaining work for the coil modules

- Finish all the drawings
 (90% of the design and 70% of the drawings are complete),
 -Drawings review
- Finish (Procurement) Technical Specifications, -Roberto Penco (Consultant).
- Complete the test of the TS Prototype at Fermilab

 Warm magnetic measurement (stretched wire)
 Finish the preparation of the test cryostat
 Cold tests

Remaining work for the coil modules

List of drawings that are <u>ready</u>:

- Coils w/Excel Chart
- Coils Spacers and Wedges
- Cooling Square Tubes

List of drawings that <u>needs update</u>:

- Module Assemblies (16)
- Housing Final Machining (16)
- Housing Weldment (16)
- Housings (16)

List of <u>remaining designing</u>:

- Splices Boxes (40)
- Update bolt holes end went holes for on all housings (16)
- Add hardware for TSu and TSd (8)
- For some module make room for new Lugs Support (24)
- Test assembly modules for TSu and TSd (40)
- Aluminum cooling sheets for global and test units cold mass assembly (80)
- Leads and splices routing for global and test units cold mass assembly (200)
- Support Splices (80)

List of <u>remaining drawings</u>:

- Splices boxes (80)
- Supports for leads (80)
- Supports for cooling tubes (40)
- Test units cold mass Assembly Modules for TSu and TSd (40)
- Global Cold Mass Assembly TSu and TSd (40)

~3 months of work (2 designers)

Mu2e

Organizational Breakdown

Remaining work before CD3-c

- Finalize the design of the cryostat

 Thermal shield
 Support rods
 Prototype
- Finalize the tooling for the overall assembly (WBS 4.9)
- Finalize the magnet support feet
- Finalize the magnet interconnects

Quality Assurance

- Vendors must provide Preliminary QAP as part of bid package
- Vendor's QAP will include tests requested by Fermilab
- Hold points in fabrication at major milestones
- Regularly scheduled meetings to discuss fabrication status/issues. Regular visits to the vendor.
- Use of traveler system at the vendor and at Fermilab
- Acceptance tests upon delivery at Fermilab:
 - Electrical tests
 - Mechanical surveys
 - Magnetic measurements
 - Cold tests of coils and splices
- Monthly EVMS-style reporting

59

ES&H

- Common to large superconducting magnet systems
 - Cryogenic fluids
 - Large stored energy (13 MJ)
 - High currents (up to 2 kA)
 - Large voltages during quench (up to 600 V)
 - ODH
 - Mechanical forces (up to 130 Tons of axial force)
 - Stray magnetic fields
 - Use of chemicals (Sodium hydroxide)
 - Radiation

All of these are covered in the Mu2e Hazard Analysis

60

Cost Distribution

- 475.04.03.01 TS Conductor
- 475.04.03.02 TS Cold Mass Components
- 475.04.03.03 TS Cryostat Components
- 475.04.03.04 TS Magnet Assembly
- 475.04.03.05 TS Support Structure
- 475.04.03.06 TS Interconnects
- 475.04.03.07 TS Test Cryostat

AY k\$

Cost Distribution by Resource Type

AY k\$

Quality of Estimate

69% of the cost is preliminary or better

```
AY k$
```

Labor Resources

All the resources for FY15 are identified by name

Mu_{2e}

Cost Table

	Bas	e Cost (AY K\$)				
	M&S	Labor	Total	Estimate Uncertainty (on remaining budget)	% Contingency on (on remaining budget)	Total Cost
475.04.03 Transport Solenoids						
475.04.03.01 TS Conductor	2,684	1,973	4,657	289	10%	4,946
475.04.03.02 TS Cold Mass Components	6,125	1,747	7,872	3,717	51%	11,589
475.04.03.03 TS Cryostat Components	2,187	1,025	3,212	1,491	46%	4,703
475.04.03.04 TS Magnet Assembly	492	3,387	3,880	1,552	40%	5,431
475.04.03.05 TS Support Structure	166	274	440	161	46%	600
475.04.03.06 TS Interconnects	142	207	349	123	41%	473
475.04.03.07 TS Test Cryostat	661	2,785	3,446	497	48%	3,943
Grand Total	12,459	11,397	23,856	7,830	41%	31,686

Major Milestones

Activity Name	Date	Milestone Description
T5 - PO issued for TS production conductor	7/11/2014	PO issued for TS production conductor
T5 - Design of TS Cold Mass completed	11/3/2014	Design and documentation are ready to prepare for bid package.
T5 - Technical Readiness Review for module fabrication bid package	11/11/2014	Technical Readiness Review for module fabrication bid package
Completed	11/11/2014	Completed
T5 - PO issued for TS module fabrication	4/16/2015	PO issued for module fabrication
T5 - PO issued to Perform TS production conductor acceptance tests	5/7/2015	PO issued to Perform TS production conductor acceptance tests
T5 - Final design of TS interconnects complete	7/24/2015	Design and documentation are ready to prepare for CD-3.
T5 - Final Design of TS Cryostat Complete	11/2/2015	Design and documentation are ready to prepare for CD-3.
T5 - TS Support Structure Final design complete	11/2/2015	Design and documentation are ready to prepare for CD-3.
T5 - Solenoids receives CD-3c approval	2/23/2016	Line Item PED funds released by DOE.
T5 - Vendor for TS interconnect components Fabrication selected	3/2/2018	Vendor for TS interconnect components Fabrication selected
T5 - PO issued for TS interconnect components Fabrication	4/30/2018	PO issued for TS interconnect components Fabrication
TE Duilding weeds for Colonaid installation	0/7/2010	Mu2e Experimental Hall is complete and ready for installation of Mu2e
15 - Building ready for Solehold Installation	8/7/2018	solenoid system and components.
TE Colonaid system installation complete and ready for cooldown	4/0/2020	Solenoid system and supporting equipment is installed and magnets are
15 - Solehold system installation complete and ready for cooldown	4/9/2020	ready to be cooled down to 4.5 K.
TE On Draight Solonoid Commissioning complete	0/20/2020	Key Performance Parameter: Solenoid system has been cooled down and
15 - On Project Solehold Commissioning complete	9/29/2020	powered and demonstrated to run at nominal field strength.

Schedule

Critical Path

CD3-b approval > CD-4 approval of 11/09/20

68 M. Lopes - DOE CD-2/3b Review

Summary

- The TS conductor performed really well and the PO was placed (July14).
- The solenoid magnetic design meets the requirements for the experiments and tolerances are well understood.
- Cost and Schedule understood.
- We believe we are ready for CD2 project baseline
- The coil modules design is very advanced (90% of the design and 70% of the drawings are complete) and they are based on the experience we are having with the prototype.
- We believe we are ready for CD3-b for the coil modules in order to avoid a major delay in the project (~1 year).

Mu2e