

Mu2e WBS 5.5 Stopping Target DOE CD-2/3b Review

James Miller Stopping Target Level 3 Manager 10/21/2014

Design

• Suspension of each foil by three x 3 mil (75 micron) diameter

 Support wires must pass through the slots in the outer proton absorber

Requirements: Stopping Target

- Target material must be chemically stable and available in the required size, shape, and thickness. Self-supporting is highly desirable.
 - Satisfied by current design with 17 x 0.02 cm x 17-13 cm ϕ Al disks spaced by 5 cm, tapered linearly to smaller diameters going downstream
- Conversion electron energy must be higher than the energies of other secondary particles in the muon capture process
 - Radiative Muon Capture $\mu^- +_{13}^{27} Al \rightarrow_{12}^{27} X + \nu_{\mu} + \gamma$, photon must have an energy below the CE energy

 $\Rightarrow m(_{12}^{27} \text{X}) = m(_{13}^{27} \text{Al}); m(_{12}^{27} \text{Mg}) = m(_{13}^{27} \text{Al}) + 2.6 \text{ MeV}$

Mu2e

- Z of stopping target must optimize signal in Measurement Period
 - Major fraction of muonic atoms
 must remain un-decayed during
 Measurement Period (MP) between
 700 ns and 1700 ns after proton pulse
 - \Rightarrow low Z preferred for longer lifetime
 - Conversion electron sensitivity roughly
 Proportional to Z for nucleus for low Z
 - \Rightarrow high Z preferred

Al (lifetime 864 ns) is a good compromise between high Z for sensitivity and low Z for long muonic atom lifetime

Mu2e

Requirements: Stopping Target (2)

- The target must be sufficiently thick in the direction of the muon beam to stop a large fraction of the incoming muons.
 - Nominally, we need to stop at least 40% of the transported muons in order to reach the desired signal sensitivity \Rightarrow target should be thick
- The target must present the minimum possible path length to hypothetical conversion electrons that would be within the acceptance of the detector.
 - Energy straggling in the stopping target is a major contributor to the resolution of the electron energy spectrum, and in addition bremsstrahlung in the target leads to a low energy tail. ⇒ target should be thin
- The target thickness should also be minimized in order to help control background ⇒ target should be thin
 - Bremsstrahlung photon background caused by beam electrons traversing the target
 - Delta rays produced in the target by energetic cosmic ray muons, or other cosmic ray interactions.

Requirements: Stopping Target (3)

- The target material must be pure enough to avoid background due to electrons from muon Decay in Orbit (DIO) in impurity nuclei.
 - This is not stringent for AI because of its high conversion electron energy relative to most other nuclei- this is much more of a problem for higher Z nuclei, which have lower conversion electron energies
- The radial extent of the target (e.g. extent of the target away from the solenoid axis) should be optimized
 - target needs to intercept as much of the incoming muon beam as possible in order to maximize the number of stops \Rightarrow target should extend to large r
 - minimize the number of decay in orbit (DIO) electrons which can reach out to the inside radius of the tracker and produce unnecessarily large hit rates
 ⇒ target should not extend to large r
- Position each disk within 2 mm along any dimension (although accurate *knowledge* of positions to 2 mm would also suffice)
 - Traceback of trajectories from the Tracker to the target provides background suppression, uniform 5 cm spacing will assist in this traceback
 - More predictable simulations, e.g. electron energy losses

Mu2e

10/21/14

Sermilab

Requirements: Stopping Target (4)

- Target supports must not cause loss of Conversion Electron sensitivity
 - Supports must not produce backgrounds or noise hits in the detectors during the Measurement Period (700-1700 ns after proton pulse)
 - If muons stop in target supports at radii larger than that of the target, DIO electrons will reach a large enough radius to cause unnecessary hits in the detectors
 - \Rightarrow low mass in support materials where both the radius and the muon flux are large
 - If muonic atoms formed in the supports have a long lifetime, they can present a significant background or noise source during the measurement period
 ⇒ supports made of high Z nuclei: short lifetime and lower DIO maximum energy
 - Supports must not degrade acceptance or energy resolution of the Conversion Electron \Rightarrow low mass in support materials
 - Supports should not significantly reduce the rate of muons stops in target
 ⇒ low mass in support materials
- Solution: use tungsten (Z=74) wire supports within the radius where there are incoming muons (r<25 cm)
 - W muonic lifetime ~ 80 ns (compare Al 864 ns)
 - Thin tungsten wire readily available; it is strong and therefore it can be thin

Improvements since CD-1

- One mil tungsten wire was tested as a prototype, and found to be challenging due to failures at kinks
- Three mil tungsten wire was tested at the prototype, and has performed well
 - From simulations: no problems introduced by thicker wire: does not degrade CE energy resolution, causes no significant background, few noise hits in the tracker or collimator

nominal 17 foil target, new offline, w/ proton absober	reference w/o wires	1.5mil wires	3.0mil wires	6.0mil wires	3mm wires (corresponds to several kilograms)			
SES (x1E-17)	2.10	2.08	2.15	2.14	2.35			
90% CL upper limit (x1E-17) (Feldman-Cousins)	5.72	5.72	5.76	5.72	6.32			
#CEs in opt. window (BR 1E-16)	4.76	4.80	4.66	4.67	4.26			
#DIOs in opt. window (BR 1E-16)	0.33	0.36	0.28	0.27	0.30			
optimized window	103.7-105.8	103.7-105.7	103.7-105.7	103.7-105.8	103.7-105.9			

Performance

- Prototype support wires with various tensions, wire connections at end
- Wires threaded through metal (AI target or bolts) work well
- Prototype has held for >8 months

Mu₂e

9

Performance

- Stopping target simulation team has verified the performance
 - Continue optimization of target configuration
 - Increase number of foils, reduce foil thickness modestly improves CE signal

Mu₂e

Remaining work prior to fabrication

- Likely need additional mechanical angled wire support to damp horizontal oscillations in vacuum
- Design frame that fits in with the surrounding proton absorber
- Complete prototype studies
- Complete target design optimizations

Integration and Interfaces

- Stopping target has external interface to Solenoids
- Internal interfaces to
 - Muon beamline vacuum system
 - Stopping target monitor
 - Detector solenoid internal shielding
 - Detector support and installation system
- Integration and interfaces addressed via
 - WBS dictionary and interface documents
 - Muon beamline meetings
 - Mechanical and electrical integration meetings

Μιι2e

Quality Assurance

- Quality Assurance relies upon the following tools :
 - Fermilab Quality Assurance Manual
 - Fermilab Engineering Manual
 - Mu2e Quality Assurance Program
 - Documented engineering calculations and drawings
 - reviewed, approved and released
 - Verification of physics simulations
 - Prototypes will be tested for many months to verify long-term viability
 - Materials certifications will be required for the key components
 - Components received from vendors will be inspected for conformance to specifications, alloy and purity confirmed
 - Dimensions and positions of each disk will be verified

Risk

- Due to the delicate nature of the target supports, there is a risk that the target might be damaged during transport or installation
 - Design of the surrounding outer proton absorber is being optimized in an effort to mitigate this risk
 - Ongoing studies with the stopping target prototype will also mitigate this risk
 - The risk is classified as low

ES&H

- To perform muon beamline activities safely will require appropriate planning (JHA), attention to ES&H considerations and FESHM and FRCM requirements
 - Accessing confined space FESHM 5063
 - Crane, hoist, and forklift use FESHM 5021
 - Including lifts beyond direct crane coverage
 - Fall Hazards FESHM 5066
 - Magnetic fields FESHM 5062.2
 - Electrical hazards FESHM 5042
 - Radiation hazards FRCM
 - Activation by beam
 - And possibly ODH
 - FESHM 5064

15 J. Miller - DOE CD-2/3b Review

Cost Table

WBS 5.5 Stopping Target

Costs are fully burdened in AY \$k

	Base Cost (AY K\$)					
	M&S	Labor	Total	Estimate Uncertainty (on remaining costs)	% Contingency on ETC	Total Cost
475.05 Muon Beamline						
475.05.05 Stopping Target						
475.05.05 Stopping Target	61	118	178	66	39%	245
Grand Total	61	118	178	66	39%	245

Cost Distribution by Resource Type

Quality of Estimate

Base Cost by Estimate Type (AY k\$)

76% of the cost at the preliminary design level or higher

Labor Resources

Mu₂e J. Miller - DOE CD-2/3b Review

10/21/14

‡ Fermilab

19

Schedule

Milestones

47505.5.001280	T5 - First Iteration Stopping Target Preliminary Design Complete	5/30/2014
47505.5.001363	T5 - Stopping Target 2nd iteration Design Complete	11/10/2015
47505.5.001452	T5 - Stopping Target ready for CD-3 Review	12/11/2015
47505.5.001455	T5 - CD-3 approval (Stopping Target)	2/23/2016
47505.5.001435	T5 - Stopping Target Ready for fabrication	12/13/2017
47505.5.001464	T4 - Stopping Target at FNAL	4/26/2018
47505.5.001621	T5 - Stopping Target Frame at Fermilab	6/26/2018
47505.5.001675	T5 - Stopping Target Assembled	4/2/2019
47505.5.001676	T4 - Stopping Target Assembled	6/3/2019
47505.5.001677	T3 - Stopping Target Assembled	7/3/2019
47505.5.001678	T2 - Stopping Target Assembled	10/3/2019
47505.5.001720	T5 - Stopping Target Installed	2/18/2020
47505.5.001800	T5 - Stopping Target Ready for CD-4	2/18/2020
47505.5.001679	T1 - Stopping Target Assembled	4/2/2020

10/21/14

Fermilab

Summary

- Simulations demonstrate that the current design satisfies the requirements
- Prototypes are proof of principle for tungsten wire support of target disks
- Cost estimates for the stopping target are complete
 - 76% of the costs understood at the Preliminary Design level or higher
 - Risks have been evaluated, and mitigation is in progress
- Interfaces are identified and defined
- Resources are understood
- Stopping Target is ready for CD-2

M112e

23 J. Miller - DOE CD-2/3b Review

Target Temperature

- Beam power in target is 31 µW (per MARS simulation study documented in Mu2e docdb 3593)
 - Target temperature is estimated at 40° C

Absorbed Dose in DS region (Gray/year)

Absorbed dose, Gy/yr

MARS simulation results per docdb 3593

~ kGray per year at the stopping target

Residual Dose in DS Region (mSv/hour)

Labor and Material per FY in AY k\$

27 J. Miller - DOE CD-2/3b Review

10/21/14

Z distribution of stopped muons in target

Radial distribution of muon stops

Mu_{2e}