

Mu2e CD-2 Review: WBS 5.7 DS Internal Shielding

Henry Glass L3 Manager, WBS 475.05.07 10/21/2014

Requirements

- Four physics requirements:
 - 1. Reduce the background rates at the tracker sufficiently for reliable reconstruction of electron tracks.
 - 2. Minimize the energy loss and multiple scattering of electrons within the acceptance of the tracker including those that pass through the inner proton absorber and its supports.
 - 3. Minimize muons stopping on the proton absorber.
 - 4. Minimize contributions to the background rates in the calorimeter.
- Requirements satisfied by three passive shielding components that absorb protons and neutrons; designs shown in following slides

1120

Design

• Three components of DS Internal Shielding

TSdA Design

- Transport Solenoid downstream absorber (TSdA):
 - Disk shaped, center hole allows muon beam to pass through
 - 50 mm thickness
 - Nominal material: borated polyethylene
 - Reduces hit rate in tracker by ~30% (simulation)
 - No significant technical issues

IPA Design

- Inner Proton Absorber (IPA):
 - Conical frustum, 0.5 mm thickness, 1.0 m length
 - Sufficiently thin to minimize scattering and energy loss of conversion electrons
 - No stopping muons
 - Low-Z materials required
 - Mechanical stability requirements best met using carbon fiber
 - Support and align using 6.0 μm tungsten wires; support from OPA wall
 - Plan to build and monitor a prototype to refine design

OPA Design

- Outer Proton Absorber (OPA)
 - Also conical frustum, 20 mm thickness, ~4.3 m length, ~300 kg
 - Outside muon beam and CE trajectories
 - Nominal material is 5% borated polyethylene
 - Made in two longitudinal sections to allow access to and support of the stopping target
 - Slots cut into OPA will allow for tungsten support wires to be strung between stopping target and support frame
 - OPA supported by stainless steel cradles

Proton Absorber / Stopping Target Assembly

7 H. Glass- DOE CD-2/3b Review

Improvements since CD-1

- IPA length reduced by 50%
- OPA is new item;
- TSdA is also new, for neutron absorption

Downselects

• IPA geometry: conical frustum selected over blade design

Blade – not selected – does not work with cosmic muon calibration scheme

Conical 1.0 m length selected (vs 2.0 m length)

Performance

- Geometries of OPA and IPA are being optimized by simulation (M.J. Lee, LBNL: preliminary simulation details in docDB #3155 – choice of radius, thickness, slope...)
- TSdA
 - reduces neutron contribution to tracker hit rate by ~30% (D. Brown, DocDB #3479),
 - reduces neutron contribution to hit rate on disk 1 of calorimeter by ~15% (B. Echenard DocDB #3498)

Performance improvements via simulation

Example: IPA thickness optimization

- left plot: tracker proton hits vs thickness
- right plot: reconstructed CE's vs thickness

🛠 Fermilab

Integration and Interfaces

- External interfaces to Solenoids, Tracker, Calorimeter
- DS internal shielding has internal interfaces to stopping target, Detector support structure, downstream vacuum
- Integration and interfaces addressed via
 - WBS Dictionary and interface documents
 - Muon beamline meetings
 - Detector simulation meetings
 - Formal signoff between responsible parties for external interfaces

Remaining work prior to fabrication

- Complete simulations and studies to optimize proton absorber design
 - Verify material choices
 - Validate negligible impact of slots in OPA
 - Complete design / implement support structure
- Build IPA prototype
- Optimize fabrication technique for OPA

Quality Assurance

- Quality Assurance relies upon the following tools :
 - Fermilab Quality Assurance Manual
 - Fermilab Engineering Manual
 - Mu2e Quality Assurance Program
 - Documented engineering calculations and drawings
 - reviewed, approved and released
 - Verification of physics simulations
 - Prototypes will be tested for many months to verify long-term viability
 - Components received from vendors will be inspected for conformance to specifications
 - Dimensions of each internal shielding component will be verified

Risks

- IPA: material does not maintain its desired shape.
 - Solution: investigate use of support ribs
- OPA: Cost for Vendor to form borated polyethylene into required shape may be high.
 - Considering alternative materials: simulations using standard lower-cost HDPE are being run now
 - Conduct in-house tests on forming borated polyethylene

ES&H

- To perform muon beamline activities safely will require appropriate planning (JHA), attention to ES&H considerations and FESHM and FRCM requirements
 - Accessing confined space FESHM 5063
 - Crane, hoist, and forklift use FESHM 5021
 - Fall Hazards FESHM 5066
 - Magnetic fields FESHM 5062.2
 - Electrical hazards FESHM 5042
 - Radiation hazards FRCM
 - Activation by beam
 - And possibly ODH
 - FESHM 5064

Cost Table

WBS 5.7 Detector Solenoid Internal Shielding

Costs are fully burdened in AY k\$

	Base Cost (AY K\$)					
	M&S	Labor	Total	Estimate Uncertainty (on remaining budget)	% Contingency (on remaining budget)	Total Cost
475.05 Muon Beamline						
475.05.07 Detector Solenoid Internal Shielding						
475.05.07 Detector Solenoid Internal Shielding	188	202	390	119	35%	509
Grand Total	188	202	390	119	35%	509

475.05.07 Detector Solenoid Internal shielding

• Distribution by resource type (Labor / Material) AY k\$

Quality of Estimate (AY k\$)

10/21/14

7 Fermilab

19 H. Glass- DOE CD-2/3b Review

Mu_{2e}

FTEs by Discipline

20 H. Glass- DOE CD-2/3b Review

10/21/14

Fermilab

Major Milestones – DS Internal Shielding

- T5 2nd Iteration Design Complete 11/23/15
- T5 Ready for CD-3 Review 12/9/15
- T5 CD-3 Approval 2/23/16
- T5 Ready for fabrication 1/26/18
- T5 Proton Absorber components inspected at FNAL 11/9/18
 - T4: 1/9/19*
 - T3: 2/11/19*
 - T2: 5/9/19*
- T5 Ready for CD-4 11/21/19

Schedule, DS internal shielding

Summary

- Proton absorbers reduce rate of protons reaching tracker, fully satisfying requirements
- Solution is three independent passive absorbers (OPA, IPA, TSdA); TSdA additionally absorbs neutrons, thus reducing backgrounds for both tracker and calorimeter
- Interfaces identified
- Resource needs understood
- Ready for CD-2

1120

L3 Manager's Previous Experience

- Stony Brook research assistant, Fermilab Expt 605, 1980-85: detector system development, PhD 1985.
- The Aerospace Corporation, 1985-89: Manager, Advanced Applications, Image Exploitation Dept. Managed staff in image processing tasks.
- Fermilab, 1990-present. Currently Applied Scientist II
 - Main Injector, 1990-97: responsible for magnetic field measurements. Test program supervisor; measurement probe design
 - Manager of permanent magnet measurements, Recycler, 1996-99.
 - Deputy Dept. Head, Magnet Test Facility, 1991-2005. Explained to various bosses how to use Excel. Also supervised scientists in magnetic measurements group.
 - Pierre Auger Observatory, 1999-2013. Project Office jack-of-all-trades: Cost & Schedule Officer; web master; supervisor of summer students / teachers...
 - Fermilab Holometer, 2010-present. Optical simulations; laser safety.
 - Mu2e, 2012-present. Configuration Manager / change control. L3 Manager, Muon Beamline / DS internal shielding.

Mu2e

🛠 Fermilab

Labor Resources by FY (AY k\$)

Mu₂e

10/21/14

🛟 Fermilab