

Mu2e Tracker Straws

Chiho Wang Straws L3 Manager 10/22/2014

Outline

- Straw requirements
- Straw property measurements
- Straw assembly components and procedures
- Cost

Straw requirements

- 5 mm ID metalized Mylar tube cathode.
- Minimal material
 - 6 μm Mylar + 3 μm adhesive + 6 μm Mylar double helical wrap
 - Inner wall coating: 500Å AI + 200Å Au
 - Outer wall coating: 500Å AI
- Operates in vacuum
 - Sustains > 1 atm pressure difference
 - Leak rate < 7 ccm / detector volume
- Stability

Mu2e

3

- Straw straightness: max. transverse deviation/sagging < 300 µm for HV stability.
 - Longitudinal tension is applied to keep straw straight.
 - Initial tension need to be higher to counter for material relaxation over time (creep).
- Sustains radiation over the life time of operation.

Straw properties

- Destructive tests:
 - Pressure: sustained 60 psi (10 min.). Destroyed \geq 70 psi
 - Stretch: sustained 1.6 kg (2 yrs.). Destroyed ≥ 2.9 kg
- Mechanical:
 - Linear density: 0.34 ± 0.01 g/100cm
 - Wall thickness: 15 µm
 - Derived from linear density, assuming Mylar density 1.39 g/cm³, and same for the polyester based adhesive.
 - Spring constant: 0.891 cm/kg/100cm
- Electrical:

Mu2e

Cathode resistance: 120 Ω/100cm

Straw leak measurement 1

Duke C. Wang, S. Oh

5 C. Wang - CD-2/3b Review, Mu2e Tracker Straws

Straw leak measurement 1

Duke C. Wang, S. Oh

- N_2 leak rate = 0.095 ± 0.026 psi/day
- CO_2 leak rate = 0.36 ± 0.06 psi/day
- Assume Ar leak rate similar to N₂, and straw volume ~ 0.3 m³, estimated Ar(80%)CO(20%) leak rate ~ 2 ccm / tracker volume

🚰 Fermilab

Straw leak measurement 2

York J. Popp, K. Lynch

Fermilab

10/22/14

- Tested 10 × 129cm straws
- Early results ≤ 4 ccm / tracker volume
- Improvements underway

Straw leak measurement 3 Rice D. Rivera, M. Corcoran

EE891 and EE892 CO2 sensor

Mu₂e

- Tested 119 × 129cm straws
- Averaged leak rate = $5 \cdot 10^{-5}$ ccm/straw
- ~1 ccm for tracker volume

10/22/14

🚰 Fermilab

Straw straightness measurement

To determine the required straw tension

Horizontal Traveling Microscope (X)

Duke C. Wang, S. Oh

Straw deviation measured for different straw length and tension.

Mu₂e

Straw straightness measurement

10/22/14

Straw creep measurement

Duke C. Wang, S. Oh

- Glue straws on a support frame (120 cm) with tensions: 300 g, 400 g, 500 g, 600 g.
- Measure straw tension by resonant frequency as a function of time.

Mu₂e

Duke C. Wang, S. Oh

Straw creep measurement

Straw creep measurement

Duke C. Wang, S. Oh

Mu2e

Radiation aging study

- A single straw detector, constructed with relevant components, was operated under Sr⁹⁰ irradiation.
- Expected total dose (including beam flash) of 0.9 C/cm was irradiated.
- Gain change monitored by Fe⁵⁵ peak amplitude.
- Observed no measurable degradation in gain or cathode resistivity

Fractional gain change over 3 irradiation periods. Measured at 3 locations from downstream. Referenced to un-irradiated point at 110 cm:

			Gain(x)/Gain(110 cm)				
Period	Charge (mC/cm)	Current (nA/cm)	p1 (7cm)	p2 (37cm)	p3 (67cm)		
1	120	18	0.979	0.982	0.994		
2	120	36	1.010	1.009	1.002		
3	670	70	0.994	0.990	0.983		
Total	910			±2%			

- Gas flow rate = 2 vol/hr/m
- $20\pm0.02\%$ CO₂ with balance Ar
- Airgas "primary standard" grade. Purity 99.99% with individual impurities below:

Contaminant	Max. Concentration (ppm)
Carbon Monoxide	10
Hydrogen	10
Nitrogen	20
Oxygen	10
Total Halogens	10
Total Hydrocarbons	10
Water	10

Straw property summary

- Straw is robust and has no problem operating in vacuum. The burst pressure exceeds 60 psi and is well above 14 psi.
- Straw leak rate of ≤4 ccm is within acceptable range of 7 ccm
- 700 g initial tension is needed to keep straw tension above 250 g after 6 years, which is needed to keep straw straightness within ±0.3 mm for HV stability.
- Straw can sustain tension > 1.6 Kg and is well above the needed 700 g initial tension.
- No measurable degradation in gain after expected dosage of radiation.

Mu2e

Straw assembly

- After a straw is received from manufacturer it needs to go through QC procedures and get assembled into a straw subassembly. These procedures include:
 - Visual inspection
 - Continuity check (measure resistance)
 - Leak test
 - Cut to length
 - Assemble/Attach end pieces
- A QA/QC data base is being developed to track/link component data.

Mu2e

Straw cutter

Fermilab R. Wagner

Straw sub-assembly

Fermilab R. Wagner, A. Mukherjee

10/22/14

18 C. Wang - CD-2/3b Review, Mu2e Tracker Straws

Straw Termination

Fermilab R. Wagner, A. Mukherjee

Simulation studies show it is *not* necessary to deaden straws near gas manifold

Old

Mu₂e

- 4 piece construction
- Kapton sleeve trimmed to deaden ~1 cm past manifold
- Mostly brass

New

- 3piece construction
- Mostly plastic
 Lighter & cheaper

Assembly jigs for assembling end pieces

20 C. Wang - CD-2/3b Review, Mu2e Tracker Straws

Assembly jigs for gluing end pieces to straw

- Orient end pieces on two ends
- Glue to straw with conductive glue

Fermilab R. Wagner

A 2x4 prototype

22 C. Wang - CD-2/3b Review, Mu2e Tracker Straws

QA/QC data base

- Use a RDBMS FNAL supports PostgreSQL
- Barcode users & most parts Straws via their storage tubes
- QC and construction steps recorded in DB
- Leverage NOvA software experience and barcode readers, but write new software interface

10/22/14

Mu₂e

Straw assembly summary

- Straw end components had been manufactured and tested.
- Assembly tools and test equipment for straw assembly procedures were developed and functional.
- Using the material and tools developed, a 2 × 4 prototype is completed with front end electronics attached.
- A QA/QC data base is being implemented for production process.

Mu2e

	Base Cost (AY K\$)			Estimate	%	Total
	M&S	Labor	Total	(on remaining costs)	Contingency on ETC	Cost
475.06 Tracker						
475.06.02 Straws						
475.06.02.01 Straw Tubes	1,170	67	1,237	425	38%	1,662
475.06.02.03 Wire Stringing	29	2	31	4	21%	35
Grand Total	1,200	69	1,268	429	38%	1,697

Cost Breakdown

Base Cost (AY K\$)

10/22/14

Quality of Estimate

Base Cost (AY K\$)

Mu₂e

FY15 FY16

700 600 **Annual Cost \$K** 400 300 200 100

M Material

FY17

Non-Fermi Labor

Labor & Material by FY

800

Mu₂e

1,600

1,400

1,200

1,000

800

600

400

200

🛟 Fermilab

Cumulative Cost \$K

L Labor

FY18

Cumulative Total

Labor Resources by FY

FTEs by Discipline

10/22/14

Conclusion

- Detecting elements of the tracker: straws and straw-end components are manufactured and tested.
- Straw tube is robust and leak tight, and exceeds the requirements to operate in vacuum for 6 years.
- Assembly procedures and assembly tooling are realized and exercised.
- A QA/QC data base is being implemented.
- Ready for CD-2

Mu2e