Neutrino Interaction Physics at nuSTORM

Ryan Bayes

Experimental Particle Physics University of Glasgow

5 December, 2014

1 Unique Contributions to Interaction Physics

2 Potential Near Detectors at nuSTORM

3 Cross-Section Physics

∃ → < ∃ →</p>

Benefits of Muon Storage Rings for Neutrino Interactions

Produce multiple high quality beams of different flavours

- μ^+ decay produces ν_e and $\bar{\nu}_{\mu}$ in equal quantities
- ν_{μ} beam from π^+ decay (specific to nuSTORM and MOMENT)

Excellent energy range for interaction studies

- All neutrino beam energies between 0 and 4 GeV.
- Equal shares of QES and DIS interactions in this region.

Strong control over systematic effects

- Muon-decay beam energy and content precisely known.
- Pion beam flux with low contamination.

The nuSTORM Facility

- 120 GeV proton beam incident on a graphite target produce pions.
- Pions are horn captured, transported, and injected into ring. 52% of pions decay to muons before first turn
- Muons within momentum acceptance circulate in ring.

Interaction Specific Studies at nuSTORM

- Interaction rates must be understood by type.
 - Dictates significance of systematic effects in oscillations.
- Many interaction types only accessible with nuSTORM beams
- Data deficient in ν_e interactions.
 - Muon storage ring the best known method to fill this gap.

	Interaction Channels data exis		
ID	Stored μ^+	Stored μ^-	
1	$ar{ u}_{\mu}p ightarrow \mu^+ n$)	$ u_{\mu}n ightarrow \mu^{-}p$	
2	$\nu_e n \rightarrow e^- p$	$ar{ u}_e p ightarrow e^+ n$	
3	$ar{ u}_{\mu}n ightarrow \mu^{+}\pi^{-}n$	$ u_\mu n o \mu^- \pi^+ n$.	
4	$ar{ u}_{\mu}p ightarrow \mu^+\pi^0 p$	$ u_\mu n o \mu^- \pi^0 p$.	
5	$\bar{ u}_{\mu}p ightarrow \mu^{+}\pi^{-}p$	$ u_\mu p o \mu^- \pi^+ p$.	
6	$\nu_e n \rightarrow e^- \pi^+ n$	$\overline{\bar{ u}_e n} ightarrow e^+ \pi^- n$	
7	$ u_e p ightarrow e^- \pi^0 p$	$\bar{ u}_e p ightarrow e^+ \pi^0 n$	
8	$\nu_e p \rightarrow e^- \pi^+ p$	$\bar{ u}_e p ightarrow e^+ \pi^- p$	
9	$\bar{\nu}_{\mu}, \nu_e \to X$	$\nu_{\mu}, \bar{\nu}_e \to X$	

Sac

Potential for Cross-Section Measurement

Event Rate per 10^{21} POT, 100 tonnes at 50 m

• Flux uncertainties a significant contribution to cross-sections

Experiment	Flux Error
MiniBooNE	6.7—10.5%
T2K	10.9%
Minerva	12%
nuSTORM	< 1%

		μ^+	μ^-		
	Channel	N _{evts}	Channel	N _{evts}	
	$ar{ u}_{\mu}$ NC	1,174,710	$\bar{\nu}_e$ NC	1,002,240	
	$\nu_e \text{ NC}$	1,817,810	$ u_{\mu} NC$	2,074,930	
-	$ar{ u}_{\mu}$ CC	3,030,510	$\bar{\nu}_e$ CC	2,519,840	
	ν_e CC	5,188,050	$ u_{\mu}$ CC	6,060,580	
		π^+	π^{-}		
	$ u_{\mu}$ NC	14,384,192	$ar{ u}_{\mu}$ NC	6,986,343	
_	$ u_{\mu}$ CC	41,053,300	$ar{ u}_{\mu}$ CC	19,939,704	
-	$ u_{\mu}$ CC	41,053,300	ν_{μ} CC	19,939,704	

• nuSTORM measurements limited by detector systematics.

Ryan Bayes (University of Glasgow)

Neutrino Interaction Physics at nuSTORM

decay in 100 t Argor

Near Detector Requirements at nuSTORM

- Charge and flavour separation needs a magnetic field.
- Cross-section studies require good vertex resolution.
- Strong hadron calorimetry.
- Muon catcher (read as MIND) a universal requirement.
- Candidate technologies include
 - totally active scintillating detector.
 - liquid argon TPC.
 - high pressure gas argon TPC.
 - scintillating fibre tracker.
 - bubble chamber
- One detector will not be enough.
 - What makes a good vertex detector confounds PID
 - A system of detectors should be considered i.e. $MINER\nu A$

Proposed Near Detector Systems

- LBNE Near Detector, HIRESMUNU
 - ► Straw tube tracker, (S. Mishra & R. Petti).
 - Builds on NOMAD experience
 - ► Foil layers for some nuclear targets
- LBNO / LAGUNA Near Detector
 - High pressure gas Ar TPC
 - Totally active scintillating calorimeter.
 - Magnetized iron muon catcher.
 - Potential for hydrogen target.

Dipole Magnet 0.5 m pressure Bean Hydroge TASE

5 December, 2014

8 / 13

Inclusive Cross-Section Measurement in Liquid Argon¹

- Considered a 100 t LAr detector in the CCQE channels.
- Clean event reconstruction wi/ good fiducial cuts.
- Assuming 10 million events/year and 10 ms window
 - Event rate: 1 mHz
 - Pile up of a few events per hour.
- Clustering and PID is still in development.

Assumed LAr simulation parameters

• Determined that a potential 6 fold increase in precision possible.

¹arXiv:1308.6822v1

Ryan Bayes (University of Glasgow)

Neutrino Interaction Physics at nuSTORM

Attempt at a Detector System with Reconstruction.

• Consider a TASD paired with a MIND.

 $\blacktriangleright~2\times2\times2~m^3$ TASD in 2 Tesla dipole field next to 2 m SuperBIND

A proof of concept for a detector system

- Can we reconstruct continuous tracks from a vertex detector to a muon catcher?
- Can PID and track selection be conducted with sufficient purity for cross-section studies?
- What rates and efficiency can we expect with a detector at nuSTORM?

Pros

- We have the software to evaluate this detector.
- Direct comparison to existing detectors possible.
- Similar to LBNO model.

Cons

- "Wrong" nuclear target.
- Argon preferred for comparison to LAr detectors.

However: methods are transferrable.

Reconstruction in Compound Detector

Efficiency $\bar{\nu}_{\mu}$ rec. starting in TASD

- Analysis entails
 - Conducting particle ID for reconstructed tracks.
 - Generating partial cross-sections for ► various final states.

2 m

6 m

Reconstruction in Compound Detector

Efficiency $\bar{\nu}_{\mu}$ rec. starting in TASD

- Multiple tracks reconstructed. ۲
- Analysis entails
 - Conducting particle ID for reconstructed tracks.
 - Generating partial cross-sections for various final states.

Ryan Bayes (University of Glasgow) Neutrino Interaction Physics at nuSTORM 5 December, 2014

11 / 13

Plans for Relative Cross-Section Analysis

Scintillator near detector

- Conduct analysis of interaction final states.
 - Use a multi-variate analysis to ID μ versus π and p. MVA already exists from nuSTORM oscillation studies.
- Relative cross-section uncertainties can be assessed by final state.

MVA classifiers from simulations in 2 m long MIND

Ryan Bayes (University of Glasgow)

Neutrino Interaction Physics at nuSTORM

Summary

nuSTORM could provide an excellent source for interaction studies

- Potential for beams not available otherwise.
- Three different neutrino beams are accessible simultaneously.
- Uniquely provide ν_e interaction information.
- A number of near detectors have been proposed for the facility.
 - Very few comprehensive studies have been conducted.
- Toy studies have been conducted with liquid Argon.
 - Determined a 6 fold increase of precision in $\bar{\nu}_{\mu}$ studies.
- Initiating more comprehensive studies with TASD/MIND near detector.
 - Reconstruction of tracks between the two detectors have been completed.
 - Existing analysis tools can be used for final state cross-section studies.

・ 同 ト ・ ヨ ト ・ ヨ ト