

nuSTORM decay ring

JB. Lagrange, J. Pasternak Imperial College, UK/Fermilab, USA

Outline

2

FFAG Doublet solution

FFAG Triplet solution

FoDo solution

Improvements

Outline

3

FFAG Doublet solution

General Section FFAG Triplet solution

FoDo solution

Improvements

Racetrack FFAG

JB Lagrange - MAP meeting winter 2014

4

vSTORM Racetrack FFAG

Constraints:

In the straight part, the scallop must be as small as possible to get the maximum number of neutrinos at the far detector. <u>15 mrad</u> has been chosen as the <u>maximum angle</u>.

Stochastic injection: in the dispersion matching section, a drift length of ~2.6 m is necessary.

• to keep the ring as small as possible, <u>SC magnets</u> in the arcs are considered. <u>Normal conducting</u> <u>magnets in the straight part</u> are used.

• large transverse acceptance is needed in both planes: 1π mm.rad (2?).

5

Straight: 175 m, maximum scallop angle: 12 mrad

6

Cell parameters

	Circular	Matching	Straight
	Section	Section	Section
Type	FDF	FDF	Doublet
Cell radius/length [m]	17.6	36.2	5
Opening angle [deg]	30	15	
k-value/m-value	6.043	25.929	$5.5 {\rm m}^{-1}$
Packing factor	0.92	0.58	0.16
Maximum magnetic field [T]	2.5	3.3	1.5
horizontal excursion [m]	1.3	1.1	0.4
Full gap height [m]	0.45	0.45	0.45
Average dispersion /cell [m]	2.5	1.3	0.18
Number of cells /ring	4×2	4×2	35×2

7

Magnetic field for P_{max} (+16%)

8

Beta-functions at matching momentum

Horizontal (plain red) and vertical (dotted purple) betafunctions for half of the ring. ⁹ JB Lagrange - MAP meeting winter 2014

Dispersion function at matching momentum

Doublet solution Tune diagram $\frac{\Delta P}{P} = \pm 16\%$

Transverse acceptance

12

Outline

FFAG Doublet solution

FFAG Triplet solution

FoDo solution

Improvements

Motivations

1300 km decay scenario incompatible with scallop of the closed orbit.

Doublet in the straight section cannot be used.

Triplet in the straight section.

14

Triplet solution

Straight: 180 m, maximum scallop angle: 24 mrad

15

Triplet solution

Cell parameters

	Circular Section	Matching Section	Straight Section
Type	FDF	FDF	DFD
Cell radius/length [m]	17.6	36.2	10
Opening angle [deg]	30	15	
k-value/m-value	6.057	26.	$5.5 {\rm m}^{-1}$
Packing factor	0.92	0.58	0.24
Maximum magnetic field [T]	2.5	3.3	1.5
horizontal excursion [m]	1.3	1.1	0.6
Full gap height [m]	0.45	0.45	0.45
Average dispersion /cell [m]	2.5	1.3	0.18
Number of cells /ring	4×2	4×2	36×2

16

Triplet solution Magnetic field for P_{max} (+16%)

17

Triplet solution Beta-functions at matching momentum

Horizontal (plain red) and vertical (dotted purple) betafunctions for half of the ring. ¹⁸ JB Lagrange - MAP meeting winter 2014

Triplet solution

Dispersion function at matching momentum

Triplet solution Tune diagram $\frac{\Delta P}{P} = \pm 16\%$

Triplet solution

Transverse acceptance

21

Outline

FFAG Doublet solution

FoDo solution

Lattice parameters

23

Total circumference Length of the decay straight section Decay straight section/circumference ratio Field type Fringe field type Fringe field length Interpolation off the mid-plane Aperture type Stepsize Particle Matching momentum p_0 Minimum momentum p_{min} Maximum momentum p_{max} Ring tune point (H/V) at p_0

480 m 184 m 38%Field model Linear $1 \,\mathrm{cm}$ 1^{st} order rectangular $1 \,\mathrm{cm}$ muon μ^+ 3.8 GeV/c3.42 GeV/c (-10%)4.18 GeV/c (+10%)(9.71, 7.83)

Straight: 184 m.

24

Beta-functions at matching momentum

Horizontal (plain red) and vertical (dotted purple) betafunctions for half of the ring. ²⁵ JB Lagrange - MAP meeting winter 2014

Dispersion function at matching momentum

26

Tune diagram from -8.1% to +9.2% around 3.8 GeV/c

FoDo solution Transverse acceptance

10 000 particles with a Waterbag distribution. Unnormalized emittances are $2.\pi mm.rad$ in transverse planes. Momentum uniformly distributed in a longitudinal ellipse around 3.8 GeV/c ±10%.

FoDo solution Momentum distribution 54% survival over 100 turns

Outline

30

FFAG Doublet solution

General Section FFAG Triplet solution

FoDo solution

Future improvements

- Small scallop angle in the straight for FFAG: reduce the portion of the straight cell with scallop.
- Larger DA for FFAG: smaller gradient (m-value) in the straight section.
- Smaller magnets in the arcs for FFAG: reduce the maximum dispersion (> 1.3 m necessary for injection).
- larger drift space in matching section for easier injection.
- Realistic magnetic field in tracking for FFAG and FoDo (Enge Fringe field fall-offs, no discontinuity).
- Study of tolerance to errors (field error and misalignment) in FFAG and FoDo lattices.

31

Thank you for your attention