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ICFA Neutrino Panel

News

Initial report from the ICFA Neutrino Panel (May 27, 2014)

Mission

To promote international cooperation in the development of the accelerator-based neutrino-oscillation program and to promote
international collaboration in the development of a neutrino factory as a future intense source of neutrinos for particle physics
experiments.

Panel

Membership
Email the panel
Terms of Reference
Meetings

Communication

Mailing List

A mailing list has been set up to facilitate contact between the Panel and the international neutrino community and to
allow discussion and information sharing within the community. Individuals may sign up to the list by visiting the list on
the JiscMail site here.

Post to the list: icfa-neutrino-community@jiscmail.ac.uk

Meetings

2013 community consultation:
In line with its mandate, the Panel is organising three “Town Meetings”, one in each region to collect input from the
community and to receive reports from the regional planning activities.

The Americas: The community meeting will take place at FNAL from the 30th January 2014 to the 1st February 2014.
The meeting page can be found here.

Asia: The community consultation meeting will be held in conjunction with the NNN13 workshop on the 13 th November
2013 at the Kavli IPMU, Kashiwa, Japan. The community consultation meeting page can be found here.

Europe: The community meeting will take place at the University of Paris Diderot, starting on the 8th January 2014 and
ending on the 10th January 2014. (More info)

Documents

Initial report from the ICFA Neutrino Panel (May 27, 2014)

The ICFA Neutrino Panel: Terms of Reference

First Report:

http://arxiv.org/pdf/1405.7052.pdf
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What We Are Trying To Understand:

⇐ NEUTRINOS HAVE TINY MASSES

⇓ LEPTON MIXING IS “WEIRD” ⇓
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What Does It Mean?
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Neutrino Masses: Only∗ “Palpable” Evidence
of Physics Beyond the Standard Model

The SM we all learned in school predicts that neutrinos are strictly
massless. Hence, massive neutrinos imply that the the SM is incomplete
and needs to be replaced/modified.

Furthermore, the SM has to be replaced by something qualitatively
different.

——————
∗ There is only a handful of questions our model for fundamental physics cannot

explain (these are personal. Feel free to complain).

• What is the physics behind electroweak symmetry breaking? (Higgs X).

• What is the dark matter? (not in SM).

• Why is there more matter than antimatter in the Universe? (not in SM).

• Why does the Universe appear to be accelerating? Why does it appear that the

Universe underwent rapid acceleration in the past? (not in SM).
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What is the New Standard Model? [νSM]

The short answer is – WE DON’T KNOW. Not enough available info!

m
Equivalently, there are several completely different ways of addressing
neutrino masses. The key issue is to understand what else the νSM
candidates can do. [are they falsifiable?, are they “simple”?, do they
address other outstanding problems in physics?, etc]

We need more experimental input.
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Neutrino Masses, Higgs Mechanism, and New Mass Scale of Nature

The LHC has revealed that the minimum SM prescription for electroweak

symmetry breaking — the one Higgs double model — is at least approximately

correct. What does that have to do with neutrinos?

The tiny neutrino masses point to three different possibilities.

1. Neutrinos talk to the Higgs boson very, very weakly;

2. Neutrinos talk to a different Higgs boson – there is a new source of

electroweak symmetry breaking!;

3. Neutrino masses are small because there is another source of mass out

there — a new energy scale indirectly responsible for the tiny neutrino

masses, a la the seesaw mechanism.

We are going to need a lot of experimental information from all areas of particle

physics in order to figure out what is really going on!
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Piecing the Neutrino Mass Puzzle

Understanding the origin of neutrino masses and exploring the new physics in the

lepton sector will require unique theoretical and experimental efforts . . .

• understanding the fate of lepton-number. Neutrinoless double beta decay!

• A comprehensive long baseline neutrino program. (On-going T2K and NOνA.

LBNF and HyperK next steps towards the ultimate “superbeam” experiment.)

• The next-step is to develop a qualitatively better neutrino beam – e.g. muon

storage rings (neutrino factories).

• Different baselines and detector technologies a must for both over-constraining the

system and looking for new phenomena.

• Probes of neutrino properties, including neutrino scattering experiments.

• Precision measurements of charged-lepton properties (g − 2, edm) and searches for

rare processes (µ→ e-conversion the best bet at the moment).

• Collider experiments. The LHC and beyond may end up revealing the new physics

behind small neutrino masses.

• Neutrino properties affect, in a significant way, the history of the universe

(Cosmology). Will we learn about neutrinos from cosmology, or about cosmology

from neutrinos?
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HOWEVER. . .

We have only ever objectively “seen” neutrino masses in long-baseline
oscillation experiments. It is the clearest way forward!

Does this mean we will reveal the origin of neutrino masses with
oscillation experiments? We don’t know, and we won’t know until we try!

[henceforth, I will concentrate on neutrino oscillations]
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André de Gouvêa Northwestern

Something Funny Happened on the Way to the 21st Century

ν Flavor Oscillations

Neutrino oscillation experiments have revealed that neutrinos change
flavor after propagating a finite distance. The rate of change depends on
the neutrino energy Eν and the baseline L. The evidence is overwhelming.

• νµ → ντ and ν̄µ → ν̄τ — atmospheric and accelerator experiments;

• νe → νµ,τ — solar experiments;

• ν̄e → ν̄other — reactor experiments;

• νµ → νother and ν̄µ → ν̄other— atmospheric and accelerator expts;

• νµ → νe — accelerator experiments.

The simplest and only satisfactory explanation of all this data is that
neutrinos have distinct masses, and mix.
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A Realistic, Reasonable, and Simple Paradigm:


νe

νµ

ντ

 =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Ueτ2 Uτ3




ν1

ν2

ν3


Definition of neutrino mass eigenstates (who are ν1, ν2, ν3?):

• m2
1 < m2

2 ∆m2
13 < 0 – Inverted Mass Hierarchy

• m2
2 −m2

1 � |m2
3 −m2

1,2| ∆m2
13 > 0 – Normal Mass Hierarchy

tan2 θ12 ≡ |Ue2|
2

|Ue1|2 ; tan2 θ23 ≡ |Uµ3|2
|Uτ3|2 ; Ue3 ≡ sin θ13e

−iδ

[For a detailed discussion see e.g. AdG, Jenkins, PRD78, 053003 (2008)]
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NuFIT 2.0 (2014)

Normal Ordering (Δχ2 = 0.97) Inverted Ordering (best fit) Any Ordering

bfp ±1σ 3σ range bfp ±1σ 3σ range 3σ range

sin2 θ12 0.304+0.013
−0.012 0.270 → 0.344 0.304+0.013

−0.012 0.270 → 0.344 0.270 → 0.344

θ12/
◦ 33.48+0.78

−0.75 31.29 → 35.91 33.48+0.78
−0.75 31.29 → 35.91 31.29 → 35.91

sin2 θ23 0.452+0.052
−0.028 0.382 → 0.643 0.579+0.025

−0.037 0.389 → 0.644 0.385 → 0.644

θ23/
◦ 42.3+3.0

−1.6 38.2 → 53.3 49.5+1.5
−2.2 38.6 → 53.3 38.3 → 53.3

sin2 θ13 0.0218+0.0010
−0.0010 0.0186 → 0.0250 0.0219+0.0011

−0.0010 0.0188 → 0.0251 0.0188 → 0.0251

θ13/
◦ 8.50+0.20

−0.21 7.85 → 9.10 8.51+0.20
−0.21 7.87 → 9.11 7.87 → 9.11

δCP/
◦ 306+39

−70 0 → 360 254+63
−62 0 → 360 0 → 360

Δm2
21

10−5 eV2 7.50+0.19
−0.17 7.02 → 8.09 7.50+0.19

−0.17 7.02 → 8.09 7.02 → 8.09

Δm2
3�

10−3 eV2 +2.457+0.047
−0.047 +2.317 → +2.607 −2.449+0.048

−0.047 −2.590 → −2.307

�
+2.325 → +2.599
−2.590 → −2.307

�

Three Flavor Mixing Hypothesis Fits All∗ Data Really Well.

∗Modulo the Short-Baseline Anomalies, to be discussed later.

[Gonzalez-Garcia, Maltoni, Schwetz, 1409.5439, http://www.nu-fit.org]

December 3, 2014 Future νs: Oscillations
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“Atmospheric Oscillations” in the Electron Sector: Daya Bay, RENO, Double Chooz

Pee = 1− sin2 2θ sin2
“

∆m2L
4E

”

phase= 0.64
“

∆m2

2.5×10−3 eV2

” “
5 MeV
E

” “
L

1 km

”

Triumph of the 3 flavor

paradigm!

[Daya Bay Coll., 1203.1669]
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What We Know We Don’t Know: Missing Oscillation Parameters

(∆m2)sol

(∆m2)sol

(∆m2)atm

(∆m2)atm

νe

νµ

ντ

(m1)
2

(m2)
2

(m3)
2

(m1)
2

(m2)
2

(m3)
2

normal hierarchy inverted hierarchy

• What is the νe component of ν3?
(θ13 6= 0!)

• Is CP-invariance violated in neutrino
oscillations? (δ 6= 0, π?)

• Is ν3 mostly νµ or ντ? (θ23 > π/4,
θ23 < π/4, or θ23 = π/4?)

• What is the neutrino mass hierarchy?
(∆m2

13 > 0?)

⇒ All of the above can “only” be

addressed with new neutrino

oscillation experiments

Ultimate Goal: Not Measure Parameters but Test the Formalism (Over-Constrain Parameter Space)
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We need to do this in

the lepton sector!

What we ultimately want to achieve:
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0BB@
νe

νµ

ντ

1CCA =

0BB@
Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

1CCA
0BB@

ν1

ν2

ν3

1CCA

What we have really measured (very roughly):

• Two mass-squared differences, at several percent level – many probes;

• |Ue2|2 – solar data;

• |Uµ2|2 + |Uτ2|2 – solar data;

• |Ue2|2|Ue1|2 – KamLAND;

• |Uµ3|2(1− |Uµ3|2) – atmospheric data, K2K, MINOS;

• |Ue3|2(1− |Ue3|2) – Double Chooz, Daya Bay, RENO;

• |Ue3|2|Uµ3|2 (upper bound → evidence) – MINOS, T2K.

We still have a ways to go!
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NuFIT 2.0 (2014)

It’s a start. . .

Where We Are (?) [This is Not a Proper Comparison Yet!]

[Gonzalez-Garcia, Maltoni, Schwetz, 1409.5439, http://www.nu-fit.org]
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What New New Physics Might We Stumble Upon?

Large deviations from the three-flavor paradigm are allowed, including (not
exhaustive list)

• There may be more than three neutrino mass eigenstates. These would

manifest themselves in the form of new oscillation lengths or apparent

non-Unitarity of the mixing matrix.

• Neutrinos may participate in new, weaker-than-weak interactions, which lead

to nonstandard matter effects. [Concrete models are constrained by other

experimental probes (usually charged-leptons) but there are scenarios, at the

“existence-proof” level, that can only be constrained by neutrino oscillations.]

• Neutrino propagation may deviate from standard expectations. E.g., the

neutrinos might decay, which leads to new decay lengths and potentially new

mixing phenomena. “Macroscopic quantum interference” also very sensitive to

Lorentz invariance violation, new quantum mechanical decoherence from

hypothetical “neutrino–vacuum” interactions. Tiny neutrino masses also allow

stringent tests of the CPT-theorem. (e.g., do fermions and antifermions have

exactly the same mass?)
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Golden Opportunity to Understand Matter versus Antimatter?

The SM with massive Majorana neutrinos accommodates five irreducible
CP-invariance violating phases.

• One is the phase in the CKM phase. We have measured it, it is large,
and we don’t understand its value. At all.

• One is the θQCD term (θGG̃). We don’t know its value but it is
constrained to be very small. We don’t know why. There are some
good ideas, yet to be confirmed by experiment.

• Three are in the neutrino sector. One can be measured via neutrino
oscillations. Instantaneous 50% increase on the amount of
information!

We don’t know much about CP-invariance violation. Is it really fair to
presume that CP-invariance is generically violated in the neutrino sector
solely based on the fact that it is violated in the quark sector? Why?
Cautionary tale: “Mixing angles are small”
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CP-invariance Violation in Neutrino Oscillations

The most promising approach to studying CP-violation in the leptonic
sector seems to be to compare P (νµ → νe) versus P (ν̄µ → ν̄e).

The amplitude for νµ → νe transitions can be written as

Aµe = U∗e2Uµ2

(
ei∆12 − 1

)
+ U∗e3Uµ3

(
ei∆13 − 1

)
where ∆1i = ∆m2

1iL
2E , i = 2, 3.

The amplitude for the CP-conjugate process can be written as

Āµe = Ue2U
∗
µ2

(
ei∆12 − 1

)
+ Ue3U

∗
µ3

(
ei∆13 − 1

)
.

[I assume the unitarity of U , Ue1U
∗
µ1 = −Ue2U∗µ2 − Ue3U∗µ3]
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André de Gouvêa Northwestern

In general, |A|2 6= |Ā|2 (CP-invariance violated) as long as:

• Nontrivial “Weak” Phases: arg(U∗eiUµi) → δ 6= 0, π;

• Nontrivial “Strong” Phases: ∆12, ∆13 → L 6= 0;

• Because of Unitarity, we need all |Uαi| 6= 0 → three generations.

All of these can be satisfied, with a little luck: we needed |Ue3| 6= 0. X
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How Precisely Do We Need to Measure Lepton Mixing Anyway?

In order to test the formalism, i.e., to look for new new physics we need to

measure the same thing in different ways very precisely. “As precisely as

possible.”

This is clearly not a satisfactory answer, but honest answers are model

dependent, and depend on the question.

Neutrino oscillations themselves, instead, offer some interesting goal posts

a.k.a. small parameters. These include the ratio of the mass-squared

differences and the smallest of the mixing parameters

∆m2
12

|∆m2
13|
' 0.03; |Ue3| ' 0.15.

“Flavor models” often predict that mixing parameters are non-trivially related.

In order to test that, we need to measure all mixing parameters with similar

precision. Except for δ, sin2 θ23 has, currently the largest uncertainty (relative

and absolute), while sin2 θ12 and sin2 θ13 are known at the 5% level.

[toy example and some comments on flavor→]
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1

Understanding Fermion Mixing

One of the puzzling phenomena uncovered by the neutrino data is the

fact that Neutrino Mixing is Strange. What does this mean?

It means that lepton mixing is very different from quark mixing:

[|(VMNS)e3| < 0.2]

WHY?

They certainly look VERY different, but which one would you label
as “strange”?
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“Left-Over” Predictions: δ, mass-hierarchy, cos 2θ23

[Albright and Chen, hep-ph/0608137]

| |
| |
| |
| |
| |
| |
| |
| |
| |Daya Bay

(3 σ)

↔
↔
↔
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Neutrino Mixing Anarchy: Alive and Kicking!

[AdG, Murayama, 1204.1249]
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3
Anarchy vs. Order — more precision required!

Order: sin2 θ13 = C cos2 2θ23, C ∈ [0.8, 1.2] [AdG, Murayama, 1204.1249]
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Long-Baseline Experiments, Present and Future (Not Exhaustive!)

• [NOW] T2K (Japan), NOνA (USA) – νµ → νe appearance, νµ

disappearance – precision measurements of “atmospheric parameters”

(∆m2
13, sin

2 θ23). Pursue mass hierarchy via matter effects. Nontrivial tests

of paradigm. First step towards CP-invariance violation.

• [∼2020] JUNO (China) – ν̄e disappearance – precision measurements of

“solar parameters” (∆m2
12, sin

2 θ12). Pursue the mass hierarchy via

precision oscillations..

• [∼2020] PINGU (South Pole) – atmospheric neutrinos – pursue mass

hierarchy via matter effects.

• [∼2025] HyperK (Japan), LBNF (USA) – Second (real opportunity for

discovery!) step towards CP-invariance violation. More nontrivial tests of

the paradigm. Ultimate “super-beam” experiments.

• [>2030(?)] Neutrino Factories – Ultimate neutrino oscillation experiment.

Test paradigm, precision measurements, solidify CP-violation discovery or

improve sensitivity significantly.
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Not all is well(?): The Short Baseline Anomalies

Different data sets, sensitive to L/E values small enough that the known
oscillation frequencies do not have “time” to operate, point to unexpected
neutrino behavior. These include

• νµ → νe appearance — LSND, MiniBooNE;

• νe → νother disappearance — radioactive sources;

• ν̄e → ν̄other disappearance — reactor experiments.

None are entirely convincing, either individually or combined. However,
there may be something very very interesting going on here. . .
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• LSND

• MB ν

• MB, ν̄

[Courtesy of G. Mills]
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[Statistical Errors Only]

[Courtesy of G. Mills]
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What is Going on Here?

• Are these “anomalies” related?

• Is this neutrino oscillations, other new physics, or something else?

• Are these related to the origin of neutrino masses and lepton mixing?

• How do clear this up definitively?

Need new clever experiments, of the short-baseline type! [In practice, we
address the oscillation interpretation of the anomalies, but we don’t know
what else to do. . . ]

Observable wish list:

• νµ disappearance (and antineutrino);

• νe disappearance (and antineutrino);

• νµ ↔ νe appearance;

• νµ,e → ντ appearance.
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If the oscillation interpretation of the short-baseline anomalies turns out
to be correct . . .

• We would have found new particle(s)!!!!!! [cannot overemphasize this!]

• Lots of Questions! What is it? Who ordered that? Is it related to the
origin of neutrino masses? Is it related to dark matter?

• Lots of Work to do! Discovery, beyond reasonable doubt, will be
followed by a panacea of new oscillation experiments. If, for example,
there were one extra neutrino state the 4× 4 mixing matrix would
require three more mixing angles and three more CP-odd phases.
Incredibly challenging. For example, two of the three CP-odd
parameters, to zeroth order, can only be “seen” in tau-appearance.
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André de Gouvêa Northwestern

For example, if the new neutrino states are the “right-handed neutrinos”
from the standard seesaw, independent from the short-baseline anomalies
(for an inverted mass hierarchy, m4 = 1 eV(� m5)) . . .

[AdG, Huang, 1110.6122]

• νe disappearance with an associated effective mixing angle sin2 2ϑee > 0.02.

An interesting new proposal to closely expose the Daya Bay detectors to a

strong β-emitting source would be sensitive to sin2 2ϑee > 0.04;

• νµ disappearance with an associated effective mixing angle sin2 2ϑµµ > 0.07,

very close to the most recent MINOS lower bound;

• νµ ↔ νe transitions with an associated effective mixing angle

sin2 ϑeµ > 0.0004;

• νµ ↔ ντ transitions with an associated effective mixing angle

sin2 ϑµτ > 0.001. A νµ → ντ appearance search sensitive to probabilities

larger than 0.1% for a mass-squared difference of 1 eV2 would definitively

rule out m4 = 1 eV if the neutrino mass hierarchy is inverted.
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E.g., CPV in 3+1 Scenarios. νSTORM+, νe → νµ at the “optimal” baseline. . .

]2
 [e

V
2 14

m
6

0.98

0.99

1

1.01

1.02

/- /2/- 0 /2/ /

sq

⋆

s
e

0.17

0.18

0.19

/- /2/- 0 /2/ /

sq

⋆

[AdG, Kelly, Kobach, arXiv, to appear]
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The Role of Muon Storage Rings

Qualitatively better beams – better than the pion-decay-in-flight beams –
are necessary in order to

• seriously test the standard neutrino paradigm;

• more precisely measurements of oscillation parameters;

• precisely measure neutrino cross-sections (around 1%);

• carry out a serious “sterile neutrinos” short-baseline program.

Very few candidates on the market (muon-storage ring,
pion-decay-at-rest). The most versatile one, by far, are the neutrino
beams from muon-storage rings. It is hard to imagine a high-precision,
thorough, long-term neutrino-oscillation campaign – a la B-Factories –
without neutrino beams from muon storage rings.

December 3, 2014 Future νs: Oscillations
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In Conclusion

The venerable Standard Model sprung a leak in the end of the last
century: neutrinos are not massless! (and we are still trying to patch it)

1. We know very little about the new physics uncovered by neutrino
oscillations.

2. neutrino masses are very small – we don’t know why, but we
think it means something important.

3. neutrino mixing is “weird” – we don’t know why, but we think it
means something important.
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4. We need more experimental input These will come from a rich,
diverse experimental program which relies heavily on the existence of
underground facilities capable of hosting large detectors
(double-beta decay, precision neutrino oscillations, supernova
neutrinos, nucleon decay). Also “required”

• Powerful, well-characterized neutrino beams;

• Precision studies of charged-lepton lepton properties and processes;

• High energy collider experiments (the LHC will do for now).

5. There is plenty of room for surprises, as neutrinos are potentially
very deep probes of all sorts of physical phenomena. Remember that
neutrino oscillations are “quantum interference devices” – potentially
very sensitive to whatever else may be out there.
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Backup Slides . . .

December 3, 2014 Future νs: Oscillations
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High-energy seesaw has no other observable consequences, except, perhaps, . . .

Baryogenesis via Leptogenesis

One of the most basic questions we are allowed to ask (with any real hope
of getting an answer) is whether the observed baryon asymmetry of the
Universe can be obtained from a baryon–antibaryon symmetric initial
condition plus well understood dynamics. [Baryogenesis]

This isn’t just for aesthetic reasons. If the early Universe undergoes a
period of inflation, baryogenesis is required, as inflation would wipe out
any pre-existing baryon asymmetry.

It turns out that massive neutrinos can help solve this puzzle!
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André de Gouvêa Northwestern

In the old SM, (electroweak) baryogenesis does not work – not enough
CP-invariance violation, Higgs boson too light.

Neutrinos help by providing all the necessary ingredients for successful
baryogenesis via leptogenesis.

• Violation of lepton number, which later on is transformed into baryon
number by nonperturbative, finite temperature electroweak effects (in
one version of the νSM, lepton number is broken at a high energy
scale M).

• Violation of C-invariance and CP-invariance (weak interactions, plus
new CP-odd phases).

• Deviation from thermal equilibrium (depending on the strength of the
relevant interactions).

December 3, 2014 Future νs: Oscillations
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E.g. – thermal, seesaw leptogenesis, L ⊃ −yiαLiHNα − Mαβ
N

2 NαNβ +H.c.

• L-violating processes

• y ⇒ CP-violation

• deviation from thermal eq.
constrains combinations of

MN and y.

• need to yield correct mν

not trivial!

[G. Giudice et al, hep-ph/0310123]

[Fukugita, Yanagida]
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E.g. – thermal, seesaw leptogenesis, L ⊃ −yiαLiHNα − Mαβ
N

2 NαNβ +H.c.

[G. Giudice et al, hep-ph/0310123]

It did not have to work – but it does

MSSM picture does not quite work – gravitino problem

(there are ways around it, of course...)
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Relationship to Low Energy Observables?

In general . . . no. This is very easy to understand. The baryon asymmetry
depends on the (high energy) physics responsible for lepton-number
violation. Neutrino masses are a (small) consequence of this physics,
albeit the only observable one at the low-energy experiments we can
perform nowadays.

see-saw: y,MN have more physical parameters than mν = ytM−1
N y.

There could be a relationship, but it requires that we know more about
the high energy Lagrangian (model depent). The day will come when we
have enough evidence to refute leptogenesis (or strongly suspect that it is
correct) - but more information of the kind I mentioned earlier is really
necessary (charged-lepton flavor violation, collider data on EWSB,
lepton-number violation, etc).
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And that is not all! Neutrinos are unique probes of several different
physics phenomena from vastly different scales, including. . .

• Dark Matter;

• Weak Interactions;

• Nucleons;

• Nuclei;

• the Earth;

• the Sun;

• Supernova explosions;

• The Origin of Ultra-High Energy Cosmic Rays;

• The Universe.
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[H. Murayama]

← superpower: invisibility
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