The E906/SeaQuest Experiment

Kun Liu (on behalf of E906/SeaQuest Collaboration)
Los Alamos National Laboratory

48th Annual Fermilab Users Meeting, June 9-12, 2015
E906/SeaQuest experiment at Fermilab

Aimed at measuring dimuon production in Drell-Yan process and charmonium decay

- **Beam**
 - 120 GeV proton from Main Injector
 - 19ns RF, 5s spill, 1×10^{13} protons per spill

- **Target system**
 - Liquid H and D
 - Solid C, Fe, W

- **Tracking detectors**
 - Drift chambers and hodoscope scintillators

- **Focusing magnet and solid iron dump**
 - $\Delta p_t = 2.9$ GeV

- **Spectrometer magnet**
 - $\Delta p_t = 0.4$ GeV

- **Absorber wall and proportional tube based Muon ID**

25 m
A brief history

- **Run-I**: 2-month commissioning, first J/ψ signal
- **Run-II**: solved almost all the technical problems and substantial improvement in beam quality, *first physics results*
- **Run-III**:
 - high quality beam
 - new station-1 DC to increase the x_2 coverage
- **Polarized projects** (target and/or beam) will take over in summer 2016

Our heartfelt thanks to Accelerator Division for their remarkable work on improving the beam quality
E906/SeaQuest Collaboration

Abilene Christian University
Ryan Castillo, Michael Daugherty, Donald Isenhower, Noah Kitts, Lacey Medlock, Noah Shuttly, Rusty Towell, Shon Watson, Ziao Jai Xi

Academia Sinica
Wen-Chen Chang, Ting-Hua Chang, Shiu Shiu-Hao

Argonne National Laboratory
John Arrington, Don Geesaman*, Kawtar Hafidi, Roy Holt, Harold Jackson, David Potterveld, Paul E. Reimer*, Brian Tice

University of Colorado
Ed Kinney, Joseph Katch, Po-Ju Lin

Fermi National Accelerator Laboratory
Chuck Brown, Dave Christian, Su-Yin Wang, Jin-Yuan Wu

University of Illinois
Bryan Dannersitz, Markus Diefenthaler, Bryan Kerns, Hao Li, Naomi C.R Makins, Dhyaaeesh Mulagur R. Evan McLellan, Jen-Chieh Peng, Shivangi Prasad, Mae Hwee Teo, Mariusz Witek, Yangqiu Yin

KEK
Shin’ya Sawada

Los Alamos National Laboratory
Gerry Garvey, Xiaodong Jiang, Andreas Klein, David Kleijnjan, Mike Leitch, Kun Liu, Ming Liu, Pat McGaughey, Joel Moss

Mississippi State University
Lamiaa El Fassi

University of Maryland
Betsy Beise, Yen-Chu Chen, Kazutaka Nakahara

University of Michigan
Christine Aidala, McKenzie Barber, Catherine Culkin, Vera Loggins, Wolfgang Lorenzon, Bryan Ramson, Richard Raymond, Josh Rubin, Matt Wood

National Kaohsiung Normal University
Rungsheng Guo, Su-Yin Wang

RIKEN
Yoshinori Fukao, Yuji Goto, Atsushi Taketani, Manabu Togawa

Rutgers, The State University of New Jersey
Ron Gilman, Ron Ransome, Arun Tadepalli

Tokyo Tech
Shou Miyaska, Kei Nagai, Kenichi Nakano, Shigeki Obata, Florian Sanfl, Toshi-Aki Shibata

Yamagata University
Yuya Kudo, Yoshiyuki Miyachi, Shumpei Nara

don't know how to display the graphs and pictures

2009 @ Los Alamos

2013 @ Tokyo Tech
E906 kinematic coverage

The Drell-Yan process:

\[
\frac{d^2\sigma}{dx_b \, dx_t} = \frac{4\pi\alpha^2}{9x_b \, x_t} \sum_q e_q^2 \left[q_t(x_t)q_b(x_b) + q_t(x_t)\bar{q}_b(x_b) \right]_{\text{small}}
\]

\(q_t(x_t) \): target sea quark at low/intermediate \(x \)

\(q_b(x_b) \): beam valence quark at high \(x \)
Flavor asymmetry in light quark sea

- Assuming charge symmetry, ignoring nuclear effects of deuterium and heavy quark contributions:

$$\frac{\sigma^{pd}}{2\sigma^{pp}} \bigg|_{x_1 \gg x_2} \approx \frac{1}{2} \left[1 + \frac{\bar{d}(x_2)}{\bar{u}(x_2)} \right].$$

- Naively we would expect flavor symmetry between \bar{u} and \bar{d}
- E866/NuSea experiment reveals a striking asymmetry in the sea distributions at moderate x
- Caused by virtual pions?

- Important constraints on light sea polarization
- No models until recently (Peng et al, PLB 736 2014, 411) could incorporate the sign change at $x > 0.25$
Quark energy loss in DY

- Fundamental probe to study matter properties, like QGP produced at RHIC and LHC
- Observables result from convolution of initial and final state interactions
- Drell-Yan provides a clean baseline measurement

- Early data from E866
 - Correction must be made for shadowing effects
 • Garvey & Peng PRL 90 (2003)
 - NO partonic energy loss if all effects from shadowing
 • Vasiliev et al., PRL 83 (1999)
 - Significant parton energy loss, ~1.2 GeV/fm if all from energy loss
 • Johnson et al., PRC 65 025203 (2002)

Both yield $20\sim30\%$ effects in R_{pA}

Figure 11: Comparison of the average valence and sea quark, and gluon modifications at $Q^2 = 1.69 \text{ GeV}^2$ for Pb nucleus from LO global DGLAP analyses EKS98 [1, 2], EKPS [3], nDS [6], HKN07 [5], and this work EPS09LO.
E906 Drell-Yan dimuon acceptance

- Parton initial energy: 30 - 120 GeV (relevant to RHIC and LHC parton energy)
- Direct test on various models:
 - Gavin and Milana:
 - Brodsky and Hoyer:
 - Baier et al:
 \[\Delta x_1 = -\kappa_1 x_1 A^{1/3} \]
 \[\Delta x_1 = -\kappa_2 A^{1/3} \]
 \[\Delta x_1 = -\frac{\kappa_3}{s} A^{2/3} \]
- Sea quark \(x = 0.1 \sim 0.3 \)
- Minimal shadowing
- \(1/s \) enhanced dE/dx effect

First unambiguous determination of dE/dx in CNM
Data from FY 2014 (Run-II)

- Monte Carlo describe data well
- Resolution better than expected
 - $\sigma_M(J/\psi) \sim 180$ MeV, $\sigma_M(DY) \sim 220$ MeV
 - J/ψ ψ' separation
 - Cleaner DY sample
- Good target/beam dump separation

- Beam quality worse than expected (instantaneous rate much higher than average)
 - live time of spectrometer greatly reduced by the ‘super’ RF buckets
 - Reconstruction efficiency lower than expected because of the high detector occupancy

- Entire beam interacts upstream of SeaQuest spectrometer
- Pointing resolution very poor along beam axis
- Dominated by random coincidences
E906 preview measurements on \bar{d}/\bar{u}

- Only consists of 5% of the total expected statistics
- Well consistent with E866 results at low x_2
- Interesting behavior at high x_2, with large statistical uncertainties. New larger drift chamber and more statistics will help us pin down this point.
- Current systematic error mainly comes from LD$_2$ impurity and unresolved rate-dependence. We expect final systematic uncertainty to be \sim1%
Quark energy loss at E906

- Too early to make any conclusion on p+Fe as limited by the statistics
- A consistently negative slope beyond the shadowing strength is observed in p+W data.
- With 20x more statistics, we will be able to clearly distinguish between:
 - $-dE \propto A^{1/3}$ (or $\propto L$)
 - $-dE \propto A^{2/3}$ (or $\propto L^2$)
Summary

Run-II: 5% of total statistics:
• confirmed the large light sea quark asymmetry at $x_2 \sim 0.15$, while the sign change at $x_2 > 0.3$ still waits for more statistics
• observed a negative slope beyond the extent of shadowing

Ongoing Run-III: ~20x of Run-II statistics

Other ongoing physics analysis:
• EMC effect in Drell-Yan
• Transverse momentum broadening
• Difference between J/ψ and ψ’ suppression in pA
• Angular distribution of DY and J/ψ produced in beam dump
• Search for dark photons
• ...

Future polarized program
• target: sea quark Sivers asymmetry in DY
• beam: valence quark Sivers asymmetry in DY
Backup slides
EMC effect in DY

SeaQuest PREVIEW

\sim 5\% \text{ of anticipated data}