CMS Scientific Computing

Robert Harris
Fermilab
Scientific Computing Division

Fermilab User’s Meeting
June 11, 2015
I will introduce a few of the areas where my colleagues in the Fermilab Scientific Computing Division are actively involved. Many thanks for their work and their help preparing this talk.
Data Model

- CMS now has a global data pool
 - One central condor pool for all types of resources and applications

- Users have access to any data, anytime, anywhere (AAA)
 - **Data Federation** will make CMS datasets available transparently across the Grid
 - In run 1 CMS moved away from MONARC hierarchical data model
Run 2 Computing Challenge

- Run 2 was projected to require an order of magnitude more computing than Run 1 at similar budget levels
 - HL-LHC will require even more due to pile-up and new detectors

- Strategy to meet the challenge
 - Increase computing efficiency
 - See next slide
 - Improve software algorithms
 - A factor of 3 speedup over run 1!
 - Exploit parallelism in the software to utilize newly available computer architectures
 - Multithreading to be discussed
Run 2 CMS computing will be an even more coherent & efficient system

- One **central queue** for all resources and all workflows will facilitate prioritization between analysis and production

- T2’s can now do reco and T1’s can do analysis.

- The **HLT farm** is now an integrated resource, outside the LHC running periods
 - Increases T1’s by ~50%
Multi-Threading Software

- Multi-threading allows many calculations to run simultaneously
 ➞ Essential to take advantage of modern multi-core CPUs and GPUs

- CMS framework now supports multi-threading!
 ➞ A major technical achievement essential for run 2 requirements

- Existing prompt reco now runs in multithreaded mode
 ➞ Already a small speedup due to reduction in memory usage without optimizing code to take advantage of multi-threading

- Substantial speedup now possible in future from multi-threaded code

Robert Harris, Fermilab
Generation, Simulation and Tools

- **PYTHIA generation**
 - PYTHIA 8 commissioned for CMS physics during run 1
 - New physics and computing models incorporated
 - Truly the workhorse for physics simulations at the LHC

- **GEANT simulation**
 - Fermilab contributes to GEANT4 physics & technical improvements
 - Fermilab performing R&D and prototyping on GEANT V
 - A next generation detector simulation toolkit to run multithreaded applications in modern computing architectures.

- **Tools**
 - Fermilab contributes to the development of ROOT and the vision of HEP software physics tools.
 - Fermilab participates in HEP Software Foundation (HSF).

- **Software for CMS** that benefits the entire HEP community.

Robert Harris, Fermilab
Preparing for HL-LHC
CMS Simulation Development

- CMS simulation was critical to the outstanding physics performance of CMS in run 1
 - Simulation development will be required to sustain the amazing level of agreement between data and Monte Carlo we have come to expect.

- Upgraded CMS detectors require ongoing development in run 2
 - Geometry, simulated hits, digitization, pileup tools, etc.

- Phase II simulation and software will be a particular challenge
 - Re-engineering to exploit benefits of parallelism on multi-core machines
 - e.g. Particle level parallelization!
 - State of the art detectors with unique capabilities

Robert Harris, Fermilab
High Granularity Endcap Calorimeter

- Silicon pixels allow tracking in this “particle flow” calorimeter

Tracks and clusters clearly identifiable by eye throughout most of detector.

high p_T jet $\mathcal{O}(500$ GeV$)$

W+jets event simulated in CMSSW and reconstructed with Pandora
HGCAL Reconstruction

- A significant effort to develop HGCAL reconstruction has begun
 - Take full advantage of unique detector capabilities in particle flow algorithm
 - Reconstruction within a challenging environment of ~140 pileup events

- Solve problem of speed of reconstruction in this pixel calorimeter
 - A challenge with 6.5 million channels and 200 thousand hits per event.
 - Computational geometry and graph theory used so far.
 - Parallelization being explored and has clear benefits.

- Synergies with linear collider and LArTPC communities (PandoraPFA, etc.)
Computing on Demand

- Reprocessing and MC production currently take a long time limiting physics capability
 - Owned computing resources are limited

- Only need large processing resources during “bursts” of time after code is ready
 - Remainder of time is a relatively steady usage for prompt reco and analysis

- Computing on demand “rents” resources when needed from a BIG source
 - Amazon Web Services (AWS) has many millions of processor cores to rent!
 - Our computing needs are just a small drop in their very big bucket.

Robert Harris, Fermilab
Computing from the HEP Cloud

- Pilot project to integrate computing on demand has begun at Fermilab
 - Has the **highest priority** within the Scientific Computing Division

- CMS Monte Carlo reconstruction using AWS
 - First use case and a critical part of the project

- CMS awarded research grant by Amazon
 - Study feasibility of large scale use of AWS by CMS
 - Use ~50K cores for one month, which is 50% of the current CMS worldwide resources.
 - Simulation and reconstruction of billions of events which will be used by CMS early in run 2.
 - Data will originate and be stored at Fermilab

- Tests new method of provisioning resources
 - Opens up a **new class of HEP computing**

Robert Harris, Fermilab
Conclusions

- CMS scientific computing is ready for Run 2
 - Our global data pool provides users with access to any data, anytime, anywhere within a coherent and efficient computing system.
 - Multi-threading software framework in place will allow us to use modern processor architectures efficiently and handle Run 2 data rates
 - Generation, simulation and data analysis tools are solid.

- CMS scientific computing is preparing for HL-LHC
 - Simulations with particle level parallelization utilizing multi-threading
 - Simulation and reconstruction of phase II detector upgrades
 - Computing on demand

- World class scientific computing supporting the energy frontier